Two-loop Corrections to the Lamb Shift

Jan Piclum

in collaboration with Andrzej Czarnecki, Matthew Dowling, and Jorge Mondéjar

Outline

- Calculation
- Results
- Summary

Hydrogen Spectrum

 $\begin{tabular}{ll} \bullet & Schr\"{o}dinger equation: \\ states with same n have same energy \\ \end{tabular}$

1S _____

2S

Hydrogen Spectrum

- Schrödinger equation: states with same n have same energy
- ullet Dirac equation with Coulomb source: relativistic corrections and electron spin energy depends on n and j

Hydrogen Spectrum

- Schrödinger equation: states with same n have same energy
- Dirac equation with Coulomb source: relativistic corrections and electron spin energy depends on n and j
- degeneracy lifted by: finite size of Coulomb source recoil corrections QED loops
- Lamb shift is field theoretic effect

radiative corrections lead to finite electron charge radius vacuum polarisation leads to charge screening

$$\Delta E = \langle nS|\delta V|nS\rangle \sim |\psi(0)|^2$$

Early History of Lamb Splitting

1947 experimental observation by Lamb and Retherford: $"2^2S_{1/2} \mbox{ state is higher than the } 2^2P_{1/2} \mbox{ by about 1000 Mc/sec"}$ calculation by Bethe yields 1040 MHz

```
exp. value is 1062(5) MHz [Retherford, Lamb] theory gives 1051.41(15) MHz [Bethe, Brown, Stehn]
```

1952/53 calculation of relativistic corrections by Karplus, Klein, Schwinger and Baranger, Bethe, Feynman

→ 7.1 MHz correction

Status

```
exp. 1057.845(3) MHz [Schwob et al. '98] theory 1057.814(5) MHz r_p = 0.805(11) fm r_p = 0.862(12) fm [Eides et al. '01]
```

→ error dominated by uncertainty in proton charge radius

Status

```
exp. 1057.845(3) MHz [Schwob et al. '98] theory 0.57.814(5) MHz 0.57.833(5) MHz
```

ightsquigarrow error dominated by uncertainty in proton charge radius

```
extract r_p from Lamb shift: r_p=0.891(18)~{\rm fm} agrees with recent analysis of e\text{-}p scattering: r_p=0.895(18)~{\rm fm} [Sick '03]
```

more precise value from measurement of Lamb shift in muonic hydrogen at PSI

Structure of the Perturbative Series

Structure of the Perturbative Series

 $Z\alpha$

→ binding corrections double expansion: → QED loops

$$\rightarrow$$
 correction of $\mathcal{O}(\alpha^2(Z\alpha)^5)$:

calculation was done by Pachucki, and Eides and Shelyuto

results:
$$\begin{array}{cccc} B_{50}^{nvp} &=& -7.6(2) & \hbox{ [Pachucki '94]} \\ B_{50}^{nvp} &=& -7.725(1) & \hbox{ [Eides, Shelyuto '95]} \end{array}$$

Comparison of the Calculations

previous calculations:

- effective Dirac equation
- Fried-Yennie gauge for IR divergences
- calculate UV-finite combinations

Comparison of the Calculations

previous calculations:

- effective Dirac equation
- Fried-Yennie gauge for IR divergences
- calculate UV-finite combinations

\$ x x x

our approach:

- Feynman diagrams
- dimensional regularisation
- ullet R_{ξ} gauge
- reduction to master integrals with IBP [Chetyrkin, Tkachov '81]

Interaction with the Nucleus

non-recoil corrections:

- ullet assume that the nucleus is infinitely heavy: $M o \infty$
- construct expansion around this limit
- discard all sub-leading terms

Interaction with the Nucleus

non-recoil corrections:

- ullet assume that the nucleus is infinitely heavy: $M o \infty$
- construct expansion around this limit
- discard all sub-leading terms

→ effective photon propagator:

Reduction to Master Integrals

$$\int \frac{\mathrm{d}^D k}{2P \cdot k + i\varepsilon} \dots - \int \frac{\mathrm{d}^D k}{2P \cdot k - i\varepsilon} \dots$$

 use Laporta algorithm FIRE

- [Laporta, Remiddi] [A. Smirnov]
- $i\varepsilon$ prescription is irrelevant for IBP relations
- discard integrals without nucleon propagator
- calculation reduces to 32 master integrals (including 7 with numerator)

Evaluation of Master Integrals

- MB representation for "easy" integrals MB, MBresolve
- FIESTA
- numerical integration with CUBA for most complicated integral
- use basis change as cross-check

[Czakon] [A. Smirnov,V. Smirnov] [A. Smirnov, Tentyukov] [Hahn]

Overview

- \bullet calculated B_{50} contribution to Lamb shift
- explicitly checked gauge independence
- improved precision of previous calculations
- found new analytical results for several diagrams

Result for $\overline{B_{50}}$

$$B_{50}^{nvp} = -7.6(2)$$
 [Pachucki '94] $B_{50}^{nvp} = -7.725(1)$ [Eides, Shelyuto '95] $B_{50}^{nvp} = -7.7239(5)$ preliminary

vacuum-polarisation contribution:

$$B_{50}^{vp} = 0.862814(3)$$
 [Pachucki '93] $B_{50}^{vp} = 0.86281422(5)$ preliminary

Effect on Lamb Splitting

$$\Delta E(B_{50}) = \frac{\alpha^2 (Z\alpha)^5}{\pi n^3} \left(\frac{\mu}{m}\right)^3 m \left(B_{50}^{nvp} + B_{50}^{vp}\right) \delta_{l0}$$

$$\begin{array}{lll} \Delta E(n=2) &=& -36.5(9) \text{ kHz} & \text{[Pachucki '94]} \\ \Delta E(n=2) &=& -37.112(5) \text{ kHz} & \text{[Eides, Shelyuto '95]} \\ \Delta E(n=2) &=& -37.109(3) \text{ kHz} & \text{preliminary} \end{array}$$

measured value: 1057845(3) kHz [Schwob et al. '98] prediction: 1057833(5) kHz [Eides et al. '01]

Summary

- new calculation of B_{50} contribution to Lamb shift
- calculation uses dimensional regularisation and other techniques from multi-loop calculations
- result agrees with previous calculations
- uncertainty can be improved

