Antenna Subtraction for Two Hadronic Initial States at NNLO

Radja Boughezal
ITP, University of Zurich

RADCOR 2009. 29 October. Ascona. Switzerland
In collaboration with:
A. Gehrmann-De Ridder $\&$ M. Ritzmann

Motivations: Why NNLO ?

- Finding the Higgs if it exists, discovering new physics and matching the precision of current and future colliders requires precise predictions for cross sections

Few cross sections are crucially needed with NNLO precision: $\mathrm{V}+\mathrm{j}, \mathrm{tt}, \mathrm{WW}$

- Reducing uncertainties in gluon PDFs (eg. NNLO Drell-Yan, V+jet)
- Controlling uncertainties from higher orders
- A tool to explore the behavior of perturbation theory at higher orders
- NNLO event has more partons in the final state $\|$ closer to real world

NNLO calculations might lead to important new insights !

Why Differential?

- Realistic detector acceptance
- Probe the Kinematics
- Merging with parton showers and hadronization programs: available with NLO precision (MC@NLO, POWHEG) \Rightarrow NNLO?

Why Jet Observables?

- Important input to constrain gluon PDFs and fundamental parameters $\left(\alpha_{s}\right)$
- Multijet-signatures are often background to new physics searches (composite quarks, SUSY...)

Structure of NNLO Calcullations

2-loop matrix elements, m partons

- Explicit IR poles from loop integrals

1-loop matrix elements, $m+1$ partons

- Explicit IR poles from loops
- Implicit IR poles from single unresolved radiation

Tree level matrix elements, $m+2$ partons

Implicit IR poles from double unresolved radiation

IR Singularities cancel in the sum of real and virtual contributions and mass factorization counterterm but only after phase space integration for real radiations

NNLO Real Corrections and the \mathbb{R} Singularities Problem

Analytic calculation of phase space is either not possible (jets) or not appropriate (differential cross sections) $\|$ do it numerically but first remove the singularities

Possible Approaches

- Phase space slicing (Giele, Glover, Kosower)
- Sector decomposition \rightarrow many NNLO results:

```
    ee }->2\mathrm{ jets (Anastasiou, MelniKov, Petriello)
```

 ee \(\rightarrow 3\) jets \(\quad\) (Heinrich)
 fully differential Higgs production xsection (Anastasiou, Melnikov, Petriello)
fully differential W production xsection (Melnikov, Petriello) NNLO QED correction to the electron energy spectrum in muon decay (Anastasiou, Melnikov, Petriello)

- Subtraction based methods

Subtraction Methods for \mathbb{R} Singularities
For m-jet cross section @ NLO (Kunszt, Soper)

$$
\mathrm{d} \sigma_{N L O}=\int_{\mathrm{d} \Phi_{m+1}}(\underbrace{}_{\text {Finite, can be integrated numerically }} \underbrace{R}_{\text {Integrated analytically }}
$$

Subtraction Methods for \mathbb{R} Singularities

For m-jet cross section @ NLO (Kunszt, Soper)

$$
\mathrm{d} \sigma_{N L O}=\int_{\mathrm{d} \Phi_{m+1}}(\underbrace{}_{\text {Finite, can be integrated numerically }}(\underbrace{R}_{N L O}-\mathrm{d} \sigma_{N L O}^{S})+\left[\int_{\mathrm{d} \Phi_{m+1}} \mathrm{~d} \sigma_{N L O}^{S}+\int_{\mathrm{d} \Phi_{m}} \mathrm{~d} \sigma_{N L O}^{V}\right]
$$

No preferred method so far, but fast development ...

- Dipole subtraction (NLO: Catani, Seymour; NNLO: Weinzierl)
- E-prescription (NLO: Frixione, Kunszt, Signer:

NNLO: Frixione, Grazzini; Del Duca, Somogyi, Trocsanyi)

- Antenna Subtraction (NLO: D. Kosower, J. Campbell, M. Cullen, N. Glover, A. Daleo, D: Maitre, T. Gehrmann NNLO: A. Gehrmann, T. Gehrmann, N. Glover)

Subtraction Methods for \mathbb{R} Singularities

For m-jet cross section @ NLO (Kunszt, Soper)

$$
\mathrm{d} \sigma_{N L O}=\int_{\mathrm{d} \Phi_{m+1}}(\underbrace{}_{\text {Finite, can be integrated numerically }}(\underbrace{R}_{N L O}-\mathrm{d} \sigma_{N L O}^{S})+\left[\int_{\mathrm{d} \Phi_{m+1}} \mathrm{~d} \sigma_{N L O}^{S}+\int_{\mathrm{d} \Phi_{m}} \mathrm{~d} \sigma_{N L O}^{V}\right]
$$

No preferred method so far, but fast development ...

- Dipole subtraction (NLO: Catani, Seymour; NNLO: Weinzierl)
- E-prescription (NLO: Frixione, Kunszt, Signer : NNLO: Frixione, Grazzini; Del Duca, Somogyi, Trocsanyi)

Antenna Subtraction (NLO: D. Kosower, J. Campbell, Cullen, Glover, Daleo, Maitre, T.Gehrmann NNLO: A. Gehrmann, T. Gehrmann, N. Glover)

First results: ee $\rightarrow 2$ jets @ NNLO (A. Gehrmann, T. Gehrmann, N. Glover; S: Weinzierl)
ee $\rightarrow 3$ jets @ NNLO (A. Gehrmann, T. Gehrmann, N. Glover, G. Heinrich ; S. Weinzierl)

Subtraction Methods

All based on the factorization properties of phase space and matrix elements in soft and collinear limits

$$
\begin{array}{ll}
|M(\ldots, a, b, c, \ldots)|^{2} \rightarrow P_{a b c \rightarrow X}|M(\ldots, X, \ldots)|^{2}+a n g & \text { for } \quad a\|b\| c \\
|M(\ldots, a, b, c, d, \ldots)|^{2} \rightarrow S_{a b c d}|M(\ldots, a, d, \ldots)|^{2} & \text { for } \quad b, c \rightarrow 0
\end{array}
$$

At NNLO there are double and single unresoved configurations

Double unresolved

- triple collinear
- double single collinear
- soft-collinear
- double soft

Single unresolved

- soft
- collinear

Subtraction Methods

All based on the factorization properties of phase space and matrix elements in soft and collinear limits

$$
\begin{array}{ll}
|M(\ldots, a, b, c, \ldots)|^{2} \rightarrow P_{a b c \rightarrow X}|M(\ldots, X, \ldots)|^{2}+a n g & \text { for } \quad a\|b\| c \\
|M(\ldots, a, b, c, d, \ldots)|^{2} \rightarrow S_{a b c d}|M(\ldots, a, d, \ldots)|^{2} & \text { for } \quad b, c \rightarrow 0
\end{array}
$$

At NNLO there are double and single unresoved configurations

Double unresolved

- triple collinear
- double single collinear
- soft-collinear
- double soft

Single unresolved

- soft
- collinear

Idea: construct subtraction terms that

- Approximate the $m+2$ matrix elements in all singular limits
- Are sufficiently simple to be integrated analytically

Antenna Subtraction: building block © NLO

$$
X_{i j k}^{0}=S_{i j k, I K} \frac{\left|M_{i j k}^{0}\right|^{2}}{\left|M_{I K}^{0}\right|^{2}}
$$

ε

$$
\mathrm{d} \Phi_{X_{i j k}}=\frac{\mathrm{d} \Phi_{3}}{P_{2}}
$$

- Antenna functions contain all singular configurations of parton j emitted between two hard color-connected partons i $\& K$
- An appropriate mapping of momenta $\left\{\boldsymbol{p}_{i}, \boldsymbol{p}_{j}, \boldsymbol{p}_{\boldsymbol{k}}\right\} \rightarrow\left\{\boldsymbol{p}_{I}, \boldsymbol{p}_{K}\right\}$ leads to the factorization of the phase space

$$
\sum_{m+1} d \phi_{m+1}\left|M_{m+1}\right|^{2} J_{m}^{(m+1)} \rightarrow \sum_{m+1} d \phi_{m}\left|M_{m}\right|^{2} J_{m}^{(m)} \sum_{j} d \phi_{X_{i j k}^{0}} X_{i j k}^{0}
$$

Antenna Subtraction: building block NLO

$$
X_{i j k}^{0}=S_{i j k, I K} \frac{\left|M_{i j k}^{0}\right|^{2}}{\left|M_{I K}^{0}\right|^{2}}
$$

ε

$$
\mathrm{d} \Phi_{X_{i j k}}=\frac{\mathrm{d} \Phi_{3}}{P_{2}}
$$

$$
\sum_{m+1} \int d \phi_{m+1}\left|M_{m+1}\right|^{2} J_{m}^{(m+1)} \rightarrow \sum_{m+1} \int d \phi_{m}\left|M_{m}\right|^{2} J_{m}^{(m)} \int \sum_{j} d \phi_{X_{j i k}^{0}} X_{i j k}^{0}
$$

Momenta mapping must be such that:

$$
\begin{aligned}
& \boldsymbol{p}_{i}+\boldsymbol{p}_{j}+\boldsymbol{p}_{k}=\boldsymbol{p}_{I}+\boldsymbol{p}_{K} \\
& \boldsymbol{p}_{I}^{2}=\mathbf{0}, \boldsymbol{p}_{K}^{2}=\mathbf{0}
\end{aligned}
$$

Integrated analytically explicit ϵ-poles cancel the loop ones

Observables do not depend on individual monmenta $\boldsymbol{p}_{i}, \boldsymbol{p}_{j}, \boldsymbol{p}_{\boldsymbol{k}}$

Antenna Subtraction © NNLO

Structure of NNLO m-jet cross section:

$$
\begin{aligned}
\mathrm{d} \sigma_{N N L O}= & \int_{\mathrm{d} \Phi_{m+2}}\left(\mathrm{~d} \sigma_{N N L O}^{R}-\mathrm{d} \sigma_{N N L O}^{S}\right)+\int_{\mathrm{d} \Phi_{m+2}} \mathrm{~d} \sigma_{N N L O}^{S} \\
& +\int_{\mathrm{d} \Phi_{m+1}}\left(\mathrm{~d} \sigma_{N N L O}^{V, 1}-\mathrm{d} \sigma_{N N L O}^{V S, 1}\right)+\int_{\mathrm{d} \Phi_{m+1}} \mathrm{~d} \sigma_{N N L O}^{V S, 1} \\
& +\int_{\mathrm{d} \Phi_{m}} \mathrm{~d} \sigma_{N N L O}^{V, 2},
\end{aligned}
$$

$\boldsymbol{d} \sigma_{N N L O}^{S}$: real radiation subtraction term for $\boldsymbol{d} \sigma_{N N L O}^{R}$
$d \sigma_{N N L O}^{V S, 1}$: One-loop virtual subtraction term for $d \sigma_{N N L O}^{V, 1}$
$d \sigma_{N N L O}^{V, 2}$ two-loop virtual corrections
Each of the differences above is finite and can be integrated numerically

Antenna Functions © NNLO

Antenna functions: derived from physical matrix elements normalized to two-parton matrix elements

$$
\begin{array}{lll}
q \bar{q} & \text { from } & \gamma \rightarrow q \bar{q}+X \\
q g & \text { from } & \tilde{x} \rightarrow \tilde{g} g+X \tag{eg.}\\
g g & \text { from } & H \rightarrow g g+X
\end{array}
$$

They refer to colour-ordered pair of hard partons

$q \bar{q}, q g, g g$ with radiations in between

- tree level four-parton antenna

NNLO: two unresolved partons (real or virtual)

Antenna Functions © NNLO

Antenna functions: derived from physical matrix elements normalized to two-parton matrix elements

$$
\begin{array}{lll}
q \bar{q} & \text { from } & \gamma \rightarrow q \bar{q}+X \\
q g & \text { from } & \tilde{x} \rightarrow \tilde{g} g+X \\
g g & \text { from } & H \rightarrow g g+X
\end{array}
$$

	tree level	one loop
quark-antiquark		
$q g \bar{q}$	$A_{3}^{0}(q, g, \bar{q})$	$A_{3}^{1}(q, g, \bar{q}), \tilde{A}_{3}^{1}(q, g, \bar{q}), \hat{A}_{3}^{1}(q, g, \bar{q})$
$q g g \bar{q}$	$A_{4}^{0}(q, g, g, \bar{q}), \tilde{A}_{4}^{0}(q, g, g, \bar{q})$	
$q q^{\prime} \bar{q}^{\prime} \bar{q}$	$B_{4}^{0}\left(q, q^{\prime}, \bar{q}^{\prime}, \bar{q}\right)$	
$q q \bar{q} \bar{q}$	$C_{4}^{0}(q, q, \bar{q}, \bar{q})$	
quark-gluon		
qgg	$D_{3}^{0}(q, g, g)$	$D_{3}^{1}(q, g, g), \hat{D}_{3}^{1}(q, g, g)$
qggg	$D_{4}^{0}(q, g, g, g)$	
$q q^{\prime} \bar{q}^{\prime}$	$E_{3}^{0}\left(q, q^{\prime}, \vec{q}^{\prime}\right)$	$E_{3}^{1}\left(q, q^{\prime}, \bar{q}^{\prime}\right), \tilde{E}_{3}^{1}\left(q, q^{\prime}, \bar{q}^{\prime}\right), \hat{E}_{3}^{1}\left(q, q^{\prime}, \bar{q}^{\prime}\right)$
$q q^{\prime} \bar{q}^{\prime} g$	$E_{4}^{0}\left(q, q^{\prime}, \bar{q}^{\prime}, g\right), \tilde{E}_{4}^{0}\left(q, q^{\prime}, \bar{q}^{\prime}, g\right)$	
gluon-gluon		
ggg	$F_{3}^{0}(g, g, g)$	$F_{3}^{1}(g, g, g), \hat{F}_{3}^{1}(g, g, g)$
gggg	$F_{4}^{0}(g, g, g, g)$	
$g q \bar{q}$	$G_{3}^{0}(g, q, \bar{q})$	$G_{3}^{1}(g, q, \bar{q}), \tilde{G}_{3}^{1}(g, q, \bar{q}), \hat{G}_{3}^{1}(g, q, \bar{q})$
$g q \bar{q} g$	$G_{4}^{0}(g, q, \bar{q}, g), \tilde{G}_{4}^{0}(g, q, \bar{q}, g)$	
$q \bar{q} q^{\prime} \bar{q}^{\prime}$	$H_{4}^{0}\left(q, \bar{q}, q^{\prime}, \bar{q}^{\prime}\right)$	

A. Gehrmann-De Ridder, T. Gehrmann, N. Glover

$$
\begin{array}{ll}
X_{4}^{0}(i, j, k, l) & 1 \rightarrow 4 \\
X_{3}^{1}(i, j, k) & 1 \rightarrow 3
\end{array} \quad \text { i-loop }
$$

NNLO unintegrated antennae

Possible Configurations for Two Unresolved Partons

Pictures correspond to NLO for simplicity

Integrated Subtracted Terms for Two Unresolved Partons

- Final-final antenna: A. Gehrmann, T. Gehrmann, N. Glover 4 master integrals: cut three-loop self energies, I scale applied to ee \rightarrow 3jets A. Gehrmann, T. Gehrmann, N. Glover, G. Heinrich; S. Weinzierl
- Initial-final antenna: A. Daleo, A.. Gehrmann, T. Gehrmann, G. Luisoni about 10 master integrals: cut two-loop boxes, I scale (see G. Luisoni's talk) Sufficient for DIS $(2+1)$-jet production
- Initial-initial antenna: R. B. A. Gehrmann-De Ridder, M. Ritzmann about 30 master integrals: cut two-loop boxes, 2 scales Required for any process with two hadronic initial states, eg. $V+j$

Integrated Subtracted Terms for Two Unresolved Partons

- Final-final antenna: A. Gehrmann, T. Gehrmann, N. Glover

4 master integrals: cut three-loop self energies, I scale
applied to ee \rightarrow 3jets A. Gehrmann, T. Gehrmann, N. Glover, G. Heinrich; S. Weinzierl

- Initial-final antenna: A. Daleo, A.. Gehrmann, T. Gehrmann, G. Luisoni
about 10 master integrals: cut two-loop boxes, I scale (see G. Luisoni's talk) Sufficient for DIS $(2+1)$-jet production
- Initial-initial antenna: R. B. A. Gehrmann-De Ridder, M. Ritzmann
about 30 master integrals: cut two-loop boxes, 2 scales
Required for any process with two hadronic initial states, eg. $V+j$

Initial-initial Antenna Functions: Double Real Radiation $2 \rightarrow 3$

- Obtain antenna functions for double real radiation by crossing I $\rightarrow 4$ NNLO antenna each final-final antenna produces 6 initial-initial antennae
depending on symmetries of the antenna, some of the 6 antennae can be identical Kinematics:

Phase space factorization (Daleo, Gehrmann, Maitre):
$\boldsymbol{d} \boldsymbol{\phi}_{m+2}\left(\boldsymbol{k}_{1}, \ldots, \boldsymbol{k}_{m+2} ; \boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right)=\boldsymbol{d} \boldsymbol{\phi}_{m}\left(\tilde{\boldsymbol{k}}_{1}, \ldots, \tilde{\boldsymbol{k}}_{i}, \tilde{\boldsymbol{k}}_{l}, \ldots, \boldsymbol{k}_{m+2} ; \boldsymbol{x}_{1} \boldsymbol{p}_{1}, \boldsymbol{x}_{2} \boldsymbol{p}_{2}\right)$

$$
\left[d k_{j}\right]\left[d k_{k}\right] d x_{1} d x_{2} J \delta\left(q^{2}-x_{1} x_{2} s_{12}\right) \delta\left(2\left(x_{2} p_{2}-x_{1} p_{1}\right) \cdot q\right)
$$

Factorization achieved with the Lorentz boost: $q \rightarrow \tilde{q}=x_{1} \boldsymbol{p}_{1}+x_{2} \boldsymbol{p}_{2} ; \boldsymbol{k} \rightarrow \tilde{\boldsymbol{k}}$
With:

$$
J=s_{12}\left(x_{1}\left(s_{12}-s_{1 \mathrm{j}}-s_{1 \mathrm{k}}\right)+x_{2}\left(s_{12}-s_{2 \mathrm{j}}-s_{2 \mathrm{k}}\right)\right)
$$

Initial-initial Antenna Functions: Double Real Radiation $2 \rightarrow 3$

Integration: inclusive three-particle phase space integrals with q^{2}, x_{1}, x_{2} fixed.

Map phase space integrals into cut loop integrals using unitarity
(Anastasiou, Melnikov)
Cutkosky rules: $\delta\left(q_{i}^{2}-m_{i}^{2}\right) \Rightarrow \frac{1}{q_{i}^{2}-m_{i}^{2}-i \epsilon}-\frac{1}{q_{i}^{2}-m_{i}^{2}+i \epsilon}$
Apply to $\quad \delta\left(q^{2}-x_{1} x_{2} s_{12}\right), \delta\left(2\left(x_{2} p_{2}-x_{1} p_{1}\right) \cdot q\right)$

- Mass-shell conditions for auxiliary propagators \rightarrow constraints on the phase space
- Use integration by parts identities and Laporta algorithm to reduce all phase space integrals into a small set of master integrals: ~ 30

Initial-initial Antenna Functions: Double Real Radiation $2 \rightarrow 3$

$$
\begin{aligned}
& x_{1}=\left(\frac{s_{12}-s_{j 2}-s_{k 2}}{s_{12}} \frac{s_{12}-s_{1 j}-s_{1 k}-s_{j 2}-s_{k 2}+s_{j k}}{s_{12}-s_{1 j}-s_{1 k}}\right)^{\frac{1}{2}} \\
& x_{2}=\left(\frac{s_{12}-s_{1 j}-s_{1 k}}{s_{12}} \frac{s_{12}-s_{1 j}-s_{1 k}-s_{j 2}-s_{k 2}+s_{j k}}{s_{12}-s_{j 2}-s_{k 2}}\right)^{\frac{1}{2}}
\end{aligned}
$$

In double unresolved case, XI and $x 2$ satisfy the limits:
i) j and k soft: $x_{1} \rightarrow 1, x_{2} \rightarrow 1$,
ii) j soft and $k_{k}=z_{1} p_{1} \| p_{1}: x_{1} \rightarrow 1-z_{1}, x_{2} \rightarrow 1$,
iii) $k_{j}=z_{1} p_{1} \| p_{1}$ and $k_{k}=z_{2} p_{2} \| p_{2}: x_{1} \rightarrow 1-z_{1}, x_{2} \rightarrow 1-z_{2}$,

$$
p_{1} \leftrightarrow p_{2}
$$

iv) $k_{j}+k_{k}=z_{1} p_{1} \| p_{1}: x_{1} \rightarrow 1-z_{1}, x_{2} \rightarrow 1$,

Masters have to be calculated in three regions of phase space:

$$
\begin{aligned}
& \quad x_{1} \neq 1, x_{2} \neq 1 \\
& \quad x_{1} \neq 1, x_{2}=1 \| x_{1}=1, x_{2} \neq 1 \\
& \quad x_{1}=1, x_{2}=1
\end{aligned}
$$

The $B_{4}^{0}, H_{4}^{0}, \tilde{E}_{4}^{0}$ Antennze

$$
\begin{array}{ll}
\boldsymbol{B}_{4}^{0}\left(\boldsymbol{q}, \boldsymbol{q}^{\prime}, \overline{\boldsymbol{q}}^{\prime}, \overline{\boldsymbol{q}}\right) & \text { collapses to the hard partons } \\
\tilde{\boldsymbol{E}}_{4}^{0}\left(\boldsymbol{q}, \boldsymbol{q}^{\prime}, \overline{\boldsymbol{q}}^{\prime}, \boldsymbol{g}\right) & \text { collapses to the hard partons } \\
\boldsymbol{q} \boldsymbol{g} \\
\boldsymbol{H}_{4}^{0}\left(\boldsymbol{q}, \overline{\boldsymbol{q}}, \boldsymbol{q}^{\prime}, \overline{\boldsymbol{q}}^{\prime}\right) & \text { collapses to the hard partons } \\
\boldsymbol{g} \boldsymbol{g}
\end{array}
$$

Singularities taken care of by these antennae (final-final as example)

single unresolved:
1 || 2 or 3 || 4
double unresolved:
1 || 2 \& 3 || 4

single unresolved:

$$
3 \text { || } 4
$$

double unresolved:

$$
1 \text { || } 3 \text { || } 4
$$

or

$$
2||3|| 4
$$

or

$$
3 \rightarrow 0,4 \rightarrow 0
$$

\boldsymbol{B}_{4}^{0}

single unresolved:
5 || 3 or 5 || 4
or

$$
5 \rightarrow 0
$$

double unresolved:
$3||4|| 5$

The $B_{4}^{0}, H_{4}^{0}, \tilde{E}_{4}^{0}$ Antennze

$$
\begin{array}{ll}
\boldsymbol{B}_{4}^{0}\left(\boldsymbol{q}, \boldsymbol{q}^{\prime}, \overline{\boldsymbol{q}}^{\prime}, \overline{\boldsymbol{q}}\right) & \text { collapses to the hard partons } \\
\tilde{\boldsymbol{E}}_{4}^{0}\left(\boldsymbol{q}, \boldsymbol{q}^{\prime}, \overline{\boldsymbol{q}}^{\prime}, \boldsymbol{g}\right) & \text { collapses to the hard partons } \\
\boldsymbol{q} \boldsymbol{g} \\
\boldsymbol{H}_{4}^{0}\left(\boldsymbol{q}, \overline{\boldsymbol{q}}, \boldsymbol{q}^{\prime}, \overline{\boldsymbol{q}}^{\prime}\right) & \text { collapses to the hard partons } \\
\boldsymbol{g} \boldsymbol{g}
\end{array}
$$

13 masters are involved in the calculation of $B_{4}^{0}, H_{4}^{0}, \tilde{E}_{4}^{0}$, only scalar ones are shown

The $B_{4}^{0}, H_{4}^{0}, \tilde{E}_{4}^{0}$ Antennae

- Compute the master integrals analytically using differential equations and a basis of generalized harmonic polylogarithms (GHPLs) of dimension two
- Boundaries obtained by calculating the master integrals in the soft limit $x 1 \rightarrow 1, x 2 \rightarrow 1$

$$
x_{1} \neq 1, x_{2} \neq 1
$$

GHPLs weight 2, epsilon expansion of masters at most up to ϵ^{2}

- $x_{1} \neq 1, x_{2}=1 \| x_{1}=1, x_{2} \neq 1$

HPLs weight 3 , epsilon expansion of masters at most up to ϵ^{3}

- $x_{1}=1, x_{2}=1$
epsilon expansion of masters at most up to $\boldsymbol{\epsilon}^{4}$

Checked that all initial-initial antennae reproduce the splitting functions and eikonal factors in collinear and soft limits. (Campbell, Glover; Catani, Grazzini)

Initial-initial Antenna Functions: Real Radiation at One-loop $2 \rightarrow 2$

- Obtain antenna functions by crossing one-loop $1 \rightarrow 3$ NNLO antennae
- Kinematics: $p_{1}+p_{2} \rightarrow k_{1}+q$ with $q^{2}>0$
- Phase space factorization (Daleo, Maitre, Gehrmann):

$$
\begin{aligned}
& \mathrm{d} \Phi_{m+1}\left(k_{1}, \ldots, k_{m+1} ; p_{1}, p_{2}\right)=\mathrm{d} \Phi_{m}\left(\tilde{k}_{1}, \ldots, \tilde{k}_{i}, \tilde{k}_{k}, \ldots, \tilde{k}_{m+1} ; x_{1} p_{1}, x_{2} p_{2}\right) \\
& \delta\left(x_{1}-\hat{x}_{1}\right) \delta\left(x_{2}-\hat{x}_{2}\right)\left[\mathrm{d} k_{j}\right] \mathrm{d} x_{1} \mathrm{~d} x_{2} \\
& \hat{x}_{1}=\left(\frac{s_{12}-s_{j 2}}{s_{12}} \frac{s_{12}-s_{1 j}-s_{j 2}}{s_{12}-s_{1 j}}\right)^{\frac{1}{2}} \\
& \hat{x}_{2}=\left(\frac{s_{12}-s_{1 j}}{s_{12}} \frac{s_{12}-s_{1 j}-s_{j 2}}{s_{12}-s_{j 2}}\right)^{\frac{1}{2}}
\end{aligned}
$$

Easier than the double-unresolved radiation case since the phase space is overconstrained

Initial-initial Antenna Functions: Real Radiation at One-loop $2 \rightarrow 2$

- Obtain antenna functions by crossing one-loop $1 \rightarrow 3$ NNLO antennae
- Kinematics: $\quad p_{1}+p_{2} \rightarrow k_{1}+q$ with $q^{2}>0$
- One-loop $2 \rightarrow 2$: box integrals already known for the final-final case where all the invariants $0<s_{i j}<1$

$$
\begin{aligned}
& \operatorname{Box}\left(s_{13}, s_{23}, s_{12}\right) \\
&=\left(\frac{(4 \pi)^{\epsilon}}{16 \pi^{2}} \frac{\Gamma(1+\epsilon) \Gamma^{2}(1-\epsilon)}{\Gamma(1-2 \epsilon)}\right)\left(-q^{2}\right)^{-2-\epsilon} \frac{2 i}{\epsilon^{2}} \frac{1}{y_{13} y_{23}} \\
& \times\left[\left(\frac{y_{13} y_{23}}{1-y_{13}}\right)^{-\epsilon}{ }_{2} F_{1}\left(-\epsilon,-\epsilon ; 1-\epsilon ; \frac{1-y_{13}-y_{23}}{1-y_{13}}\right)\right. \\
&+\left(\frac{y_{13} y_{23}}{1-y_{23}}\right)^{-\epsilon}{ }_{2} F_{1}\left(-\epsilon,-\epsilon ; 1-\epsilon ; \frac{1-y_{13}-y_{23}}{1-y_{23}}\right) \\
&\left.-\left(\frac{y_{13} y_{23}}{\left(1-y_{13}\right)\left(1-y_{23}\right)}\right)^{-\epsilon}{ }_{2} F_{1}\left(-\epsilon,-\epsilon ; 1-\epsilon ; \frac{1-y_{13}-y_{23}}{\left(1-y_{13}\right)\left(1-y_{23}\right)}\right)\right],
\end{aligned}
$$

For initial-initial case: cross two legs to the initial state and q to final state

- two of the invariants sij become negative
- analytic continuation of $2 F 1$ is needed as well as extraction of end point singularities

Conclusions and OutlooK

First analytical results for the integrated initial-initial antennae:
the $\quad B_{4}^{0}\left(\boldsymbol{q}, \boldsymbol{q}^{\prime}, \bar{q}^{\prime}, \overline{\boldsymbol{q}}\right), \boldsymbol{H}_{4}^{0}\left(\boldsymbol{q}, \overline{\boldsymbol{q}}, \boldsymbol{q}^{\prime}, \overline{\boldsymbol{q}}^{\prime}\right),{\tilde{E_{4}}}_{4}^{0}\left(\boldsymbol{q}, \boldsymbol{q}^{\prime}, \overline{\boldsymbol{q}}^{\prime}, \boldsymbol{g}\right)$ collapse to the hard partons: $\boldsymbol{q} \overline{\boldsymbol{q}}, \boldsymbol{g} \boldsymbol{g}, \boldsymbol{q} \boldsymbol{g}$ respectively

Next to do:

- Complete the set of the integrated initial-initial antennae
- Cross check of initial-initial antennae with NNLO Drell-Yan coefficient functions

Potential applications:
$V+j e t, P P \rightarrow 2$ jets (J. Pires's talk), W-pair production (G. Chachamis's talk)

