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Motivations:  Why NNLO ?Motivations:  Why NNLO ?

● Finding the Higgs if it exists, discovering new physics and matching the precision 
  of current and future colliders requires precise predictions for cross sections
   
  Few cross sections are crucially needed with NNLO precision: V+j,  tt,  WW

● Reducing uncertainties in gluon PDFs  ( eg. NNLO Drell-Yan, V+jet ) 

● Controlling uncertainties from higher orders

● A tool to explore the behavior of perturbation theory at higher orders 

● NNLO event has more partons in the final state          closer to real world  
       

NNLO calculations might lead to important new insights ! 



Why Differential ?Why Differential ?

● Realistic detector acceptance

● Probe the kinematics

● Merging with parton showers and hadronization programs: available with NLO 
 precision (MC@NLO, POWHEG)  NNLO ?

Why Jet Observables ? Why Jet Observables ?  

● Important input to constrain gluon PDFs and  fundamental parameters (    )

● Multijet-signatures are often background to new physics searches 
 (composite quarks, SUSY...)

 s



Structure of NNLO CalculationsStructure of NNLO Calculations

2-loop matrix elements, m partons 1-loop matrix elements, m+1 partons

● Explicit IR poles from loop integrals ● Explicit IR poles from loops
● Implicit IR poles from single unresolved 
 radiation 

Implicit IR poles from double unresolved 
radiation

IR Singularities cancel in the sum of real and virtual contributions and mass factorization 
counterterm but only after phase space integration for real radiations

Tree level matrix elements, m+2 partons



NNLO Real Corrections and the IR Singularities Problem NNLO Real Corrections and the IR Singularities Problem 

Analytic calculation of phase space is either not possible ( jets) or not appropriate 
( differential cross sections )             do it numerically but first remove the singularities  

Possible Approaches

●  Phase space slicing   (Giele, Glover, Kosower)

●  Sector decomposition →   many NNLO results: 
       ee  2  jets  →   (Anastasiou, Melnikov, Petriello)

       ee  3 jets   →   (Heinrich)

      fully differential Higgs production xsection     (Anastasiou, Melnikov, Petriello) 

      fully differential W production xsection         (Melnikov, Petriello)

      NNLO QED correction to the electron energy spectrum in muon decay   (Anastasiou, Melnikov, Petriello )

● Subtraction based methods



Subtraction Methods for IR SingularitiesSubtraction Methods for IR Singularities

For m-jet cross section @ NLO   (Kunszt, Soper)

Finite, can be integrated numerically
Integrated analytically



Subtraction Methods for IR SingularitiesSubtraction Methods for IR Singularities

For m-jet cross section @ NLO   (Kunszt, Soper)

Finite, can be integrated numerically

● Dipole subtraction     ( NLO:  Catani, Seymour;  NNLO: Weinzierl )

●   -prescription        ( NLO:  Frixione, Kunszt, Signer ; 

                                       NNLO: Frixione, Grazzini; Del Duca, Somogyi, Trocsanyi )

● Antenna Subtraction  ( NLO:  D. Kosower, J. Campbell, M. Cullen, N. Glover, A. Daleo, D: Maitre, T. Gehrmann

                                       NNLO:  A. Gehrmann, T. Gehrmann, N. Glover )



No preferred method so far, but fast development ...  

Integrated analytically



Subtraction Methods for IR SingularitiesSubtraction Methods for IR Singularities

For m-jet cross section @ NLO   (Kunszt, Soper)

Finite, can be integrated numerically

● Dipole subtraction     ( NLO:  Catani, Seymour;  NNLO: Weinzierl )
●   -prescription         ( NLO:  Frixione, Kunszt, Signer ; 
                                       NNLO: Frixione, Grazzini; Del Duca, Somogyi, Trocsanyi )

 Antenna Subtraction  ( NLO:  D. Kosower, J. Campbell, Cullen, Glover, Daleo, Maitre, T.Gehrmann
                                       NNLO:  A. Gehrmann, T. Gehrmann, N. Glover )



No preferred method so far, but fast development ...  

First results: ee  2 jets @ NNLO→   (A. Gehrmann, T. Gehrmann, N. Glover ; S: Weinzierl)

                   ee  3 jets @ NNLO→   (A. Gehrmann, T. Gehrmann, N. Glover, G. Heinrich ; S. Weinzierl)

Integrated analytically



Subtraction MethodsSubtraction Methods

All based on the factorization properties of phase space and matrix elements in
soft and collinear limits
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At NNLO there are double and single unresoved configurations 

Double unresolved

● triple collinear
● double single collinear
● soft-collinear
● double soft

Single unresolved

● soft
● collinear



Subtraction MethodsSubtraction Methods

All based on the factorization properties of phase space and matrix elements in
soft and collinear limits

∣M  , a , b , c ,∣
2
 P abc X∣M  , X ,∣

2
ang a∥b∥c   for

∣M  , a , b , c , d ,∣
2
 S abcd∣M  , a , d ,∣

2
for b ,c 0

At NNLO there are double and single unresoved configurations 

Double unresolved

● triple collinear
● double single collinear
● soft-collinear
● double soft

Single unresolved

● soft
● collinear

Idea: construct subtraction terms that
● Approximate the m+2 matrix elements in all singular limits

● Are sufficiently simple to be integrated analytically



Antenna Subtraction: building block @ NLOAntenna Subtraction: building block @ NLO

X ijk
0

×

×

● Antenna functions contain all singular configurations of parton j emitted between
 two hard color-connected partons i & k   

● An appropriate mapping of momenta                                 leads to the factorization 
  of the phase space 

{ p i , p j , pk } { p I , pK }
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2
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Antenna Subtraction: building block @ NLOAntenna Subtraction: building block @ NLO

X ijk
0

×

×

&

∑m 1∫ d m 1∣M m 1∣
2
J m
m 1

∑m 1∫ d m ∣M m∣
2
J m
m ∫ ∑ j

d  X ijk
0 X ijk

0

Integrated analytically
Momenta mapping must be such that:
p i p j pk= p I  pK
p I
2 = 0, pK

2 = 0

Observables do not depend on individual monmenta p i , p j , pk

explicit   -poles cancel
the loop ones





Antenna Subtraction @ NNLOAntenna Subtraction @ NNLO

Structure of NNLO m-jet cross section:

d  NNLO
S : real radiation subtraction term for d  NNLO

R

d  NNLO
VS ,1 : One-loop virtual subtraction term for d  NNLO

V ,1

d  NNLO
V ,2 : two-loop virtual corrections

Each of the differences above is finite and can be integrated numerically



Antenna Functions @ NNLOAntenna Functions @ NNLO
Antenna functions: derived from physical matrix elements normalized to two-parton 
matrix elements 

 tree level four-parton antenna 

one-loop three parton antenna 

NNLO: two unresolved partons
(real or virtual)

qq   q q Xfrom
  g g Xq g from
H  g g Xg g from

eg.

product of two three-parton antenna

NLO

q g , g g

They refer to colour-ordered pair of hard partons
 qq , with radiations in between



Antenna Functions @ NNLOAntenna Functions @ NNLO
Antenna functions: derived from physical matrix elements normalized to two-parton 
matrix elements 

qq   q q Xfrom
  g g Xq g from
H  g g Xg g from

A. Gehrmann-De Ridder, T. Gehrmann, N. Glover 

                  

 NNLO unintegrated antennae

1  4X 4
0
 i , j , k , l 

X 3
1
 i , j , k  1  3 1-loop



Possible Configurations for Two Unresolved PartonsPossible Configurations for Two Unresolved Partons

Final-final antenna

Initial-final antenna

Initial-initial antenna

Pictures correspond to NLO for simplicity



Integrated Subtracted Terms for Two Unresolved PartonsIntegrated Subtracted Terms for Two Unresolved Partons

● Final-final antenna:   A. Gehrmann, T. Gehrmann, N. Glover

    4 master integrals: cut three-loop self energies, 1 scale

    applied  to ee  3jets →  A. Gehrmann, T. Gehrmann, N. Glover, G. Heinrich;  S. Weinzierl

● Initial-final antenna:    A. Daleo, A.. Gehrmann, T. Gehrmann, G. Luisoni

     about 10 master integrals: cut two-loop boxes, 1 scale  (see G. Luisoni's talk)

    Sufficient for DIS (2+1)-jet production   

● Initial-initial antenna:  R. B, A. Gehrmann-De Ridder, M. Ritzmann

    about 30 master integrals: cut two-loop boxes, 2 scales

    Required for any process with two hadronic initial states, eg. V+j 



Integrated Subtracted Terms for Two Unresolved PartonsIntegrated Subtracted Terms for Two Unresolved Partons

● Final-final antenna:   A. Gehrmann, T. Gehrmann, N. Glover

    4 master integrals: cut three-loop self energies, 1 scale

    applied  to ee  3jets →  A. Gehrmann, T. Gehrmann, N. Glover, G. Heinrich;  S. Weinzierl

● Initial-final antenna:    A. Daleo, A.. Gehrmann, T. Gehrmann, G. Luisoni

     about 10 master integrals: cut two-loop boxes, 1 scale  (see G. Luisoni's talk)

    Sufficient for DIS (2+1)-jet production   

● Initial-initial antenna:  R. B, A. Gehrmann-De Ridder, M. Ritzmann

    about 30 master integrals: cut two-loop boxes, 2 scales

    Required for any process with two hadronic initial states, eg. V+j 
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Initial-initial Antenna Functions: Double Real Radiation  2  3→Initial-initial Antenna Functions: Double Real Radiation  2  3→

Kinematics:

● Obtain antenna functions for double real radiation by crossing 1  4 NNLO antenna→

       each final-final antenna produces 6 initial-initial antennae 

       depending on symmetries of the antenna, some of the 6 antennae can be identical  

1  4 2  3

p1  p2  q  k 1 k 2

with q20

Phase space factorization  ( Daleo, Gehrmann, Maitre):

d m 2 k1 , , km 2 ; p1 , p2 = d m  k1 ,  , k i , k l , , km 2 ; x1 p1 , x2 p2

[dk j ] [dk k ] d x1 d x2 J  q
2− x1 x2 s12  2  x2 p2− x1 p1⋅q 

With: J = s12  x1  s12− s1j− s1k  x2  s12− s2j− s2k 

crossing

Factorization achieved with the Lorentz boost: q  q= x1 p1 x2 p2 ; k  k



Initial-initial Antenna Functions: Double Real Radiation  2  3→Initial-initial Antenna Functions: Double Real Radiation  2  3→

Integration: inclusive three-particle phase space integrals with               fixed.q2 , x1 , x2

Map phase space integrals into cut  loop integrals using unitarity   (Anastasiou, Melnikov) 

Cutkosky rules: 

Apply to  q2 − x1 x2 s12 ,  2  x2 p2 − x1 p1⋅q 

 q i
2
− m i

2
 ⇒

1

q i
2
− m i

2
− i 

−
1

q i
2
− m i

2
i 

● Mass-shell conditions for auxiliary propagators           constraints on the phase space
● Use integration by parts identities and Laporta algorithm to reduce all phase space 
 integrals  into a small set of master integrals: ~ 30



Initial-initial Antenna Functions: Double Real Radiation  2  3→Initial-initial Antenna Functions: Double Real Radiation  2  3→

In double unresolved case, x1 and x2 satisfy the limits:

p1 ↔ p2
+
k j ↔ k k

Masters have to be calculated in three regions of phase space:

x1≠ 1, x2≠ 1

x1 ≠ 1, x2 = 1 ∥ x1 = 1, x2 ≠ 1

x1= 1, x2= 1



The                 AntennaeThe                 AntennaeB4
0 , H 4

0 , E 4
0

B4
0 q , q ' ,q ' ,q 

E 4
0 q , q ' ,q ' , g 

H 4
0 q ,q ,q ' ,q ' 

collapses to the hard partons

collapses to the hard partons

collapses to the hard partons

q q

q g

g g

H 4
0

 q1 ↔ q2

B4
0

single unresolved:

1 || 2 or 3 || 4

double unresolved:

1 || 2 &  3 || 4

single unresolved:

 3 || 4

double unresolved:

1 ||  3 || 4
      or
2 ||  3 || 4
      or
3 → 0, 4 → 0  

E 4
0

single unresolved:

     5 || 3  or  5 || 4  
               or  
            5 → 0

double unresolved:

3 ||  4  ||  5

Singularities taken care of by these antennae (final-final as example)



The                 AntennaeThe                 AntennaeB4
0 , H 4

0 , E 4
0

13 masters  are involved in the calculation of B4
0 , H 4

0 , E 4
0

, only scalar ones are shown

B4
0 q , q ' ,q ' ,q 

E 4
0 q , q ' ,q ' , g 

H 4
0 q ,q ,q ' ,q ' 

collapses to the hard partons

collapses to the hard partons

collapses to the hard partons

q q

q g

g g



The                 AntennaeThe                 AntennaeB4
0 , H 4

0 , E 4
0

● Compute the master integrals analytically using differential equations and a basis of 
 generalized harmonic polylogarithms (GHPLs) of dimension two 

● Boundaries obtained by calculating the master integrals in the soft limit  x1  1 ,  x2   1→ →

x1≠ 1, x2≠ 1

x1 ≠ 1, x2 = 1 ∥ x1 = 1, x2 ≠ 1

x1= 1, x2= 1

GHPLs weight 2,  epsilon expansion of masters at most up to 

HPLs weight 3,  epsilon expansion of masters at most up to 

 epsilon expansion of masters at most up to  

 2

 3

 4

Checked that all initial-initial antennae reproduce the splitting functions 
and eikonal factors in collinear and soft limits.   (Campbell, Glover; Catani, Grazzini)



Initial-initial Antenna Functions:  Real Radiation at One-loop 2 2→Initial-initial Antenna Functions:  Real Radiation at One-loop 2 2→

● Obtain antenna functions by crossing one-loop 1  3 NNLO antennae→

● Kinematics: 

● Phase space factorization  (Daleo, Maitre, Gehrmann): 

p1 p2 k 1q with q20

Easier than the double-unresolved radiation case since the phase space is overconstrained



Initial-initial Antenna Functions:  Real Radiation at One-loop 2 2→Initial-initial Antenna Functions:  Real Radiation at One-loop 2 2→

● Obtain antenna functions by crossing one-loop 1  3 NNLO antennae→

● Kinematics: p1 p2 k 1q with q20

● One-loop 2  2:  box integrals already known for the final-final case where→
                         all the invariants                    

For initial-initial case: cross two legs to the initial state and q to final state  

     -  two of the invariants  sij become negative

     - analytic continuation of 2F1 is needed as well as extraction of end point singularities

0  s ij  1

f-f case



Conclusions and OutlooKConclusions and OutlooK

Next to do:

● Complete the set of the integrated initial-initial antennae 

● Cross check of initial-initial antennae with NNLO Drell-Yan coefficient functions

 Potential applications:
 
 V+jet, pp  2 jets→   (J. Pires's talk) , W-pair production (G. Chachamis's talk) 

First analytical results for the integrated initial-initial antennae:

 the                            B4
0
q , q ' , q ' , q , H 4

0
q , q , q ' , q '  , E 4

0
q , q ' , q ' , g 

collapse to the hard partons:                         respectively           q q , g g , q g
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