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Outline of the talk

(1) Introduction - NLO corrections to multi-leg processes, tt̄bb̄ production

(2) Virtual corrections - Feynman diagrams, tensor reduction, rational terms

(3) Real corrections - Dipole subtraction

(4) Numerical results - Predictions for the LHC, CPU performance



(1) Introduction

Six-particle processes of NLO priority list (2005/2007 Les Houches workshops)

pp → tt̄bb̄, tt̄jj, V V bb̄, V V jj, V jjj, bb̄bb̄

Importance of NLO for LHC phenomenology

• heavy SM particles + jets ⇒ large backgrounds to many Higgs and BSM signals

• large powers of αS ⇒ huge QCD scale uncertainties

• many different scales ⇒ scale-guess nontrivial

Technical challenges for 2 → 4 at NLO

• thousands of one-loop diagrams ⇒ huge algebraic expressions

• computer codes slower than sec/point ⇒ CPU-months for precise distributions

• spurious singularities (Gram determinants) ⇒ serious numerical instabilities



The optimal NLO method(s) for multi-leg calculations?

Feynman diagrams and tensor reduction

• wide and successful experience up to n = 5 particles

(pp → tt̄H, Hjj, V V j, V V V , V bb̄, tt̄j, tt̄Z,. . . )

• but complexity increases faster than factorially for n ≫ 1

Methods of on-shell type

• less practical experience

• but complexity increases only polynomially for n ≫ 1

What is the best method for realistic LHC applications?

• intermediate range of n = 6, 7 particles

• explicit NLO calculations can tell us more than n ≫ 1 asymptotic scaling . . .



Completion of the first 2 → 4 calculations of the priority list

Within the last few months—four years after Les Houches wish list—four groups,

using different methods, have completed two wish-list processes

• Two calculations for pp → tt̄bb̄ with permille agreement

– arXiv:0905.0110 by Bredenstein, Denner, Dittmaier and S. P.

based on Feynman diagrams and tensor integrals

– arXiv:0907.4723 by Bevilacqua, Czakon, Papadopoulos, Pittau and Worek

based on OPP reduction and HELAC

• Two calculations for pp → Wjjj (leading-colour and full results)

– arXiv:0906.1445 by Ellis, Melnikov and Zanderighi

based on D-dimensional unitarity (leading-colour approximation)

– arXiv:0907.1984 by Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg,

Ita, Kosower and Maitre based on generalized unitarity (full colour)

None of the methods seems to be in bad shape . . . and the old good

Feynman diagrams are actually in excellent shape



Phenomenological motivation for tt̄bb̄: irreducible background to tt̄H(H → bb̄)

Associated tt̄H(H → bb̄) production

• opportunity to observe H → bb̄ channel

and exploit dominance of its branching

ratio for MH < 135GeV

• measurement of top Yukawa coupling

• ATLAS TDR indicated discovery potential

(disappeared after more reliable background

estimates)

• the background has a dramatic impact

Early ATLAS studies of Higgs
discovery potential (ATLAS ’03)
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Idea of tt̄H(H → bb̄) analysis

• consider semileptonic decay channel: bb̄bb̄jjlν

final state with four b-quarks!

• identify bb̄ pair from Higgs decay

• observe resonance in mbb̄ distribution

Main problem: b-quark combinatorics

• perform full t, t̄ reconstruction to identify

b-quarks from top (and Higgs) decay

• very difficult due to presence of ≥ 6 jets

• rate of correct b-pairings only 1/3!

Consequences

• dilution of Higgs resonance

• increase of background in resonance region
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Background and systematic uncertainty

Backgrounds (ATLAS analysis)

• tt̄bb̄ (AcerMC, µQCD = mt + mb̄b/2)

• tt̄jj (MC@NLO, µ2
QCD = m2

t+ < p2
T,t >)

Statistics and systematics (30 fb−1)

• S/
√

B ≃ 2 sufficient for measurement

• S/B ≃ 0.1 implies that ∆B/B systematic

uncertainty of O(10%) kills measurement!

Strategy for precise determination of B

• measure B normalization in signal-free region

• extrapolate to signal-rich region using precise

shape predictions

Impossible without tt̄bb̄ and tt̄jj at NLO!

ATLAS CSC note, CERN-OPEN-2008-020



Lesson from NLO calculations for pp → tt̄H signal and two minor backgrounds

Scale choice µQCD = Ethr/2 ⇒ moderate K-factors

Process QCD scale K-factor Reference

pp → tt̄H mt + MH/2 1.2 Beenakker/Dittmaier/Krämer/Plümper/Spira/Zerwas (2001)

Dawson/Reina/Wackeroth/Orr/Jackson (2001)

Peng/Wen-Gan/Hong-Shen/Ren-You/Yi (2005)

pp → tt̄j mt 1.0–1.15 Dittmaier/Uwer/Weinzierl (2007)

(pT,jet > 20–50GeV)

pp → tt̄Z mt + MZ/2 1.35 Lazopoulus/McElmurry/Melnikov/Petriello (2007)



Partonic channels contributing to pp → tt̄bb̄ at NLO
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Relative weights and number of Feynman diagrams

qq̄
gg + qq̄

σLO [fb]
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# of LO diags. 7 36

# of one-loop diags 188 1003

# of real diags. 64 341 64

(σ/σtot)NLO 3% 92% 5%



(2) Tree and one-loop contributions to qq̄/gg → tt̄bb̄

Tree and one-loop sample diagrams in the qq̄ and gg channels

7 trees 24 pentagons 8 hexagons 36 trees 114 pentagons 40 hexagons

Two independent calculations

• diagrams generated with FeynArts 1.0 / 3.2 [ Külbeck/Böhm/Denner ’90; Hahn ’01 ]

• one calculation uses FormCalc 5.2 [ Hahn ’06 ] for preliminary algebraic

manipualations (Dirac algebra, covariant decomposition)

• bulk of reduction with two in-house MATHEMATICA programs

• numerics with two independent Fortran77 codes

(two libraries for tensor integrals)

Top quarks massive and bottom quarks massless



Structure of the one-loop calculation

(a) Diagram-by-diagram approach

(b) Colour factorization

(c) Covariant decomposition of tensor integrals

(d) Numerical reduction of tensor integrals to scalar integrals

(e) Rational parts

(f) Algebraic reduction of helicity-dependent parts



(a) Diagram-by-diagram approach

∑

col.,pol.

Aloop A∗
tree =

Ndiag∑

i=1

(
∑

col.,pol.

D(i)
loop A∗

tree

)

The one-loop–tree interference is computed diagram-by-diagram

• the contributions of Ndiag ∼ 1000 loop diagrams are computed each by a

separate Fortran routine and added

• the large-Ndiag cost is strongly reduced by recycling a multitude of common

substructures (tensor integrals, helicity structures, . . . )



(b) Colour factorization

Advantage of using individual Feynman diagrams

• apart from the (few) diagrms involving 4-gluon vertices

= C(i)
1 D(i)

1 + C(i)
2 D(i)

2 + C(i)
3 D(i)

3

• for most diagrams all colour matrices factorize in a single colour structure C(i)

= C(i)D(i)

The cost of colour sums is reduced to zero

• one computes only one (few) time-expensive colour-less part(s) D(i) per diagram

• the factorized and trivial C(i) provide full colour information



(c) Covariant decomposition of tensor integrals

N-point tensor integrals are expressed in terms of covariant structures

consisting of metric tensors gµν and external momenta pµ
1 , . . . , pµ

N−1

(2πµ)4−D

iπ2

∫

dDq
qµ1 . . . qµP

∏N−1

i=0
[(q + pi)2 − m2

i ]
=

N−1∑

i1≤...≤iP =0

T
(N)
i1...iP

{g . . . gp . . . p}µ1...µP
i1...iP

Each loop diagram becomes a linear combination

=
∑

P

N−1∑

i1≤...≤iP =0

T
(N)
i1...iP

Ki1...iP
(D)

The two ingredients are handled in completely different ways

(d) The covariant tensor integrals T
(N)
i1...iP

are evaluated by a numerical code that

reduces them to scalar integrals (process-independent)

(e–f) The loop-independent parts Ki1...iP
(D), which contain spinor chains, etc.,

undergo heavy algebraic manipulations (process-dependent)



(d) Numerical reduction of tensor integrals to scalar integrals

Collection of methods developed for e+e− → 4f [ Denner/Dittmaier ’05 ]

• For N ≥ 5, exploiting space-time 4-dim., one can simultaneously reduce

tensor rank and # of propagators w.o. Gram-determinant instabilities

Melrose ’65; Denner/Dittmaier ’02 & ’05; Binoth/Guillet/Heinrich/Pilon/Schubert ’05

• For N = 3, 4 depending on the presence of Gram-determinant instabilities

one employs different reductions

– in phase-space regions w.o. instabilities one can use PV Passarino/Veltman ’79

– otherwise instabilities are avoided with various alternative

reductions: modified set of master integrals, solutions of PV identities

w.o. Gram det., expansions in small Gram det.,. . . Denner/Dittmaier ’05

(see also analogous methods by Ferroglia/Passera/Passarino/Uccirati ’03;

Binoth/Guillet/Heinrich/Pilon/Schubert ’05; Ellis/Giele/Zanderighi ’06 )

• For N = 1, 2 explicit analytic expressions are employed (no reduction)

Passarino/Veltman ’79; Denner/Dittmaier ’05



(e) Rational parts

Ki1...iP
(D) T

(N)
i1...iP
︸ ︷︷ ︸

R1
(D−4)

+
R1

(D−4)
+

R2
(D−4)2

+ finite part

⇒ K′
i1...iP

(4) (R1 + R1) +
1

2
K′′

i1...iP
(4)R2 + . . .

When tensor integrals are combined with their D-dimensional coefficients

• UV and IR poles require (D − 4) expansions (performed algebraically)

• this produces rational terms proportional to the pole residues

Rational terms of IR origin

• require the heaviest algebraic work but cancel in any unrenormalized QCD

amplitude (proven in App. A of arXiv:0807.1248)

• can thus be neglected from the beginning

Rational terms of UV origin

• extracted automatically by means of a catalogue of UV residues R1

• after the relevant (D − 4)-expansions we can continue the calculation in D = 4



Cancellation of rational terms of IR origin (sketch of the proof)

Rational terms originate from D-dependent gµν-contractions of type gνλΓνλ

gνλ gνλ = D, gνλ γνp/γλ = (2 − D)p/, . . .

(1) The tensor reduction is free from IR rational terms since in the soft and

collinear regions (qµ → xpµ) the tensor integrals cannot produce gµν

(2) All possible diagrams involving IR-divergent integrals

...
...

...
...

...
...

...
...

...
...

can be cast into a form where gνλΓνλ contractions cancel in IR regions

... =

∫
dDq

q2(q + p)2
ǫµ∗(p) (2q + p)µ
︸ ︷︷ ︸

→ 0 in soft/coll. regions

gνλ Γνλ(q) + . . .



(f) Reduction of the helicity-dependent parts of the diagrams

Ki1...iP
=

NSME∑

n=1

Sn K
(n)
i1...iP

The last and most involved part of the algebraic manipulation

• reduce helicity-dependent parts of all Feynman diagrams to a common and

minimal set of Standard Matrix Elements (SMEs)

• isolating helicity information into compact spinor chains Sn renders helicity

sums diagram-independent and extremely fast



Six-fermion channel (qq̄ → tt̄bb̄)

[
v̄(p1) . . . γµγνp/3 . . . u(p2)

]

︸ ︷︷ ︸

qq̄ chain

[
v̄(p3) . . . γµγνγρp/6 . . . u(p4)

]

︸ ︷︷ ︸

tt̄ chain

[
v̄(p5) . . . γρp/2p/3 . . . u(p6)

]

︸ ︷︷ ︸

bb̄ chain

(1) Process-independent identities in D dimensions

• Dirac equation, Dirac algebra, momentum conservation, standard ordering

• yields O(103) SMEs: many γµ ⊗ γµ contractions between different chains

(2) Process-dependent identities in D = 4 (avoid unstable denominators!)

• we introduce chiral projectors in each fermion chain

ω± =
1

2
(1 ± γ5), u(pj) ⇒ [ω+ + ω−] u(pj)

• then we can exploit various identities of Chisholm-type

(
γµγαγβ ω±

)
⊗ (γµ ω∓) = (γµ ω±) ⊗

(
γαγβγµ ω∓

)
etc.

that permit to exchange Dirac matrices between different fermion chains



• many combinations of identities ⇒ fairly sophisticated and powerful

reduction algorithm

• at the end of the day 200 SMEs for the qq̄ channel

– 10 × 8 of ”massless” type: one Dirac matrix per chain

[
v̄(p1)p/iωαu(p2)

] [
v̄(p3)γµ

ωβu(p4)

] [
v̄(p5)γµ

ωρu(p6)

]

[
v̄(p1)p/iωαu(p2)

] [
v̄(p3)p/jωβu(p4)

] [
v̄(p5)p/kωρu(p6)

]

– 15 × 8 of ”massive” type: 2/0 Dirac matrices inside the tt̄ chain

[
v̄(p1)p/iωαu(p2)

] [
v̄(p3)p/jγ

µ
ωβu(p4)

] [
v̄(p5)p/kωρu(p6)

]

[
v̄(p1)γµ

ωαu(p2)

] [
v̄(p3)p/jp/jωβu(p4)

] [
v̄(p5)γµ

ωρu(p6)

]

[
v̄(p1)γµ

ωαu(p2)

] [
v̄(p3)γµγν

ωβu(p4)

] [
v̄(p5)γν

ωρu(p6)

]

[
v̄(p1)γµ

ωαu(p2)

] [
v̄(p3)ωβu(p4)

] [
v̄(p5)γµ

ωρu(p6)

]

[
v̄(p1)p/iωαu(p2)

] [
v̄(p3)ωβu(p4)

] [
v̄(p5)p/kωρu(p6)

]

• Price to pay: process-dependent and most time-consuming part of

the algebraic reduction ⇒ really needed?!



Four-fermion channel (gg → tt̄bb̄)

{
ǫµ
1 ǫν

2 , (ǫ1ǫ2)p
µ
2pν

4 , (ǫ1p4)(ǫ2p3)g
µν , . . .

}

︸ ︷︷ ︸

gluon polarization vectors

[
v̄(p3) . . . γµγρp/6 . . . u(p4)

]

︸ ︷︷ ︸

tt̄ chain

[
v̄(p5) . . . γργνp/2p/3 . . . u(p6)

]

︸ ︷︷ ︸

bb̄ chain

Process-independent identities in D dimensions

• ǫip1,2 = 0, Dirac eq., Dirac algebra, momentum conservation, standard ordering

Two alternative reductions in D = 4

(A) sophisticated method similarly as for six-fermion channel ⇒ 502 SMEs

(B) less-sophisticated and process-independent reduction

γµ1γµ2γµ3γµ4γµ5 = gµ1µ2γµ3γµ4γµ5 + . . . + gµ1µ2gµ3µ4γµ5 + . . .

Chisolm-based identitiy w.o. chiral projectors ⇒ 970 SMEs

Surprising result

Speed of codes based on reduction A and B almost identical: CPU efficiency not

due to highly sophisticated process-dependent manipulations!



(3) Real corrections (qq/gg/qg channels)

• Also for the real corrections: 2 independent calculations

Two types of matrix elements (Six- and four-fermion amplitudes)

. . .

︸ ︷︷ ︸

q̄q→tt̄bb̄g and qg→tt̄bb̄q (64 diagrams)

. . .

︸ ︷︷ ︸

gg→tt̄bb̄g (341 diagrams)

• Madgraph 4.1.33 [Alwall/Demin/deVisscher/Frederix/Herquet/Maltoni/Plehn/Rainwater/Stelzer’07]

for all channels

• analytical calculation with Weyl–van der Waerden spinors [ Dittmaier ’98 ]

for qq/qg channels

• in-house numerical algortihm based on off-shell recursions [ Berends/Giele ’88;

Caravaglios/Moretti ’95; Draggiotis/Kleiss/Papadopoulos ’98 ] for gg channel



Treatment of soft and collinear singularities with dipole subtraction
Catani/Seymour ’96; Dittmaier ’99; Catani/Dittmaier/Seymour/Trócsányi ’02

∫

dσ2→5 =

∫ [

dσ2→5 −
6∑

i,j=1
i 6=j

dσdipole,ij
2→5

]

+

6∑

i,j=1
i 6=j

Fij ⊗ dσ2→4

• numerically stable/efficient but non-trivial: 30 qq/gg (10 qg) subtraction terms

• in-house dipoles checked against MadDipole[ Frederix/Gehrmann/Greiner ’08 ] (gg/qg)

and PS slicing[ Giele/Glover ’92; Giele et al. ’93; Keller/Laenen ’98; Harris/Owens ’01] (qq)

• initial-state collinear singularities cancelled by MS-redefinition of PDFs

Phase-space integration

• adaptive multi-channel Monte Carlo [ Berends/Kleiss/Pittau ’94; Kleiss/Pittau ’94 ] as in

RACOONWW[Denner/Dittmaier/Roth/Wackeroth’99]/PROFECY4f[Bredenstein/Denner/Dittmaier/Weber’06]

• O(1400) channels to map all peaks from propagators (300) and dipoles (1100)

11-dimensional phase space, many channels and dipoles ⇒ CPU-time! (see later)



Numerical checks

(A) LO checked against SHERPA [ Gleisberg/Hoche/Krauss/Schalicke/Schumann/Winter ’03 ]

(B) Precision checks for individual NLO components in single PS points

(typical precision: 10 to 14 digits)

Virtual corrections

• UV, soft and collinear cancellations

• agreement between 2 independent

implementations

Real emission

• agreement of 2 → 5 matrix elements

• agreement between two dipole

implementations

• cancellations in soft and collinear

regions

(C) Integrated NLO cross section

• two independent calculations agree at 1-2 sigma level with

10−3 × σNLO statistical accuracy



(4) NLO results for the LHC

Parton masses

• mt = 172.6GeV and mb = 0 (massless approximation better than 3% at LO)

Recombination of collinear bb̄, bg, b̄g, with kT-Jet-Algorithm hep-ex/0005012

• partons with |η| < 5 ⇒ b-jets with
√

∆φ2 + ∆y2 > D = 0.4

Cuts for b-jets (motivated by tt̄H analysis)

• require two b-jets with pT,j > 20GeV, yj < 2.5, mbb̄ > 100GeV

• top quarks fully inclusive (no decays and no cuts)

PDFs, scale variations and central scale

• CTEQ6M with αS(MZ) = 0.118

• LO and NLO uncertainty estimated with factor-2 scale variations

• old scale choice µ0 = mt + mbb̄/2 ⇒ new scale choice µ2
0 = mt

√
pT,bpT,b̄
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LO and NLO scale dependence of σtot

High sensitivity to scale choice

• LO proportional to αS(µR)4 ⇒ 78% uncertainty

Original scale choice based on tt̄H signal (K ≃ 1.2)

µ0 = Ethr/2 = mt + mbb̄/2

• used by ATLAS assuming tt̄H ≃ tt̄bb̄

• but at NLO we found large K-factor (1.8) and scale

dependence (34%) [ arXiv:0905.0110 ] (D = 0.8, mbb̄,cut = 0)

QCD dynamics of tt̄H/tt̄bb̄ completely different

• (gg → tt̄H) × (H → bb̄) = O(α2
s )

• (gg → tt̄g) × (g → bb̄) = O(α4
s )

Several tt̄bb̄ channels (b can be emitted from IS gluons!)

• no simple (factorized) mechanism that dictates unique

scale choice
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New (pragmatic) scale choice

Combine different scales observed in tt̄bb̄ distributions

µ2
0 = mt

√
pT,bpT,b̄

pT-distributions of individual b-jets

The two b-jets have typically

pT,b ≪ mt

and rather different distributions

• softest b-jet (upper plot) tends to saturate the cut

at 20 GeV

• hardest b-jet (lower plot) has pT ∼ 100GeV and

extends over wider pT-range
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pT-distribution of individual b-jets

Relative NLO/LO corrections show that new scale

choice clearly improves convergence

• NLO band perfectly fits within LO band: much

smaller NLO correction (K ≃ 1.25)

• K-factor almost constant over wide pT-range both

for soft-b (upper plot) and hard-b (lower plot)

distributions

• NLO scale uncertainty reduced to about 20%
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Crucial observable for tt̄H production

• small NLO correction (K ≃ 1.25)

• dynamical scale choice permits to approximate

NLO effects by constant K-factor

• NLO scale uncertainty ∼ 20%
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LO and NLO scale dependence of σtot

Uniform (upper plot) and antipodal (lower plot)

variations around new central scale

µ2
0 = mt

√
pT,bpT,b̄

Good news for theory: improved convergence

• small correction & uncertainty (K = 1.25± 21%)

• evident from shape of NLO curves: central scale

close to a maximum

Bad news for experiment: enhancement of tt̄bb̄

background

• was already dramatic with µold = Ethr/2

(K ≃ 1.8)

• becomes even worse with µ0 ≃ 0.5µold

(in spite of smaller K-factor)
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Effect of a jet veto

Reduction of large tt̄bb̄ background [ arXiv:0905.0110 ]

• pjet,veto ∼ 50GeV ⇒ sizable suppression

• perturbative stability must be investigated in detail!

Perturbative instability for small pjet,veto

• veto ⇒ negative contribution −α5
s ln2(Q0/pjet,veto)

• IR log dramatically enhances NLO uncertainty

• pjet,veto < 40GeV ⇒ NLO-band enters K < 0 range

NLO prediction completely unrealiable!

Safe jet-veto values: pjet,veto ≃ 100GeV

• NLO effect reduced from K = 1.25 to K ≃ 0.9

• NLO predictions as stable as for σtot

(19% scale uncertainty)



Statistical precision and speed of the calculation

Single 3GHz Intel Xeon processor & pgf77 Portland compiler

σ/σLO # events (after cuts) (∆σ)stat/σ runtime time/event

NLOtree (gg) 85% 5.8 × 106 0.4 × 10−3 2h < 1.4ms

virtual (gg) 10% 0.46 × 106 0.7 × 10−3 20h 160ms

real + dipoles (gg/qg) 87% 16.5 × 106 2.6 × 10−3 47h 10ms

• 2–3 CPU-days ⇒ O(107) events and O(10−3) stat. accuracy for σtot

(distributions obtained with ∼ 5 × 108 events after cuts)

• speed of virtual corrections is remarkably high: 160 ms/event

(including colour and polarization sums!)



Some (process-dependent) remarks about CPU efficiency

• Speed of one-loop Feynman diagrms in striking contrast to pessimistic

expectations based on factorial complexity

• Is it possible to beat 160ms/event?

Looking at CPU-cost of method-independent and minimal ingredient

Master (scalar) Integrals ∼ 10 ms/event

suggests that there is not much room for further dramatic improvement



Conclusions

NLO QCD calculation for pp → tt̄bb̄ at the LHC

• 2 → 4 reaction with highest priority in the 2005 Les Houches wish list

• very important for tt̄H measurement

QCD scale used by ATLAS not adequate ⇒ replaced by new scale

• this stabilizes QCD predictions (K ≃ 1.8 ⇒ 1.25)

• but doubles pp → tt̄bb̄ cross section wrt ATLAS studies

Technical test of diagrammatic tensor-reduction approach

• remarkably high CPU efficiency

• obtained with process-independent techniques

• very good perspectives to study other six-particle processes!


