VIRTUALCORRECTIONS TO

D-DIMENSIONAL

Introduction

Introduction

- Massless quarks and gluons the necessary ingredients for any physical process.
- Four jets - landmark NLO calculation.
- $\mathrm{b} \overline{\mathrm{b}} \mathrm{b} \overline{\mathrm{b}}$ production with massless bottoms.

Introduction: the formula

$$
\sigma_{n l o}=\int_{n} d \sigma_{t r e e}+\int_{n} d \sigma_{v i r t}+\int_{n+1} d \sigma_{r e a l}
$$

WITHIN D-DIMENSIONAL UNITARITY

Giele, Kunszt, Melnikov [0801.2237]
Ellis, Giele, Kunszt [0708.2398]
Ellis, Giele, Kunszt, Melnikov [0806.3467]
Zanderighi [...], Winter[...], Schulze[...]
AL[08।2.2998]

Introduction: Color decomposition

$$
\begin{aligned}
& \underset{\text { gluons }}{A_{0}^{N L O}}=\sum_{\sigma} C F_{1}(\sigma) \\
& A_{\mathrm{q}}+\mathrm{T}+\mathrm{Ng} \sum_{\sigma}^{N L O} C F_{1}(\sigma) \\
&+\frac{n_{f}}{N_{c}} \sum_{\sigma^{\prime}} C F_{2}\left(\sigma^{\prime}\right) \\
&+\sum_{\sigma^{\prime \prime}} C F_{3}\left(\sigma^{\prime \prime}\right)
\end{aligned}
$$

No general formula for more than one fermion pair

Introduction: D-dimensional Unitarity

$$
\begin{aligned}
& A^{D_{s}}=A_{0}+D_{s} A_{1} \quad A^{F D H}=2 A^{(6)}-A^{(8)} \\
& A^{D_{s}}=2^{D_{s} / 2-1} A_{0} \quad A^{F D H}=8 A^{(6)}=16 A^{(8)}
\end{aligned}
$$

"Integrand level reduction ... partial fractioning of the amplitude over the standard base of master integrals ... OPP system"

Introduction: the OPP system in DDU

Finding $A^{\left(D_{s}\right)}$

$$
\begin{aligned}
& \bar{e}_{I_{5, s}, s}=\mathcal{P} l_{l_{s}^{s}}^{L_{s}}=e_{e_{I, 0}} \quad \bar{e}_{b_{6}} \quad \text { b)Solve for those }
\end{aligned}
$$

$$
\begin{aligned}
& \bar{b}_{l_{2}, s}=\mathcal{P} \mathcal{I}_{l_{s}}-\sum_{J_{s} / I_{2}} \frac{\bar{e}_{J_{s} / I_{2}}}{D_{k_{1}}\left(l_{s}\right) D_{k_{2}}\left(l_{s}\right) D_{k_{3}}\left(l_{s}\right)}-\sum_{J_{4} / I_{2}} \frac{\bar{d}_{J_{s} / I_{2}}\left(l_{s}\right)}{D_{k_{1}}\left(l_{s}\right) D_{k_{2}}\left(l_{s}\right)}-\sum_{J_{3} / I_{2}} \frac{\bar{c}_{s_{3}} / l_{2}\left(l_{s}\right)}{D_{k_{1}}\left(l_{s}\right)}=\sum_{r}^{1} b_{L_{2}, h_{r}} h_{r}\left(l_{s}\right) \\
& \text { a) Fix loop momentum to } \\
& \text { evaluate numerically those }
\end{aligned}
$$

Introduction: the OPP system in DDU

Finding $A^{\left(D_{s}\right)}$

$$
\begin{aligned}
& \bar{e}_{I_{5, s}}=\mathcal{P}_{l_{s}}^{I_{s}^{5}}=e_{I, 0} \quad l_{0} \\
& \bar{d}_{I_{4}, s}=\boldsymbol{P} \left\lvert\, l_{s}^{L_{s}}-\sum_{J_{5} / I_{4}} \frac{\bar{e}_{J_{5} / I_{4}}}{D_{k_{1}}\left(l_{s}\right)}=\sum_{r} d_{I_{4}, r} f_{r}\left(l_{s}\right) \quad l_{0}\right., l_{1} l_{2}, l_{3}, l_{4} \\
& \bar{c}_{I_{3}, s}=\mathcal{P}_{1}^{I_{s} s}--\sum_{J_{5} / I_{3}} \frac{\bar{e}_{J_{5} / I_{3}}}{D_{k_{1}}\left(l_{s}\right) D_{k_{2}}\left(l_{s}\right)}-\sum_{J_{4} / I_{3}} \frac{\bar{d}_{J_{4}}\left(I_{3}\left(l_{s}\right)\right.}{D_{k 1}\left(l_{s}\right)}=\sum_{r} c_{c_{3,}, r} g_{r}\left(l_{s}\right) \quad l_{0 \ldots 6} \quad l_{7}, l_{8}, l_{9} \\
& \bar{b}_{I_{2}, s}=\left.\boldsymbol{P}\right|_{l_{s}} ^{I_{s}}-\sum_{J_{5} / I_{2}} \frac{\bar{e}_{J_{5} / I_{2}}}{D_{k_{1}}\left(l_{s}\right) D_{k_{2}}\left(l_{s}\right) D_{k_{3}}\left(l_{s}\right)}-\sum_{J_{4} / I_{2}} \frac{\bar{d}_{J_{4} / I_{2}}\left(l_{s}\right)}{D_{k_{1}}\left(l_{s}\right) D_{k_{2}}\left(l_{s}\right)}-\sum_{J_{3} / I_{2}} \frac{\bar{c}_{J_{3} / I_{2}}\left(l_{s}\right)}{D_{k_{1}}\left(l_{s}\right)}=\sum_{r} b_{I_{2}, r} h_{r}\left(l_{s}\right) \\
& \text { Cuts in } D_{s} \\
& l_{0 \ldots 8} \quad l_{9}
\end{aligned}
$$

Note: The system is linear $2 A^{(6)}-\left.A^{(8)} \rightarrow 2 \mathcal{P}^{(6)}\right|_{l} ^{I}-\left.\mathcal{P}^{(8)}\right|_{l} ^{I}$

Introduction: the OPP system in DDU

Finding $A^{\left(D_{s}\right)}$

$$
\begin{aligned}
& \bar{e}_{I_{5, s}}=\left.\mathcal{P}\right|_{l_{s}} ^{5_{s}}=e_{I, 0} \quad l_{0} \\
& \bar{d}_{l_{4}, s}=\operatorname{pl}_{l_{s}}^{L_{s}}-\sum_{J_{5} / l_{4}} \frac{\bar{J}_{5} / I_{4}}{D_{k_{1}}\left(l_{s}\right)}=\sum_{r} d_{L_{4}, f} f_{r}\left(l_{s}\right) \quad l_{0}, l_{1} l_{2}, l_{3}, l_{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cuts in } D_{s} \\
& l_{0 \ldots 8} l_{9}
\end{aligned}
$$

Note: when $l_{s} \in 4 D \quad \rightarrow \quad A^{(6)}=A^{(8)}=A^{(4)}$

Introduction: the OPP system in DDU

Finding $A^{\left(D_{s}\right)}$

$$
\left.\mathcal{P}\right|_{l_{s}} ^{I_{x}}=\left.2 \mathcal{P}^{(6)}\right|_{l_{s}} ^{I_{x}}-\left.\mathcal{P}^{(8)}\right|_{l_{s}} ^{I_{x}}=\left.\mathcal{P}^{(6)}\right|_{l_{s}} ^{I_{x}}-\left.\mathcal{P}^{\left(8^{*}\right)}\right|_{l_{s}} ^{I_{x}}
$$

Primitives

Gluons

Primitives: purely gluonic

\checkmark The most dangerous numerically
\checkmark The fastest for fixed N

Primitives: gluonic - fermion loop

$\sqrt{ }$ Much more stable
$\sqrt{ }$ Propotional to n_{f} / N_{c}

Fermions

Primitives: single fermion line

$\sqrt{ }$ Leading color

Primitives: single fermion line

$\checkmark 1 / N_{c}$ suppressed

Primitives: two fermion lines

\checkmark Leading color
$\sqrt{ }$ Fermion line direction

$\sqrt{ } 1 / N_{c}$ suppressed

Primitives: three fermion lines

$\sqrt{ }$ Leading Color
$\sqrt{ }$ Fermion line direction

Primitives

"All necessary ingredients for a virtual amplitude with massless QCD partons are in place,
tested, ready for production mode".

Numerical Stability

Numerical Stability: accidental instabilities

TRIPLE CUT

$$
l^{\mu}=V^{\mu}+a_{1} n_{1}^{\mu}+a_{2} n_{2}^{\mu}+a_{5} n_{5}^{\mu}
$$

DOUBLE CUT

$$
l^{\mu}=V^{\mu}+a_{1} n_{1}^{\mu}+a_{2} n_{2}^{\mu}+a_{3} n_{3}^{\mu}+a_{5} n_{5}^{\mu}
$$

Diagnosed by redundant OPP equation

Solved by picking another set of n-vectors

There is a special check for this implemented

Numerical Stability: pentagon contamination

$\bar{e}_{I_{5}, s}=\left.\mathcal{P}\right|_{l_{s}} ^{I_{5}}=e_{I, 0}$
$\bar{d}_{I_{4}, s}=\left.\mathcal{P}\right|_{l_{s}} ^{I_{4}}-\sum_{J_{5} / I_{4}} \frac{\bar{J}_{5} / I_{4}}{D_{k_{1}}\left(l_{s}\right)}=\sum_{r} d_{I_{4}, r} f_{r}\left(l_{s}\right)$
$\bar{c}_{I_{3}, s}=\left.\mathcal{P}\right|_{l_{s}} ^{I_{3}}-\sum_{J_{5} / I_{3}} \frac{\overline{\bar{e}}_{J_{5} / I_{3}}}{D_{k_{1}}\left(l_{s}\right) D_{k_{2}}\left(l_{s}\right)}-\sum_{J_{4} / I_{3}} \frac{\bar{d}_{J_{4} / I_{3}}\left(l_{s}\right)}{D_{k 1}\left(l_{s}\right)}=\sum_{r} c_{I_{3}, r} g_{r}\left(l_{s}\right)$
$\bar{b}_{I_{2}, s}=\left.\mathcal{P}\right|_{l_{s}} ^{I_{2}}-\sum_{J_{5} / I_{2}} \frac{\bar{e}_{J_{5} / I_{2}}}{D_{k_{1}}\left(l_{s}\right) D_{k_{2}}\left(l_{s}\right) D_{k_{3}}\left(l_{s}\right)}-\sum_{J_{4} / I_{2}} \frac{\bar{d}_{J_{4} / I_{2}}\left(l_{s}\right)}{D_{k_{1}}\left(l_{s}\right) D_{k_{2}}\left(l_{s}\right)}-\sum_{J_{3} / I_{2}} \frac{\bar{c}_{J_{3} / I_{2}}\left(l_{s}\right)}{D_{k_{1}}\left(l_{s}\right)}=\sum_{r} b_{I_{2}, r} h_{r}\left(l_{s}\right)$
Large cancellations in cases of small gram dets.

Would be desirable to remove the pentagon contamination from the CC part.
Particularly for the pure gluonic case.
$\sqrt{ }$ And to control its effect better in Rational.
$\sqrt{ }$ Even true for the Cut Constructible part even though it can also be evaluated in 4d, i.e. without pentagons.

Numerical Stability: pentagon contamination

q行->gggg (++--++) cc / finite

Numerical Stability: the cure for pentagon contamination

$$
\begin{aligned}
& \bar{d}_{I_{4}, s}=\bar{d}_{I_{4}, s}^{(1)} \bar{d}_{I_{4}, s}^{(2)} \\
& \breve{d}_{I_{4}, s}^{(1)}=\left.\mathcal{P}\right|_{l_{s}} ^{I_{4}}=\sum_{r} d_{I_{4}, r}^{(1)} f_{r}\left(l_{s}\right) \\
& \bar{d}_{I_{4}, s}^{(2)}=-\sum_{J_{5} / I_{4}} \frac{\bar{e}_{J_{5} / I_{4}}}{D_{k_{1}}\left(l_{s}\right)}=\sum_{r} d_{I_{4}, r}^{(2)} f_{r}\left(l_{s}\right) \\
& \bar{c}_{I_{3}, s}=\bar{c}_{I_{3}, s}^{(1)} \bar{c}_{I_{3}, s}^{(2)} \\
& \bar{c}_{I_{3}, s}^{(1)}=\left.\mathcal{P}\right|_{l_{s}} ^{I_{3}}-\sum_{J_{4} / I_{3}} \frac{\bar{d}_{J_{4} / I_{3}}^{(1)}\left(l_{s}\right)}{D_{k 1}\left(l_{s}\right)}=\sum_{r} c_{I_{3}, r}^{(1)} g_{r}\left(l_{s}\right) \\
& \bar{c}_{I_{3}, s}^{(2)}=-\sum_{J_{5} / I_{3}} \frac{\bar{e}_{J_{5} / I_{3}}}{D_{k_{1}}\left(l_{s}\right) D_{k_{2}}\left(l_{s}\right)}-\sum_{J_{4} / I_{3}} \frac{\bar{d}_{J_{4} / I_{3}}^{(2)}\left(l_{s}\right)}{D_{k 1}\left(l_{s}\right)}=\sum_{r} c_{I_{3}, r}^{(2)} g_{r}\left(l_{s}\right) \\
& \bar{b}_{I_{2}, s}=\bar{b}_{I_{2}, s}^{(1)}+\bar{b}_{I_{2}, s} \\
& \bar{b}_{I_{2}, s}^{(1)}=\left.\mathcal{P}\right|_{l_{s}} ^{I_{2}}-\sum_{J_{4} / I_{2}} \frac{\bar{d}_{J_{J_{2}} / I_{2}}^{(1)}\left(l_{s}\right)}{D_{k_{1}}\left(l_{s}\right) D_{k_{2}}\left(l_{s}\right)}-\sum_{J_{3} / I_{2}} \frac{\bar{c}_{J_{3} / I_{2}}^{(1)}\left(l_{s}\right)}{D_{k_{1}}\left(l_{s}\right)}=\sum_{r} b_{I_{2}, r}^{(1)} h_{r}\left(l_{s}\right) \\
& \bar{b}_{I_{2}, s}^{(2)}=-\sum_{J_{5} / I_{2}} \frac{\bar{e}_{J_{5} / I_{2}}}{D_{k_{1}}\left(l_{s}\right) D_{k_{2}}\left(l_{s}\right) D_{k_{3}}\left(l_{s}\right)}-\sum_{J_{4} / I_{2}} \frac{\bar{d}_{J_{4} / I_{2}}^{(2)}\left(l_{s}\right)}{D_{k_{1}}\left(l_{s}\right) D_{k_{2}}\left(l_{s}\right)}-\sum_{J_{3} / I_{2}} \frac{\bar{c}_{J_{3} / I_{2}}^{(2)}\left(l_{s}\right)}{D_{k_{1}}\left(l_{s}\right)}=\sum_{r} b_{I_{2}, r}^{(2)} h_{r}\left(l_{s}\right)
\end{aligned}
$$

Numerical Stability: the cure for pentagon contamination

$$
\begin{aligned}
\bar{d}_{I_{4}, s}= & \bar{d}_{I_{4}, s}^{(1)}+\bar{d}_{I_{4}, s}^{(2)} \\
& \bar{d}_{I_{4}, s}^{(1)}=\left.\mathcal{P}\right|_{l_{s}} ^{I_{s}^{*}}=\sum_{r} d_{I_{4}, r}^{(1)} f_{r}\left(l_{s}\right)
\end{aligned}
$$

$$
\left.\bar{d}_{I_{4}, s}^{(2)}=-\sum_{J_{5} / I_{4}} \frac{\bar{e}_{J_{5}} / I_{4}}{D_{k_{1}}\left(l_{s}\right)}=\sum_{r} d_{I_{4}, r}^{(2)} f_{r}\left(l_{s}\right) \quad\right\rangle \quad\left(d_{0}^{(2)}\right. \text { cancels against pentagon reduced to boxes) }
$$

$$
\bar{c}_{I_{3}, s}=\bar{c}_{I_{3}, s}^{(1)}+\bar{c}_{I_{3}, s}
$$

$$
\bar{c}_{I_{3}, s}^{(1)}=\left.\mathcal{P}\right|_{l_{s}} ^{I_{3}}-\sum_{J_{4} / I_{3}} \frac{\bar{d}_{J_{4} / I_{3}}^{(1)}\left(l_{s}\right)}{D_{k 1}\left(l_{s}\right)}=\sum_{r} c_{I_{3}, r}^{(1)} g_{r}\left(l_{s}\right)
$$

$$
\bar{c}_{I_{3}, s}^{(2)}=-\sum_{J_{5} / I_{3}} \frac{\bar{e}_{J_{5} / I_{3}}}{D_{k_{1}}\left(l_{s}\right) D_{k_{2}}\left(l_{s}\right)}-\sum_{J_{4} / I_{3}} \frac{\bar{d}_{J_{4} / I_{3}}\left(l_{s}\right)}{D_{k 1}\left(l_{s}\right)}=\sum_{r} c_{I_{3}, r}^{(2)} g_{r}\left(l_{s}\right)
$$

$$
\bar{b}_{I_{2}, s}=\bar{b}_{I_{2}, s}^{(1)}+\tilde{\bar{b}}_{I_{2}, s}(2)
$$

$$
\bar{b}_{I_{2}, s}^{(1)}=\left.\mathcal{P}\right|_{l_{s}} ^{I_{2}}-\sum_{J_{4} / I_{2}} \frac{\bar{d}_{J_{4} / I_{2}}^{(1)}\left(l_{s}\right)}{D_{k_{1}}\left(l_{s}\right) D_{k_{2}}\left(l_{s}\right)}-\sum_{J_{3} / I_{2}} \frac{\bar{c}_{J_{3} / I_{2}}^{(1)}\left(l_{s}\right)}{D_{k_{1}}\left(l_{s}\right)}=\sum_{r} b_{I_{2}, r}^{(1)} h_{r}\left(l_{s}\right)
$$

$$
\bar{b}_{I_{2}, s}^{(2)}=-\sum_{J_{5} / I_{2}} \frac{\bar{e}_{J_{5} / I_{2}}}{D_{k_{1}}\left(l_{s}\right) D_{k_{2}}\left(l_{s}\right) D_{k_{3}}\left(l_{s}\right)}-\sum_{J_{4} / I_{2}} \frac{\bar{d}_{J_{4} / I_{2}}\left(l_{s}\right)}{D_{k_{1}}\left(l_{s}\right) D_{k_{2}}\left(l_{s}\right)}-\sum_{J_{3} / I_{2}} \frac{\bar{c}_{J_{3} / I_{2}}^{(2)}}{D_{k_{1}}\left(l_{s}\right)}=l_{r} b_{I_{2}, r}^{(2)} h_{r}\left(l_{s}\right)
$$

\checkmark Pentagon decoupling from 4-D!

Numerical Stability: improved CC plot

Numerical Stability: improved CC plot

Numerical Stability: the cure for pentagon contamination

$$
\begin{aligned}
\bar{d}_{I_{A}, s}= & \bar{d}_{I_{4, s}}^{(1)} \bar{d}_{L_{4}, s}^{(2)} \\
& \bar{d}_{I_{4}, s}^{(1)}=\mathcal{P} l_{L_{s}}^{L_{s}}=\sum_{r} d_{I_{4}, r}^{(1)} f_{r}\left(l_{s}\right)
\end{aligned}
$$

$$
d_{I_{4, s}}^{(2)}=-\sum_{J_{s} / I_{A}} \frac{\left.e_{J_{s} / I_{4}}^{D_{1}} l_{s}\right)}{r}=\sum_{r} d_{I_{4}, r}^{(2)} f_{r}\left(l_{s}\right)!\text { can be handled with care }
$$

$$
\bar{c}_{I_{3}, s}=\bar{c}_{I_{3}, s}^{(1)}+\bar{c}_{I_{3}, s}
$$

$$
\bar{c}_{I_{3}, s}^{(1)}=\left.\mathcal{P}\right|_{l_{s}} ^{I_{3}}-\sum_{J_{4} / I_{3}} \frac{\bar{d}_{J_{4}}^{(1) / I_{3}}\left(l_{s}\right)}{D_{k 1}\left(l_{s}\right)}=\sum_{r} c_{I_{3}, r}^{(1)} g_{r}\left(l_{s}\right)
$$

$$
\bar{c}_{I_{3}, s}^{(2)}=-\sum_{J_{s} / I_{3}} \frac{\bar{e}_{J_{5} / I_{3}}}{D_{k_{1}}\left(l_{s}\right) D_{k_{2}}\left(l_{s}\right)}-\sum_{J_{s}} \frac{\bar{d}_{J_{1}}\left(I_{3}\right)}{D_{1}\left(l_{1}\left(l_{s}\right)\right.} l_{s} \sum_{r} c_{I_{3}, r}^{(2)} g_{r}\left(l_{s}\right) \text { ! can be handled with care }
$$

$$
\bar{b}_{I_{2}, s}=\bar{b}_{I_{2}, s}^{(1)}+\bar{b}_{I_{2}, s}^{(2)}
$$

$$
\bar{b}_{I_{2}, s}^{(1)}=\left.\mathcal{P}\right|_{l_{s}} ^{I_{2}}-\sum_{J_{4} / I_{2}} \frac{\bar{d}_{J_{4} / I_{2}}^{(1)}\left(l_{s}\right)}{D_{k_{1}}\left(l_{s}\right) D_{k_{2}}\left(l_{s}\right)}-\sum_{J_{3} / I_{2}} \frac{\bar{c}_{J_{3} / I_{2}}^{(1)}\left(l_{s}\right)}{D_{k_{1}}\left(l_{s}\right)}=\sum_{r} b_{I_{2}, r}^{(1)} h_{r}\left(l_{s}\right)
$$

$\sqrt{ }$ Both subsystems contribute to the rational part

Numerical Stability: the cure for pentagon contamination

"The pentagon

 coefficient should always be factored out of any subtractions"
Numerical Stability: improved Finite plot

Numerical Stability: improved Finite plot

Splitting in two subsystems.

Numerical Stability: improved Finite plot

Improving the way the box coefficients are treated in subsystem 2

Performance

Performance table

	$\mathrm{N}=6$	$\mathrm{~N}=7$	$\mathrm{~N}=8$
	50 ms	141 ms	350 ms
7	57 ms	153 ms	380 ms
	60 ms	155 ms	373 ms
	157 ms	373 ms	
	60 ms	152 ms	369 ms

QUAD PENALTY xI00

"Thanks to improved accuracy, quadruple precision is only called rarely, which decreases drastically the realistic cpu time per PSP".

Summary

Summary

- We can now do all primitives necessary for massless QCD partonic processes, including four- and six- fermion subprocesses.
- Numerical instability issues due to pentagon contamination are removed from the CC part and controlled much better at the RAT part.
- Ready for production mode.

