NLO QCD corrections to $\mathrm{pp} \rightarrow \mathrm{t} \overline{\mathrm{t}} \mathrm{b} \overline{\mathrm{b}}$ at the LHC

Stefano Pozzorini
CERN

> based on
A. Bredenstein, A. Denner, S. Dittmaier and S. P.

JHEP 0808 (2008) 108 [arXiv:0807.1248]
PRL 103 (2009) 012002 [arXiv:0905.0110]
and new unpublished results

RADCOR 2009
Ascona, October 26-30

Outline of the talk

(1) Introduction - NLO corrections to multi-leg processes, t $\overline{\mathrm{t}} \mathrm{b} \overline{\mathrm{b}}$ production
(2) Virtual corrections - Feynman diagrams, tensor reduction, rational terms
(3) Real corrections - Dipole subtraction
(4) Numerical results - Predictions for the LHC, CPU performance

(1) Introduction

Six-particle processes of NLO priority list (2005/2007 Les Houches workshops)

$$
\mathrm{pp} \rightarrow \quad \mathrm{t} \overline{\mathrm{t}} \mathrm{~b} \overline{\mathrm{~b}}, \quad \mathrm{t} \overline{\mathrm{t}} j j, \quad V V \mathrm{~b} \overline{\mathrm{~b}}, \quad V V j j, \quad V j j j, \quad \mathrm{~b} \overline{\mathrm{~b}} \mathrm{~b} \overline{\mathrm{~b}}
$$

Importance of NLO for LHC phenomenology

- heavy SM particles + jets \Rightarrow large backgrounds to many Higgs and BSM signals
- large powers of $\alpha_{\mathrm{S}} \Rightarrow$ huge QCD scale uncertainties
- many different scales \Rightarrow scale-guess nontrivial

Technical challenges for $2 \rightarrow 4$ at NLO

- thousands of one-loop diagrams \Rightarrow huge algebraic expressions
- computer codes slower than sec/point \Rightarrow CPU-months for precise distributions
- spurious singularities (Gram determinants) \Rightarrow serious numerical instabilities

The optimal NLO method(s) for multi-leg calculations?

Feynman diagrams and tensor reduction

- wide and successful experience up to $n=5$ particles $(\mathrm{pp} \rightarrow \mathrm{t} \overline{\mathrm{t}} \mathrm{H}, \mathrm{Hjj}, V V \mathrm{j}, V V V, V \mathrm{~b} \overline{\mathrm{~b}}, \mathrm{t} \overline{\mathrm{t}}, \mathrm{t} \overline{\mathrm{t}} \mathrm{Z}, \ldots)$
- but complexity increases faster than factorially for $n \gg 1$

Methods of on-shell type

- less practical experience
- but complexity increases only polynomially for $n \gg 1$

What is the best method for realistic LHC applications?

- intermediate range of $n=6,7$ particles
- explicit NLO calculations can tell us more than $n \gg 1$ asymptotic scaling ...

Completion of the first $2 \rightarrow 4$ calculations of the priority list

Within the last few months-four years after Les Houches wish list-four groups, using different methods, have completed two wish-list processes

- Two calculations for $\mathrm{pp} \rightarrow \mathrm{t} \overline{\mathrm{t}} \mathrm{b} \overline{\mathrm{b}}$ with permille agreement
- arXiv:0905.0110 by Bredenstein, Denner, Dittmaier and S. P. based on Feynman diagrams and tensor integrals
- arXiv:0907.4723 by Bevilacqua, Czakon, Papadopoulos, Pittau and Worek based on OPP reduction and HELAC
- Two calculations for $\mathrm{pp} \rightarrow \mathrm{W} j j j$ (leading-colour and full results)
- arXiv:0906.1445 by Ellis, Melnikov and Zanderighi based on D-dimensional unitarity (leading-colour approximation)
- arXiv:0907.1984 by Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower and Maitre based on generalized unitarity (full colour)

None of the methods seems to be in bad shape ... and the old good Feynman diagrams are actually in excellent shape

Phenomenological motivation for t $\mathrm{t} b \overline{\mathrm{~b}}$: irreducible background to $\mathrm{t} \overline{\mathrm{t}} \mathrm{H}(\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}})$

Associated $\mathrm{t} \overline{\mathrm{t}} \mathrm{H}(\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}})$ production

- opportunity to observe $\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}}$ channel and exploit dominance of its branching ratio for $M_{\mathrm{H}}<135 \mathrm{GeV}$
- measurement of top Yukawa coupling
- ATLAS TDR indicated discovery potential (disappeared after more reliable background estimates)
- the background has a dramatic impact

Early ATLAS studies of Higgs discovery potential (ATLAS '03)

Idea of $\mathrm{t} \overline{\mathrm{t}} \mathrm{H}(\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}})$ analysis

- consider semileptonic decay channel: b̄̄b̄̄jj $l \nu$ final state with four b-quarks!
- identify b $\overline{\mathrm{b}}$ pair from Higgs decay
- observe resonance in $m_{\mathrm{b} \overline{\mathrm{b}}}$ distribution

Main problem: b-quark combinatorics

- perform full $\mathrm{t}, \overline{\mathrm{t}}$ reconstruction to identify b-quarks from top (and Higgs) decay
- very difficult due to presence of ≥ 6 jets
- rate of correct b-pairings only $1 / 3$!

Consequences

- dilution of Higgs resonance
- increase of background in resonance region

dilution of Higgs resonance in $\mathrm{t} \overline{\mathrm{t}} \mathrm{H}$

ATLAS CSC-note, CERN-OPEN-2008-020

Backgrounds (ATLAS analysis)

- t̄̄b̄̄ (AcerMC, $\left.\mu_{\mathrm{QCD}}=m_{\mathrm{t}}+m_{\overline{\mathrm{b}}} / 2\right)$
- $\mathrm{t} \mathrm{t} j \mathrm{j}\left(\mathrm{MC@NLO}, \mu_{\mathrm{QCD}}^{2}=m_{\mathrm{t}}^{2}+\left\langle p_{\mathrm{T}, \mathrm{t}}^{2}>\right)\right.$

Statistics and systematics $\left(30 \mathrm{fb}^{-1}\right)$

- $S / \sqrt{B} \simeq 2$ sufficient for measurement
- $S / B \simeq 0.1$ implies that $\Delta B / B$ systematic uncertainty of $\mathcal{O}(10 \%)$ kills measurement!

Strategy for precise determination of B

- measure B normalization in signal-free region
- extrapolate to signal-rich region using precise shape predictions

Impossible without $t \bar{t} b \overline{\mathrm{~b}}$ and $\mathrm{t} \overline{\mathrm{t}} \mathrm{j} j$ at NLO!

Lesson from NLO calculations for $\mathrm{pp} \rightarrow \mathrm{t} \overline{\mathrm{t}} \mathrm{H}$ signal and two minor backgrounds

$$
\text { Scale choice } \mu_{\mathrm{QCD}}=E_{\mathrm{thr}} / 2 \Rightarrow \text { moderate } K \text {-factors }
$$

Process	QCD scale	K-factor	Reference
$\mathrm{pp} \rightarrow \mathrm{t} \overline{\mathrm{t}} \mathrm{H}$	$m_{\mathrm{t}}+M_{\mathrm{H}} / 2$	1.2	Beenakker/Dittmaier/Krämer/Plümper/Spira/Zerwas (2001) Dawson/Reina/Wackeroth/Orr/Jackson (2001) Peng/Wen-Gan/Hong-Shen/Ren-You/Yi (2005)
$\mathrm{pp} \rightarrow \mathrm{t} \overline{\mathrm{t} j}$ $\mathrm{~T}, \mathrm{jet}$ $>20-50 \mathrm{GeV})$ m_{t}	$1.0-1.15$	Dittmaier/Uwer/Weinzierl(2007)	

$$
\mathrm{pp} \rightarrow \mathrm{t} \overline{\mathrm{t} Z} \quad m_{\mathrm{t}}+M_{\mathrm{Z}} / 2 \quad 1.35 \quad \text { Lazopoulus/McElmurry/Melnikov/Petriello (2007) }
$$

Partonic channels contributing to $\mathrm{pp} \rightarrow \mathrm{t} \overline{\mathrm{t}} \mathrm{b} \overline{\mathrm{b}}$ at NLO

Relative weights and number of Feynman diagrams

	$q \bar{q}$	$g g$	$q g$
\# of LO diags.	7	36	
\# of one-loop diags	188	1003	
\# of real diags.	64	341	64
$\left(\sigma / \sigma_{\text {tot }}\right)_{\text {NLO }}$	3%	92%	5%

(2) Tree and one-loop contributions to $q \bar{q} / g g \rightarrow t \bar{t} b \bar{b}$

Tree and one-loop sample diagrams in the $q \bar{q}$ and gg channels

7 trees

24 pentagons

8 hexagons

36 trees

114 pentagons

40 hexagons

Two independent calculations

- diagrams generated with FeynArts 1.0 / 3.2 [Külbeck/Böhm/Denner '90; Hahn '01]
- one calculation uses FormCalc 5.2 [Hahn ${ }^{\prime} 06$] for preliminary algebraic manipualations (Dirac algebra, covariant decomposition)
- bulk of reduction with two in-house MATHEMATICA programs
- numerics with two independent Fortran77 codes (two libraries for tensor integrals)

Top quarks massive and bottom quarks massless

Structure of the one-loop calculation

(a) Diagram-by-diagram approach
(b) Colour factorization
(c) Covariant decomposition of tensor integrals
(d) Numerical reduction of tensor integrals to scalar integrals
(e) Rational parts
(f) Algebraic reduction of helicity-dependent parts
(a) Diagram-by-diagram approach

$$
\sum_{\text {col.,pol. }} \mathcal{A}_{\text {loop }} \mathcal{A}_{\text {tree }}^{*}=\sum_{i=1}^{N_{\text {diag }}}\left(\sum_{\text {col.,pol. }} \mathcal{D}_{\text {loop }}^{(i)} \mathcal{A}_{\text {tree }}^{*}\right)
$$

The one-loop-tree interference is computed diagram-by-diagram

- the contributions of $N_{\text {diag }} \sim 1000$ loop diagrams are computed each by a separate Fortran routine and added
- the large- $N_{\text {diag }}$ cost is strongly reduced by recycling a multitude of common substructures (tensor integrals, helicity structures, ...)

(b) Colour factorization

Advantage of using individual Feynman diagrams

- apart from the (few) diagrms involving 4-gluon vertices

- for most diagrams all colour matrices factorize in a single colour structure $\mathcal{C}^{(i)}$

The cost of colour sums is reduced to zero

- one computes only one (few) time-expensive colour-less part(s) $\mathcal{D}^{(i)}$ per diagram
- the factorized and trivial $\mathcal{C}^{(i)}$ provide full colour information

(c) Covariant decomposition of tensor integrals

N-point tensor integrals are expressed in terms of covariant structures consisting of metric tensors $g^{\mu \nu}$ and external momenta $p_{1}^{\mu}, \ldots, p_{N-1}^{\mu}$

$$
\frac{(2 \pi \mu)^{4-D}}{\mathrm{i} \pi^{2}} \int \mathrm{~d}^{D} q \frac{q^{\mu_{1}} \ldots q^{\mu_{P}}}{\prod_{i=0}^{N-1}\left[\left(q+p_{i}\right)^{2}-m_{i}^{2}\right]}=\sum_{i_{1} \leq \ldots \leq i_{P}=0}^{N-1} T_{i_{1} \ldots i_{P}}^{(N)}\{g \ldots g p \ldots p\}_{i_{1} \ldots i_{P}}^{\mu_{1} \ldots \mu_{P}}
$$

Each loop diagram becomes a linear combination

The two ingredients are handled in completely different ways
(d) The covariant tensor integrals $T_{i_{1} \ldots i_{P}}^{(N)}$ are evaluated by a numerical code that reduces them to scalar integrals (process-independent)
(e-f) The loop-independent parts $K_{i_{1} \ldots i_{P}}(D)$, which contain spinor chains, etc., undergo heavy algebraic manipulations (process-dependent)
(d) Numerical reduction of tensor integrals to scalar integrals

Collection of methods developed for $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow 4 \mathbf{f}$ [Denner/Dittmaier '05]

- For $N \geq 5$, exploiting space-time 4-dim., one can simultaneously reduce tensor rank and \# of propagators w.o. Gram-determinant instabilities

Melrose '65; Denner/Dittmaier '02 \& '05; Binoth/Guillet/Heinrich/Pilon/Schubert '05

- For $N=3,4$ depending on the presence of Gram-determinant instabilities one employs different reductions
- in phase-space regions w.o. instabilities one can use PV

Passarino/Veltman ' 79

- otherwise instabilities are avoided with various alternative reductions: modified set of master integrals, solutions of PV identities w.o. Gram det., expansions in small Gram det.,... Denner/Dittmaier’05 (see also analogous methods by Ferroglia/Passera/Passarino/Uccirati ${ }^{\prime}{ }^{03}$; Binoth/Guillet/Heinrich/Pilon/Schubert '05; Ellis/Giele/Zanderighi '06)
- For $N=1,2$ explicit analytic expressions are employed (no reduction)

(e) Rational parts

$$
\begin{aligned}
K_{i_{1} \ldots i_{P}}(D) \quad \underbrace{T_{i_{1} \ldots i_{P}}^{(N)}} & \Rightarrow K_{i_{1} \ldots i_{P}}^{\prime}(4)\left(R_{1}+R_{1}\right)+\frac{1}{2} K_{i_{1} \ldots i_{P}}^{\prime \prime}(4) R_{2}+\ldots \\
\frac{R_{1}}{(D-4)}+\frac{R_{1}}{(D-4)}+\frac{R_{2}}{(D-4)^{2}} & + \text { finite part }
\end{aligned}
$$

When tensor integrals are combined with their D-dimensional coefficients

- UV and IR poles require ($D-4$) expansions (performed algebraically)
- this produces rational terms proportional to the pole residues

Rational terms of IR origin

- require the heaviest algebraic work but cancel in any unrenormalized QCD amplitude (proven in App. A of arXiv:0807.1248)
- can thus be neglected from the beginning

Rational terms of UV origin

- extracted automatically by means of a catalogue of UV residues R_{1}
- after the relevant ($D-4$)-expansions we can continue the calculation in $D=4$

Cancellation of rational terms of IR origin (sketch of the proof)
Rational terms originate from D-dependent $g^{\mu \nu}$-contractions of type $g_{\nu \lambda} \Gamma^{\nu \lambda}$

$$
g_{\nu \lambda} g^{\nu \lambda}=D, \quad g_{\nu \lambda} \gamma^{\nu} \not p \gamma^{\lambda}=(2-D) \not p, \ldots
$$

(1) The tensor reduction is free from IR rational terms since in the soft and collinear regions $\left(q^{\mu} \rightarrow x p^{\mu}\right)$ the tensor integrals cannot produce $g^{\mu \nu}$
(2) All possible diagrams involving IR-divergent integrals

can be cast into a form where $g_{\nu \lambda} \Gamma^{\nu \lambda}$ contractions cancel in IR regions

$$
\vdots \bigodot_{\sigma}^{P r m}=\int \frac{\mathrm{d}^{D} q}{q^{2}(q+p)^{2}} \underbrace{\epsilon^{\mu *}(p)(2 q+p)_{\mu}}_{\rightarrow 0 \text { in soft } / \text { coll. regions }} g_{\nu \lambda} \Gamma^{\nu \lambda}(q)+\ldots
$$

(f) Reduction of the helicity-dependent parts of the diagrams

$$
K_{i_{1} \ldots i_{P}}=\sum_{n=1}^{N_{\mathrm{SME}}} \mathcal{S}_{n} K_{i_{1} \ldots i_{P}}^{(n)}
$$

The last and most involved part of the algebraic manipulation

- reduce helicity-dependent parts of all Feynman diagrams to a common and minimal set of Standard Matrix Elements (SMEs)
- isolating helicity information into compact spinor chains \mathcal{S}_{n} renders helicity sums diagram-independent and extremely fast

```
Six-fermion channel (q\overline{q}->t\overline{t}b\overline{b})
```

$\underbrace{\left[\bar{v}\left(p_{1}\right) \ldots \gamma_{\mu} \gamma_{\nu} \not p_{3} \ldots u\left(p_{2}\right)\right]}_{\text {q } \bar{q} \text { chain }} \underbrace{\left[\bar{v}\left(p_{3}\right) \ldots \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \not p_{6} \ldots u\left(p_{4}\right)\right]}_{\text {tt chain }} \underbrace{\left[\bar{v}\left(p_{5}\right) \ldots \gamma_{\rho} \not p_{2} \not p_{3} \ldots u\left(p_{6}\right)\right]}_{\text {b } \overline{\mathrm{b}} \text { chain }}$
(1) Process-independent identities in D dimensions

- Dirac equation, Dirac algebra, momentum conservation, standard ordering
- yields $\mathcal{O}\left(10^{3}\right)$ SMEs: many $\gamma^{\mu} \otimes \gamma_{\mu}$ contractions between different chains
(2) Process-dependent identities in $D=4$ (avoid unstable denominators!)
- we introduce chiral projectors in each fermion chain

$$
\omega_{ \pm}=\frac{1}{2}\left(1 \pm \gamma^{5}\right), \quad u\left(p_{j}\right) \Rightarrow\left[\omega_{+}+\omega_{-}\right] u\left(p_{j}\right)
$$

- then we can exploit various identities of Chisholm-type

$$
\left(\gamma^{\mu} \gamma^{\alpha} \gamma^{\beta} \omega_{ \pm}\right) \otimes\left(\gamma_{\mu} \omega_{\mp}\right)=\left(\gamma^{\mu} \omega_{ \pm}\right) \otimes\left(\gamma^{\alpha} \gamma^{\beta} \gamma_{\mu} \omega_{\mp}\right) \quad \text { etc. }
$$

that permit to exchange Dirac matrices between different fermion chains

- many combinations of identities \Rightarrow fairly sophisticated and powerful reduction algorithm
- at the end of the day 200 SMEs for the $q \bar{q}$ channel
-10×8 of "massless" type: one Dirac matrix per chain

$$
\begin{aligned}
& {\left[\bar{v}\left(p_{1}\right) \not p_{i} \omega_{\alpha} u\left(p_{2}\right)\right]\left[\bar{v}\left(p_{3}\right) \gamma^{\mu} \omega_{\beta} u\left(p_{4}\right)\right]\left[\bar{v}\left(p_{5}\right) \gamma^{\mu} \omega_{\rho} u\left(p_{6}\right)\right]} \\
& {\left[\bar{v}\left(p_{1}\right) \not p_{i} \omega_{\alpha} u\left(p_{2}\right)\right]\left[\bar{v}\left(p_{3}\right) \not p_{j} \omega_{\beta} u\left(p_{4}\right)\right]\left[\bar{v}\left(p_{5}\right) \not p_{k} \omega_{\rho} u\left(p_{6}\right)\right]}
\end{aligned}
$$

-15×8 of "massive" type: $2 / 0$ Dirac matrices inside the $t \bar{t}$ chain

$$
\begin{aligned}
& {\left[\bar{v}\left(p_{1}\right) \not p_{i} \omega_{\alpha} u\left(p_{2}\right)\right]\left[\bar{v}\left(p_{3}\right) \not p_{j} \gamma^{\mu} \omega_{\beta} u\left(p_{4}\right)\right]\left[\bar{v}\left(p_{5}\right) \not p_{k} \omega_{\rho} u\left(p_{6}\right)\right]} \\
& {\left[\bar{v}\left(p_{1}\right) \gamma^{\mu} \omega_{\alpha} u\left(p_{2}\right)\right]\left[\bar{v}\left(p_{3}\right) \not p_{j} \not \phi_{j} \omega_{\beta} u\left(p_{4}\right)\right]\left[\bar{v}\left(p_{5}\right) \gamma^{\mu} \omega_{\rho} u\left(p_{6}\right)\right]} \\
& {\left[\bar{v}\left(p_{1}\right) \gamma^{\mu} \omega_{\alpha} u\left(p_{2}\right)\right]\left[\bar{v}\left(p_{3}\right) \gamma^{\mu} \gamma^{\nu} \omega_{\beta} u\left(p_{4}\right)\right]\left[\bar{v}\left(p_{5}\right) \gamma^{\nu} \omega_{\rho} u\left(p_{6}\right)\right]} \\
& {\left[\bar{v}\left(p_{1}\right) \gamma^{\mu} \omega_{\alpha} u\left(p_{2}\right)\right]\left[\bar{v}\left(p_{3}\right) \omega_{\beta} u\left(p_{4}\right)\right]\left[\bar{v}\left(p_{5}\right) \gamma^{\mu} \omega_{\rho} u\left(p_{6}\right)\right]} \\
& {\left[\bar{v}\left(p_{1}\right) \not p_{i} \omega_{\alpha} u\left(p_{2}\right)\right]\left[\bar{v}\left(p_{3}\right) \omega_{\beta} u\left(p_{4}\right)\right]\left[\bar{v}\left(p_{5}\right) \not p_{k} \omega_{\rho} u\left(p_{6}\right)\right]}
\end{aligned}
$$

- Price to pay: process-dependent and most time-consuming part of the algebraic reduction \Rightarrow really needed?!

$$
\text { Four-fermion channel }(g g \rightarrow t \bar{t} b \overline{\mathrm{~b}})
$$

Process-independent identities in D dimensions

- $\epsilon_{i} p_{1,2}=0$, Dirac eq., Dirac algebra, momentum conservation, standard ordering

Two alternative reductions in $D=4$
(A) sophisticated method similarly as for six-fermion channel $\Rightarrow 502$ SMEs
(B) less-sophisticated and process-independent reduction

$$
\gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} \gamma^{\mu_{4}} \gamma^{\mu_{5}}=g^{\mu_{1} \mu_{2}} \gamma^{\mu_{3}} \gamma^{\mu_{4}} \gamma^{\mu_{5}}+\ldots+g^{\mu_{1} \mu_{2}} g^{\mu_{3} \mu_{4}} \gamma^{\mu_{5}}+\ldots
$$

Chisolm-based identitiy w.o. chiral projectors $\quad \Rightarrow 970$ SMEs

> Surprising result

Speed of codes based on reduction A and B almost identical: CPU efficiency not due to highly sophisticated process-dependent manipulations!

(3) Real corrections (qq/gg/qg channels)

- Also for the real corrections: 2 independent calculations

Two types of matrix elements (Six- and four-fermion amplitudes)

- Madgraph 4.1.33 [Alwall/Demin/deVisscher/Frederix/Herquet/Maltoni/Plehn/Rainwater/Stelzer'07] for all channels
- analytical calculation with Weyl-van der Waerden spinors [Dittmaier '98] for qq/qg channels
- in-house numerical algortihm based on off-shell recursions [Berends/Giele '88; Caravaglios/Moretti '95; Draggiotis/Kleiss/Papadopoulos '98] for gg channel

Treatment of soft and collinear singularities with dipole subtraction

Catani/Seymour '96; Dittmaier '99; Catani/Dittmaier/Seymour/Trócsányi '02

$$
\int \mathrm{d} \sigma_{2 \rightarrow 5}=\int\left[\mathrm{d} \sigma_{2 \rightarrow 5}-\sum_{\substack{i, j=1 \\ i \neq j}}^{6} \mathrm{~d} \sigma_{2 \rightarrow 5}^{\text {dipole }, i j}\right]+\sum_{\substack{i, j=1 \\ i \neq j}}^{6} \mathcal{F}_{i j} \otimes \mathrm{~d} \sigma_{2 \rightarrow 4}
$$

- numerically stable/efficient but non-trivial: $30 \mathrm{qq} / \mathrm{gg}(10 \mathrm{qg})$ subtraction terms
- in-house dipoles checked against MadDipole[Frederix/Gehrmann/Greiner '08] (gg/qg) and PS slicing[Giele/Glover '92; Giele et al.' '93; Keller/Laenen '98; Harris/Owens '01] (qq)
- initial-state collinear singularities cancelled by MS-redefinition of PDFs

Phase-space integration

- adaptive multi-channel Monte Carlo [Berends/Kleiss/Pittau '94; Kleiss/Pittau '94] as in RACOONWW[Denner/Dittmaier/Roth/Wackeroth'99]/PROFECY4f [Bredenstein/Denner/Dittmaier/Weber'06]
- $\mathcal{O}(1400)$ channels to map all peaks from propagators (300) and dipoles (1100)

11-dimensional phase space, many channels and dipoles \Rightarrow CPU-time! (see later)

Numerical checks

(A) LO checked against SHERPA [Gleisberg/Hoche/Krauss/Schalicke/Schumann/Winter '03]
(B) Precision checks for individual NLO components in single PS points (typical precision: 10 to 14 digits)

Virtual corrections

- UV, soft and collinear cancellations
- agreement between 2 independent implementations

Real emission

- agreement of $2 \rightarrow 5$ matrix elements
- agreement between two dipole implementations
- cancellations in soft and collinear regions
(C) Integrated NLO cross section
- two independent calculations agree at 1-2 sigma level with $10^{-3} \times \sigma_{\text {NLO }}$ statistical accuracy

(4) NLO results for the LHC

Parton masses

- $m_{\mathrm{t}}=172.6 \mathrm{GeV}$ and $m_{\mathrm{b}}=0$ (massless approximation better than 3% at LO)

Recombination of collinear $\mathrm{b} \overline{\mathrm{b}}, \mathrm{b} g, \overline{\mathrm{~b}} g$, with k_{T}-Jet-Algorithm hep-ex/0005012

- partons with $|\eta|<5 \Rightarrow$ b-jets with $\sqrt{\Delta \phi^{2}+\Delta y^{2}}>D=0.4$

Cuts for b-jets (motivated by $\mathrm{t} \overline{\mathrm{t}} \mathrm{H}$ analysis)

- require two b-jets with $p_{\mathrm{T}, j}>20 \mathrm{GeV}, \quad y_{j}<2.5, \quad m_{\mathrm{b} \overline{\mathrm{b}}}>100 \mathrm{GeV}$
- top quarks fully inclusive (no decays and no cuts)

PDFs, scale variations and central scale

- CTEQ6M with $\alpha_{\mathrm{S}}\left(M_{\mathrm{Z}}\right)=0.118$
- LO and NLO uncertainty estimated with factor-2 scale variations
- old scale choice $\mu_{0}=m_{\mathrm{t}}+m_{\mathrm{b} \overline{\mathrm{b}}} / 2 \quad \Rightarrow \quad$ new scale choice $\mu_{0}^{2}=m_{\mathrm{t}} \sqrt{p_{\mathrm{T}, \mathrm{b}} p_{\mathrm{T}, \overline{\mathrm{b}}}}$

High sensitivity to scale choice

- LO proportional to $\alpha_{\mathrm{S}}\left(\mu_{\mathrm{R}}\right)^{4} \Rightarrow 78 \%$ uncertainty

Original scale choice based on $t \bar{t} H$ signal ($K \simeq 1.2$)

$$
\mu_{0}=E_{\mathrm{thr}} / 2=m_{\mathrm{t}}+m_{\mathrm{b} \mathrm{\overline{5}}} / 2
$$

- used by ATLAS assuming $\mathrm{t} \overline{\mathrm{t}} \mathrm{H} \simeq \mathrm{t} \overline{\mathrm{t}} \mathrm{b} \overline{\mathrm{b}}$
- but at NLO we found large K-factor (1.8) and scale dependence (34\%) [arXiv:0905.0110] ($\left.D=0.8, m_{\mathrm{b} \overline{\mathrm{b}}, \mathrm{cut}}=0\right)$

QCD dynamics of $\mathrm{t} \overline{\mathrm{t}} \mathrm{H} / \mathrm{t} \overline{\mathrm{t}} \mathrm{b} \overline{\mathrm{b}}$ completely different

- $(g g \rightarrow t \bar{t} \mathrm{H}) \times(\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}})=\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$
- $(g g \rightarrow \mathrm{t} \overline{\mathrm{t}}) \times(g \rightarrow \mathrm{~b} \overline{\mathrm{~b}})=\mathcal{O}\left(\alpha_{\mathrm{s}}^{4}\right)$

Several t $\overline{\mathrm{t}} \mathrm{b} \overline{\mathrm{b}}$ channels (b can be emitted from IS gluons!)

- no simple (factorized) mechanism that dictates unique scale choice

New (pragmatic) scale choice
Combine different scales observed in t $\overline{\mathrm{t}} \mathrm{b} \overline{\mathrm{b}}$ distributions

$$
\mu_{0}^{2}=m_{\mathrm{t}} \sqrt{p_{\mathrm{T}, \mathrm{~b}} p_{\mathrm{T}, \overline{\mathrm{~b}}}}
$$

$\underline{p_{\mathrm{T}} \text {-distributions of individual b-jets }}$

The two b-jets have typically

$$
p_{\mathrm{T}, \mathrm{~b}} \ll m_{\mathrm{t}}
$$

and rather different distributions

- softest b-jet (upper plot) tends to saturate the cut at 20 GeV
- hardest b-jet (lower plot) has $p_{\mathrm{T}} \sim 100 \mathrm{GeV}$ and extends over wider p_{T}-range

p_{T}-distribution of individual b-jets

Relative NLO/LO corrections show that new scale choice clearly improves convergence

- NLO band perfectly fits within LO band: much smaller NLO correction ($K \simeq 1.25$)
- K-factor almost constant over wide p_{T}-range both for soft-b (upper plot) and hard-b (lower plot) distributions
- NLO scale uncertainty reduced to about 20%

b $\overline{\mathrm{b}}$ invariant-mass distribution

Crucial observable for $t \bar{t} H$ production

- small NLO correction ($K \simeq 1.25$)
- dynamical scale choice permits to approximate NLO effects by constant K-factor
- NLO scale uncertainty $\sim 20 \%$

$\underline{\text { LO and NLO scale dependence of } \sigma_{\text {tot }}}$
Uniform (upper plot) and antipodal (lower plot) variations around new central scale

$$
\mu_{0}^{2}=m_{\mathrm{t}} \sqrt{P_{\mathrm{T}, \mathrm{~b}} P_{\mathrm{T}, \overline{\mathrm{~b}}}}
$$

Good news for theory: improved convergence

- small correction \& uncertainty ($K=1.25 \pm 21 \%$)
- evident from shape of NLO curves: central scale close to a maximum

Bad news for experiment: enhancement of $t \bar{t} b \bar{b}$ background

- was already dramatic with $\mu_{\text {old }}=E_{\text {thr }} / 2$ ($K \simeq 1.8$)
- becomes even worse with $\mu_{0} \simeq 0.5 \mu_{\text {old }}$ (in spite of smaller K-factor)

Perturbative instability for small $p_{\text {jet, veto }}$

- veto \Rightarrow negative contribution $-\alpha_{\mathrm{s}}^{5} \ln ^{2}\left(Q_{0} / p_{\text {jet, veto }}\right)$
- IR log dramatically enhances NLO uncertainty
- $p_{\text {jet, veto }}<40 \mathrm{GeV} \Rightarrow$ NLO-band enters $K<0$ range NLO prediction completely unrealiable!

Safe jet-veto values: $p_{\text {jet, veto }} \simeq 100 \mathrm{GeV}$

- NLO effect reduced from $K=1.25$ to $K \simeq 0.9$
- NLO predictions as stable as for $\sigma_{\text {tot }}$ (19\% scale uncertainty)

Statistical precision and speed of the calculation

Single 3GHz Intel Xeon processor \& pgf77 Portland compiler

	$\sigma / \sigma_{\text {LO }}$	\# events (after cuts)	$(\Delta \sigma)_{\text {stat }} / \sigma$	runtime	time $/$ event
NLOtree (gg)	85%	5.8×10^{6}	0.4×10^{-3}	2 h	$<1.4 \mathrm{~ms}$
virtual (gg)	10%	0.46×10^{6}	0.7×10^{-3}	20 h	160 ms
real $+\operatorname{dipoles}(\mathrm{gg} / \mathrm{qg})$	87%	16.5×10^{6}	2.6×10^{-3}	47 h	10 ms

- 2-3 CPU-days $\Rightarrow \mathcal{O}\left(10^{7}\right)$ events and $\mathcal{O}\left(10^{-3}\right)$ stat. accuracy for $\sigma_{\text {tot }}$ (distributions obtained with $\sim 5 \times 10^{8}$ events after cuts)
- speed of virtual corrections is remarkably high: $160 \mathrm{~ms} /$ event (including colour and polarization sums!)

Some (process-dependent) remarks about CPU efficiency

- Speed of one-loop Feynman diagrms in striking contrast to pessimistic expectations based on factorial complexity
- Is it possible to beat 160 ms /event?

Looking at CPU-cost of method-independent and minimal ingredient Master (scalar) Integrals ~10 ms/event
suggests that there is not much room for further dramatic improvement

Conclusions

NLO QCD calculation for $\mathrm{pp} \rightarrow \mathrm{t} \overline{\mathrm{t}} \mathrm{b} \overline{\mathrm{b}}$ at the LHC

- $2 \rightarrow 4$ reaction with highest priority in the 2005 Les Houches wish list
- very important for $t \bar{t} H$ measurement

QCD scale used by ATLAS not adequate $\quad \Rightarrow \quad$ replaced by new scale

- this stabilizes QCD predictions ($K \simeq 1.8 \Rightarrow 1.25$)
- but doubles $\mathrm{pp} \rightarrow$ t $\overline{\mathrm{t}} \mathrm{b} \overline{\mathrm{b}}$ cross section wrt ATLAS studies

Technical test of diagrammatic tensor-reduction approach

- remarkably high CPU efficiency
- obtained with process-independent techniques
- very good perspectives to study other six-particle processes!

