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Overview
✦ Collider physics with effective theory methods

✦ Soft-Collinear Factorization and Soft-Collinear 
Effective Theory

✦ Sudakov resummation by RG evolution
✦ Towards resummation for n-jet processes

✦ Anomalous dimension Γ of n-jet operators in 
SCET and connection to IR singularities of 
scattering amplitudes.

✦ All-order conjecture for Γ (for arguments, see    
M. Neubert’s talk)

✦ An application: pp→ γ + X at large pT



Collider physics with effective theory methods

✦ Collider processes characterized by many 
scales:  s, sij, Mi, ΛQCD, ...

✦ Large Sudakov logarithms arise, which need 
to be resummed (e.g. parton showers)

✦ Effective field theories provide modern, 
elegant approach to this problem based on 
scale separation (factorization theorems) 
and RG evolution (resummation)



Soft emissions from heavy particles

Hard function H depends 
on large momentum 
transfers sij between jets

Soft function S depends on 
maximum energy E0 of 
unobserved soft emissions.

SH

Factorization:
dσ = H({sij}, {mi}, µ)× S({vi · vj}, µ)

Yennie, Frautschi, Suura 1961, Weinberg 1965



Effective theory treatment
✦ Heavy quark (or electron) effective theory

✦ Hard function from Wilson coefficients

✦ Sudakov resummation by RG evolution of 
Wilson coefficient from hard to soft scale.

quark velocity

}

eikonal interaction ≡ Wilson line

Lint =
∑

AB

CAB({sij}, {mi}, µ) h̄1ΓAh2 h̄3ΓBh4 + . . .

LQ =
4∑

i=1

h̄i vi · D hi



Massless case: Soft-collinear factorization

Jet functions Ji = Ji (Mi2)

H

J J

J J

Hard function H depends on 
large momentum transfers sij 
between jets

S

Soft function S depends 

on scales 

Sen 1983; Kidonakis, Oderda, Sterman 1998

Λ2
ij =

M2
i M2

j

−sij



Soft-collinear factorization

✦ Factorize cross section:

✦ Define components in 
terms of field theory 
objects in SCET

✦ Resum large Sudakov 
logarithms directly in 
momentum space using 
RG equations 

H

J J

J J

S

dσ ∼ H({sij}, µ)
∏

i

Ji(M2
i , µ)⊗ S({Λ2

ij}, µ)



Soft-collinear effective theory

✦ Typical scale hierarchy:             

✦ Integrate out hard quantum fluctuations, and 
describe collinear and soft modes by fields in 
SCET

✦ In second step, integrate out collinear modes 
(if perturbative) and match onto SET (soft 
effective theory)

Bauer, Pirjol, Stewart et al. 2001, 2002; Beneke et al. 2002; ...

hard >> collinear >> soft

hard

collinear

soft

sij

M2
i

Λ2
ij =

M4
i

sij



anomalous-dimension matrix of n-jet SCET operators

SCET for n-jet processes
✦ n different types of collinear quark and gluon 

fields (jet functions Ji), interacting only via 
soft gluons (soft function S)
✦ → operator definitions for Ji   and S

✦ Hard contributions (Q ~ √s) are integrated out 
and absorbed into Wilson coefficients:

✦ Scale dependence controlled by RGE:

Hn =
∑

i

Cn,i(µ) Oren
n,i (µ)

d

d lnµ
|Cn({p}, µ)〉 = Γ(µ, {p}) |Cn({p}, µ)〉

Bauer, Schwartz 2006



Decoupling of soft interactions

✦ At leading power only a single component of 
the soft gluon field interacts with each 
collinear field.

✦ Can decoupled by field redefinition

ni ~ pi light-like reference vectorThe substitution (23) gives rise to an eikonal interaction of soft gluons with collinear
fermion fields,

Lci+s = χ̄i(x)
/̄ni

2
ni · As(x−) χi(x) . (25)

This interaction can be represented in terms of soft Wilson lines. Redefining the quark and
gluon fields as

χi(x) = Si(x−) χ(0)
i (x) ,

χ̄i(x) = χ̄(0)
i (x) S†

i (x−) ,

Aµ
i⊥(x) = Si(x−)Aµ

i⊥(x) S†
i (x−) ,

(26)

where

Si(x) = P exp

(
ig

∫ 0

−∞
dt ni · Aa

s(x + tni) ta
)

, (27)

eliminates the interaction Lci+s (including the pure-gluon terms). After this decoupling trans-
formation [5], soft interactions manifest themselves as Wilson lines in operators built from
collinear fields. The soft gluons do not couple to the spin of the collinear particles, and for
the discussion that follows the spin degrees of freedom will be irrelevant.

As written above the soft Wilson lines Si and S†
i are color matrices defined in the fun-

damental representation of the gauge group. The transformations (26) take on a universal
form if we define a soft Wilson line Si in analogy with (27), but with ta replaced by the color
generator T a

i in the appropriate representation for the i-th parton. Representing a generic
collinear field as (φi)αi

ai
(x) with color index ai and Dirac/Lorentz index αi, the soft interactions

can then be decoupled from this field by the redefinition

(φi)
αi
ai

(x) = [Si(x−)]aibi
(φi)

(0)αi

bi
(x) . (28)

Note that even anti-quarks transform according to this rule: in this case T a
i = −(ta)T , which

translates into the anti-path ordering in (26).
Hard interactions among the different jets are integrated out in the effective theory and

absorbed into the Wilson coefficients of operators composed out of products of collinear and
soft fields. Since additional soft fields in the SCET operators would lead to power suppression,
the leading n-jet operators are built from n collinear fields, one for each direction of large
energy flow [50, 51]. The most general such operator with given particle content appears in
the effective Hamiltonian

Heff
n =

∫
dt1 . . . dtn C̃a1...an

α1...αn
(t1, . . . , tn, µ) (φ1)

α1
a1

(x + t1n̄1) . . . (φn)αn
an

(x + tnn̄n) . (29)

Our notation is somewhat unusual, because the Wilson coefficients of these operators carry
spin and color indices. Usually both operators and Wilson coefficients are chosen to be color-
neutral Lorentz scalars. However, writing the operator in this form makes the connection to
the color-space notation we use for the scattering amplitudes most transparent. In color-space
notation, the effective Hamiltonian for an n-parton scattering process reads

Heff
n =

∫
dt1 . . . dtn 〈On({t}, µ)|C̃n({t}, µ)〉 , (30)
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Sudakov resummation with SCET
✦ Many collider physics applications of SCET in 

the past few years. Resummations up to N3LL, 
however only for two jet observables, e.g.
✦ Drell-Yan rapidity dist.
✦ inclusive Higgs production
✦ thrust distribution in e+e− 

✦ Need to generalize the method to
✦ observables with > 2 jets
✦ hadronically more exclusive observables 

Stewart, Tackmann, Waalewijn, 0910.0467;  Cheung, Luke, Zuberi, 
0910.2479

Idilbi, Ji, Ma and Yuan ‘06 ; 
Ahrens, TB, Neubert, Yang ‘08

TB, Neubert, Xu ‘07

TB, Schwartz ’08



2-jet example: Higgs production

✦ Corrections are large:        
70% at NLO + 30% at NNLO 
[130% and 80% if PDFs and 
αs  are held fixed] 

✦ Only Cgg contains leading 
singular terms, which give 
90% of NLO and 94% of 
NNLO correction

✦ Contributions of Cqg and Cqq 

are small: -1% and -8% of the 
NLO  correction

3

with

S(−µ2, µ2) = −

αs(µ2)
∫

αs(−µ2)

dα
ΓA

cusp(α)

β(α)

α
∫

αs(−µ2)

dα′

β(α′)
,

aΓ(−µ2, µ2) = −

αs(µ2)
∫

αs(−µ2)

dα
ΓA

cusp(α)

β(α)
,

(19)

and similarly for the function aγS . The perturba-
tive expansions of these functions obtained at NNLO in
renormalization-group improved perturbation theory can
be found in [20]. They can be simplified using relation
(16). To leading order we find

lnU(m2
H , µ2) =

ΓA
0

2β2
0

{

4π

αs(m2
H)

[

2a arctan(a) − ln(1 + a2)
]

+

(

ΓA
1

ΓA
0

−
β1

β0
−

γS
0 β0

ΓA
0

)

ln(1 + a2) (20)

+
β1

4β0

[

4 arctan2(a) − ln2(1 + a2)
]

+ O(αs)

}

,

where a ≡ a(m2
H). Note that the result is µ-independent at

this order. The relevant anomalous-dimension coefficients
are ΓA

0 = 4CA, γS
0 = 0, and

ΓA
1

ΓA
0

=

(

67

9
−

π2

3

)

CA −
20

9
TF nf , (21)

where CA = Nc, TF = 1/2, and nf = 5 is the number
of light quark flavors. The coefficients of the β-function
follow from (14).

The expression for the evolution function simplifies con-
siderably if we treat a(m2

H) ≈ 0.2 as a parameter of order
αs. Inserting the values of the one-loop anomalous dimen-
sions from above, we then find

lnU(m2
H , µ2) =

CAπαs(m2
H)

2

[

1 +
ΓA

1

ΓA
0

αs(m2
H)

4π
+ O(α2

s)

]

.

(22)
This result makes explicit that the “π2-enhanced” correc-
tions are terms of the form (CAπαs)n in perturbation the-
ory and exponentiate at leading order. The simplest way
to implement our resummation in existing codes for Higgs-
boson production would be to multiply the fixed-order re-
sult with exp[CAπαs(m2

H)/2] and subtract the expanded
form of this factor from the perturbative series. This treat-
ment is sufficient for practical purposes.

Numerically, setting µ = mH = 120GeV we obtain
lnU = {0.563, 0.565, 0.565} at LO, NLO, and NNLO from
the exact expression for the evolution function derived from
(18), indicating that the leading-order terms give by far
the dominant effect after renormalization-group improve-
ment. The analytical expressions (20) and (22) provide
accurate approximations to the exact results. The first
equation gives lnU = 0.562, while the second one yields
lnU = 0.567. The close agreement of these two numbers
shows that the running of coupling constant between µ2
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FIG. 1: LO (light), NLO (medium), and NNLO (dark) pre-
dictions for the Higgs-production cross section at the LHC in
fixed-order perturbation theory (left) and after resummation of
the π

2-enhanced terms (right).

and −µ2 is a minor effect compared with the evolution
driven by the anomalous dimension of the effective two-
gluon operator in (2).

We are now in a position to discuss our improved results
for the hard function in the formula for the Higgs-boson
production cross section. Setting µ = mH = 120GeV, we
obtain

H(m2
H , m2

H) = {1.756 (LO), 1.907 (NLO), 1.906 (NNLO)} .
(23)

This should be compared with the poorly converging series
H = {1, 1.623, 1.844} obtained using fixed-order perturba-
tion theory. Figure 1 illustrates the impact of the resumma-
tion of the π2-enhanced terms on the cross-section predic-
tions for Higgs-boson production at the LHC. The bands in
each plot show results obtained at LO, NLO, and NNLO
using MRST2004 parton distributions [21]. Their width
reflects the scale variation obtained by varying the factor-
ization and renormalization scales between mH/2 and 2mH

(setting µr = µf ). The convergence of the expansion and
the residual scale dependence at NLO and NNLO are much
improved by the resummation. The new LO and NLO
bands almost coincide with the NLO and NNLO bands in
fixed-order perturbation theory, and the new NNLO band
is now fully contained inside the NLO band.

IV. DRELL-YAN PRODUCTION

The cross section for the Drell-Yan process receives the
same type of π2-enhanced corrections as the Higgs-boson
production cross section, however in this case no anoma-
lously large K-factors arise at NLO and NNLO. Let us
briefly discuss why this is the case.

The vector-current matching coefficient CV appearing in
the Drell-Yan case is defined in analogy with CS in (2), but
with the two-gluon operator replaced by the electromag-
netic current q̄γµq [9, 10, 11]. It obeys an evolution equa-
tion of the same structure as (6), in which the cusp anoma-
lous dimension in the adjoint representation is replaced by

MRST’04 PDFs

Harlander, Kilgore 2002; Anastasiou, Melnikov 2002 
Ravindran, Smith, van Neerven 2003

LO

NNLO

NLO



Resummation by RG evolution
✦ Factorize cross section, evaluate each part at its 

characteristic scale, evolve to common scale:

13

m2
H

−m2
H

0

m2
t

µ2

ffgg(τ/z, µf )

S(ŝ(1− z), µ2
s)

H(m2
H , µ2

h)

Ct(m2
t , µ

2
t )

µ2
f

Parton luminosity

z = M2
H/ŝ



Numerical results Ahrens, TB, Neubert, Yang ‘08 

✦ Includes soft-gluon resummation, but the main effect 
arises from resumming large corrections due to time-like 
kinematics by setting                      in hard function.

✦ RG improved NNLO result is 8% larger than fixed 
order (13% at Tevatron).

MSTW2008NNLO
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Figure 6: The fixed-order (left) and RG-improved (right) cross-section predictions including
perturbative uncertainty bands due to scale variations for the Tevatron (upper) and LHC
(lower plots). In contrast to Figure 5, different PDF sets are used according to the order of
the calculation.

after RG improvement are fully contained in the lower-order ones and the K-factor is close
to 1, in particular for the LHC.1 In fixed-order calculations it is customary to use PDFs ex-
tracted from a fit using predictions of the same order. Doing so absorbs universal higher-order
corrections into the PDFs. Since resummed calculations contain contributions of arbitrarily
high orders, the optimal PDF choice is less clear. If the same large higher-order corrections
affect both the observable one tries to predict and the cross sections used to extract the PDFs,
it would be quite problematic to perform a resummation in one case and not the other. For
our case, the relevant input quantity is the gluon PDF at low x, which is mostly determined
by measurements of scaling violations in the DIS structure function, ∂F2(x, Q2)/∂Q2. The
higher-order corrections associated with the analytic continuation of the time-like gluon form
factor, which we resum, do not affect the DIS cross section, and so are not universal and

1For MRST2004 PDFs [52], the K-factors after resummation are somewhat larger, K ≈ 1.3 for the LHC,
see [18].
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µ2 = −m2
H



Toward n-jet processes at LHC



Goal: NLO+NNLL resummation
✦ Necessary ingredients:

✦ Hard functions: from fixed-order results for 
on-shell amplitudes; new unitarity methods 
allow calculation of NLO amplitudes with 
many legs (→ match with NNLL resummation)

✦ Jet functions: from imaginary parts of two-
point functions; needed at one-loop order 
(depend on cuts, jet definitions) 

✦ Soft functions: from matrix elements of 
Wilson-line operators; one-loop calculations 
comparatively simple

✦ Then resum logarithms using RG evolution eqns.



Ultimate goal: Automatization

✦ in the longer term, this will 
hopefully lead to automated 
higher-log resummations for 
jet rates

✦ goes beyond parton showers, 
which are only accurate at LL 
even after matching

✦ predicts jet cross sections, not 
parton cross sections!

jet rates

|M
n 〉Γ

Sn

J



✦ Technically most challenging aspect besides 
the computation of the hard functions is their 
evolution, governed by anomalous-dimension 
matrix of n-jet operators:

✦ Same anomalous-dimension matrix governs  
IR poles of dimensionally regularized, on-shell 
parton scattering amplitudes.

Evolution of hard functions

d

d lnµ
|Cn({p}, µ)〉 = Γ(µ, {p}) |Cn({p}, µ)〉

TB, Neubert 2009



On-shell matching
✦ To determine hard function, calculate on-shell 

amplitudes in QCD and effective theory

✦ In effective theory all loop corrections vanish 
on-shell, because integrals are scaleless.

✦ IR poles in QCD map onto UV poles of n-jet 
operators in SCET

QCD . .≡ Cn×

lim
ε→0

Z−1
(
ε, {p}, µ

)
|Mn(ε, {p})〉 = |Cn({p}, µ)〉



All-order proposal for Γ (massless case) 
✦ Anomalous dimension is conjectured to be 

extremely simple:

✦ minimal structure, reminiscent of QED
✦ IR poles determined by color charges and 

momenta of external partons 
✦ color dipole correlations, like at one-loop order

The formal solution to this equation can be written in the form

Z(ε, {p}, µ) = P exp

[∫ ∞

µ

dµ′

µ′ Γ({p}, µ′)

]
, (6)

where the path-ordering symbol P means that matrices are ordered from left to right according
to decreasing values of µ′. The upper integration value follows from asymptotic freedom and
the fact that Z = 1 + O(αs).

In the Section 4, we will discuss theoretical arguments supporting an all-order conjecture
for the anomalous-dimension matrix presented in [3], which states that it has the simple form

Γ({p}, µ) =
∑

(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij

+
∑

i

γi(αs) , (7)

where sij ≡ 2σij pi · pj + i0, and the sign factor σij = +1 if the momenta pi and pj are both
incoming or outgoing, and σij = −1 otherwise. Here and below the sums run over the n
external partons. The notation (i1, ..., ik) refers to unordered tuples of distinct parton indices.
Our result features only pairwise correlations among the color charges and momenta of different
partons. These are the familiar color-dipole correlations arising already at one-loop order from
a single soft gluon exchange. The fact that higher-order quantum effects do not induce more
complicated structures and multi-particle correlations indicates a semi-classical origin of IR
singularities. Besides wave-function-renormalization-type subtractions accomplished by the
single-particle terms γi, the only quantum aspect appearing in (7) is a universal anomalous-
dimension function γcusp related to the cusp anomalous dimension of Wilson loops with light-
like segments [23–25]. The three anomalous-dimension functions entering our result are defined
by relation (7). They can be extracted from the known IR divergences of the on-shell quark
and gluon form factors, which have been calculated to three-loop order [26–28]. The explicit
three-loop expressions are given in Appendix A.

Concerning the form of (7), we note that a conjecture that an analogous expression for
the soft anomalous-dimension matrix (see Section 4.4 below) might hold to all orders was
mentioned in passing in the introduction of [12], without presenting any supporting arguments.
In a very recent paper, Gardi and Magnea have analyzed the soft anomalous-dimension matrix
in more detail and found that (7) is the simplest solution to a set of constraints they have
derived [29]. However, they concluded that the most general solution could be considerably
more complicated. Indeed, we emphasize that as a consequence of our result some amazing
cancellations must occur in multi-loop calculations of scattering amplitudes. At L-loop order
Feynman diagrams can involve up to 2L parton legs, while the most non-trivial graphs without
subdivergences can still connect (L+1) partons. We predict that these complicated diagrams
can be decomposed into two-particle terms, whose color and momentum structure resembles
that of one-loop diagrams. At two-loop order, these cancellations were found by explicit
calculation in [30, 31]. More recently, the analysis was extended to the subclass of three-
loop graphs containing fermion loops [32]. In Section 6.2 we will present a simple symmetry
argument explaining these results.

To derive the perturbative expansion of the Z-factor from the formal solution (6) we use

6

sum over pairs
i≠j of partons

color charges
anom. dimensions, 

known to three-loop order 

(pi + pj)2

TB, Neubert 2009; Gardi, Magnea 2009; Bern et al. 2008



Z factor to three loops

✦ Explicit result:

✦ Perturbative expansion:

lnZ =
αs

4π

(
Γ′

0

4ε2
+

Γ0

2ε

)
+

(αs

4π

)2
[
−3β0Γ′

0

16ε3
+

Γ′
1 − 4β0Γ0

16ε2
+

Γ1

4ε

]

+
(αs

4π

)3
[

11β2
0 Γ′

0

72ε4
− 5β0Γ′

1 + 8β1Γ′
0 − 12β2

0 Γ0

72ε3
+

Γ′
2 − 6β0Γ1 − 6β1Γ0

36ε2
+

Γ2

6ε

]
+ . . .

d-dimensional β-function

where

⇒ exponentiation yields Z factor at three loops!

all coefficients known!

the generalized expression

dαs

d lnµ
= β(αs, ε) = β(αs) − 2ε αs (8)

for the β-function in d = 4 − 2ε dimensions, where αs ≡ αs(µ) is the renormalized coupling
constant. The simple form of (7) implies that the matrix structure of the anomalous dimension
is the same at all scales, i.e., [Γ({p}, µ1),Γ({p}, µ2)] = 0. The path-ordering symbol can
thus be dropped in (6), and we can directly obtain an expression for the logarithm of the
renormalization factor. Writing Γ({p}, µ, αs(µ)) instead of Γ({p}, µ) to distinguish the explicit
scale dependence from the implicit one induced via the running coupling, we obtain

ln Z(ε, {p}, µ) =

αs∫

0

dα

α

1

2ε − β(α)/α

[

Γ({p}, µ, α) +

α∫

0

dα′

α′

Γ′(α′)

2ε − β(α′)/α′

]

, (9)

where αs ≡ αs(µ), and we have defined

Γ′(αs) ≡
∂

∂ ln µ
Γ({p}, µ, αs) = −γcusp(αs)

∑

i

Ci . (10)

Note that this is a momentum-independent function, which is diagonal in color space. We
have used that, when acting on color-singlet states, the unweighted sum over color generators
can be simplified, because relation (3) implies that

∑

(i,j)

Ti · Tj = −
∑

i

T
2
i = −

∑

i

Ci . (11)

Since the scattering amplitudes are color conserving, this relation can be used in our case.
Note that a different but equivalent form of relation (9) has been given in [3].

It is understood that the result (9) must be expanded in powers of αs with ε treated as a
fixed O(α0

s) quantity. Up to three-loop order this yields

ln Z =
αs

4π

(
Γ′

0

4ε2
+

Γ0

2ε

)
+

(αs

4π

)2
[
−3β0Γ′

0

16ε3
+

Γ′
1 − 4β0Γ0

16ε2
+

Γ1

4ε

]
(12)

+
(αs

4π

)3
[

11β2
0 Γ′

0

72ε4
− 5β0Γ′

1 + 8β1Γ′
0 − 12β2

0 Γ0

72ε3
+

Γ′
2 − 6β0Γ1 − 6β1Γ0

36ε2
+

Γ2

6ε

]

+ O(α4
s),

where we have expanded the anomalous dimensions and β-function as

Γ =
∞∑

n=0

Γn

(αs

4π

)n+1
, Γ′ =

∞∑

n=0

Γ′
n

(αs

4π

)n+1
, β = −2αs

∞∑

n=0

βn

(αs

4π

)n+1
. (13)

Exponentiating the result (12) and taking into account that the different expansion coefficients
Γn commute, it is straightforward to derive an explicit expression for Z. For the convenience
of the reader, we present the result along with the relevant expansion coefficients of the
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Checks
✦ Expression for IR pole terms agrees with all 

known perturbative results:
✦ 3-loop quark and gluon form factors, which 

determine the functions
✦ 2-loop 3-jet qqg amplitude
✦ 2-loop 4-jet amplitudes
✦ 3-loop 4-jet amplitudes in N=4 super Yang-

Mills theory in planar limit

Moch, Vermaseren, Vogt  2005

Garland, Gehrmann et al. 2002

Anastasiou, Glover et al. 2001 
Bern, De Freitas, Dixon 2002, 2003

Bern et al. 2005, 2007

γq,g(αs)



First 3-jet application: γ production at large pT

✦ Have derived factorization theorem for photon 
production at large

✦ (there are different partonic channels, with 
different H, J, S and f’s)

TB, M. Schwartz, in preparation

p

X

γ

p

pT !MX

d2σ

dydpT
= H ⊗ J ⊗ S ⊗ f1 ⊗ f2



Photon production at large pT

✦ Have calculated H, J and S to one loop
✦ H from known virtual corrections to               .

✦ Have extracted all anomalous dimensions to 3 loops  
✦ Use H from general result, Casimir scaling for 

S, RG invariance.
✦ Solving RG equations we obtain NNLL resummed 

result (NLL is known).
✦ For phenomenological analysis we match to fixed 

order and account for isolation cuts using JetPhox 
fixed order MC generator.

qq̄ → γg



Tevatron results

normalized to NLO w/o photon isolation cuts and fragmentation
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Conclusion
✦ Soft collinear effective theory provides an efficient 

tool to
✦ factorize contributions associated with different 

scales and
✦ resum logarithms of scale ration using RG 

evolution in momentum space
✦ Are on track to perform higher-log resummation for 

n-jet processes at LHC using RG evolution SCET. 
✦ Have anomalous dimension Γ relevant for 

NNLL resummation of n-jet processes.
✦ First application: pp→ γ + X



Backup



Analysis of Sterman and Tejeda-Yeomans ’03

✦ Based on factorization

✦ Define jet-function as square root of form 
factor

✦ Structure of IR divergences governed by S
✦ Same physical picture, but rather different 

definition of hard, jet and soft functions
✦ In SCET          is purely hard, since it only 

depends on hard scales.
|Mn〉

Ji(αs, ε) = [F (Q2)]1/2

|Mn〉 =
∏

i

Ji(αs, ε) S(αs, ε) |hn(αs)〉

color-diagonal eikonal finite



Higgs production pp → H+X

✦ Factorization theorem for partonic cross section 
near threshold 

✦ Can solve RG equations for the different parts: 
this resums log’s of scale ratios.
✦ equivalent to soft-gluon resummation

✦ Soft scale is set dynamically via the fall-off of 
the PDF. For mH= 120 GeV, 

σpart = Ct(m2
t , µ

2) H(m2
H , µ2) S(m2

H(1− z)2, µ2)

z = m2
H/ŝ→ 1

weight function 
not strongly peaked

near z=1
σhad ∝

∫ 1

0
dz z1.5σpart(z)



✦ Soft scale is ~ mH/2, not much lower than hard scale. 
No large soft logarithms.

✦ however, the threshold region is numerically 
large, gives ~ 90% of NLO and NNLO 
correction

✦ Even after resummation of log’s, higher order 
corrections are very large.

• K!factors defined with respect

• With                            and                     but

σLO(µF = µR = MH)

µF (R) = χL(R)MH 0.5≤ !F/!R ≤ 20.5≤ !L(R) ≤ 2

+40%

+12− 15%

• K!factors defined with respect

• With                            and                     but

σLO(µF = µR = MH)

µF (R) = χL(R)MH 0.5≤ !F/!R ≤ 20.5≤ !L(R) ≤ 2

+15 − 20 %

+ 6%

NNLL effect

NNLL effect

NNLL effect

+ 12/15 %

+ 6 %

 Resummation : K-factors Catani, deF, Grazzini, Nason (2003)

µF,R = χF,R MH

0.5 ≤ χF,R ≤ 2

0.5 ≤ χF

χR
≤ 2

Tevatron

LHC

15

Catani, de Florian, Grazzini, Nason ’03



Origin of the large corrections
✦ Hard function gets large higher order 

corrections

✦ The space-like form factor has well behaved 
expansion:

✦ use RG to evolve back to 

 H =                +              +             + ... 

2

31

H(m2
H , µ2 = m2

H) = 1 + 5.50αs(m2
H) + 17.24α2

s(m
2
H) + . . .

= 1 + 0.623 + 0.221 + . . .

H(m2
H , µ2 = −m2

H) = 1− 0.15− 0.0012 + . . .

µ2 = +m2
H

Ahrens, TB, Neubert, Yang ’08; 


