$b \to s\ell^+\ell^-$ in the high q^2 region at two-loops

Volker Pilipp in collaboration with Christoph Greub and Christof Schüpbach

> Institute for Theoretical Physics University of Bern

> > RADCOR2009

Outline

Framework and status of the calculation

NNLO calculation in the high q^2 region

Numerical issues

Some features about $b \rightarrow s\ell^+\ell^-$

▶ Induced by flavour changing neutral current
 ⇒ loop-induced in the SM and sensitive to new physics

Some features about $b \rightarrow s\ell^+\ell^-$

▶ Induced by flavour changing neutral current
 ⇒ loop-induced in the SM and sensitive to new physics

▶ Three body decay \Rightarrow many kinematic observables can be measured like invariant mass spectrum of $\ell^+\ell^-$ and forward-backward asymmetry

Theoretical treatment of the decay mode

Expansion in $1/m_b$ by means of operator product expansion (OPE)

$$\Gamma(B o X_s \ell^+ \ell^-) = \Gamma(b o X_s \ell^+ \ell^-) + \mathcal{O}(\frac{\Lambda_{ ext{QCD}}^2}{m_b^2})$$

- Leading power is approximated by partonic decay rate
- Power corrections start at 1/m_b²

Theoretical treatment of the decay mode

Expansion in $1/m_b$ by means of operator product expansion (OPE)

$$\Gamma(B o X_{\mathcal{S}} \ell^+ \ell^-) = \Gamma(b o X_{\mathcal{S}} \ell^+ \ell^-) + \mathcal{O}(\frac{\Lambda_{ ext{QCD}}^2}{m_b^2})$$

- Leading power is approximated by partonic decay rate
- ▶ Power corrections start at $1/m_b^2$
- We aim an accuracy of 10% in the region where OPE is valid
- ▶ However OPE is not valid over the complete range of the invariant mass squared of $\ell^+\ell^-$

Break down of OPE for dilepton invariant mass squared q^2 at

▶ $c\bar{c}$ resonances (e.g. $B \to X_s J/\psi \to X_s \ell^+ \ell^-$) ⇒ Precise theoretical predictions are possible by appropriate cuts:

> Low q^2 : $1 \text{GeV}^2 < q^2 < 6 \text{GeV}^2$ High q^2 : $q^2 > 14.4 \text{GeV}^2$ (Topic of the present talk)

Break down of OPE for dilepton invariant mass squared q^2 at

cc̄ resonances (e.g. B → X_sJ/ψ → X_sℓ⁺ℓ⁻)
⇒ Precise theoretical predictions are possible by appropriate cuts:

Low
$$q^2$$
: $1\text{GeV}^2 < q^2 < 6\text{GeV}^2$
High q^2 : $q^2 > 14.4\text{GeV}^2$ (Topic of the present talk)

▶ the endpoint m_b²

For
$$\int_{q_0^2}^{m_b^2} dq^2 \Gamma(B o X_s \ell^+ \ell^-)$$
 effective expansion in $\Lambda_{\rm QCD}/(m_b-\sqrt{q_0^2})$ (Bauer, Ligeti, Luke '00, Neubert '00)

Normalizing by $\int_{q_0^2}^{m_b^2} dq^2 \Gamma(B \to X_u \ell \nu)$ reduces the effect of $1/m_b^3$ corrections (Ligeti, Tackmann '07)

Effective Hamiltonian

with

Decay amplitude is given by matrix elements of an effective Hamiltonian:

$$\langle s\ell^+\ell^-|\mathcal{H}_{\mathsf{eff}}|b
angle = \sum_i C_i \langle s\ell^+\ell^-|\mathcal{O}_i|b
angle$$

$$\begin{array}{llll} \mathcal{O}_1 & = & (\overline{s}_L\gamma_\mu T^a c_L)(\overline{c}_L\gamma^\mu T^a b_L) & \mathcal{O}_2 & = & (\overline{s}_L\gamma_\mu c_L)(\overline{c}_L\gamma^\mu b_L) \\ \mathcal{O}_3 & = & (\overline{s}_L\gamma_\mu b_L) \sum_q (\overline{q}\gamma^\mu q) & \mathcal{O}_4 & = & (\overline{s}_L\gamma_\mu T^a b_L) \sum_q (\overline{q}\gamma^\mu T^a q) \\ \mathcal{O}_5 & = & (\overline{s}_L\gamma_\mu\gamma_\nu\gamma_\rho b_L) \sum_q (\overline{q}\gamma^\mu\gamma^\nu\gamma^\rho q) & \mathcal{O}_6 & = & (\overline{s}_L\gamma_\mu\gamma_\nu\gamma_\rho T^a b_L) \sum_q (\overline{q}\gamma^\mu\gamma^\nu\gamma^\rho T^a q) \\ \mathcal{O}_7 & = & \frac{g}{g_S^2} m_b (\overline{s}_L\sigma^{\mu\nu} b_R) F_{\mu\nu} & \mathcal{O}_8 & = & \frac{1}{g_S} m_b (\overline{s}_L\sigma^{\mu\nu} T^a b_R) G_{\mu\nu}^8 \\ \mathcal{O}_9 & = & \frac{g^2}{g_S^2} (\overline{s}_L\gamma_\mu b_L) \sum_\ell (\overline{\ell}\gamma^\mu \ell) & \mathcal{O}_{10} & = & \frac{g^2}{g_S^2} (\overline{s}_L\gamma_\mu b_L) \sum_\ell (\overline{\ell}\gamma^\mu\gamma_5 \ell) \end{array}$$

Effective Hamiltonian

with

Decay amplitude is given by matrix elements of an effective Hamiltonian:

$$\langle s\ell^+\ell^-|\mathcal{H}_{\mathsf{eff}}|b
angle = \sum_i C_i \langle s\ell^+\ell^-|\mathcal{O}_i|b
angle$$

$$\begin{array}{llll} \mathcal{O}_1 & = & (\bar{s}_L\gamma_\mu T^a c_L)(\bar{c}_L\gamma^\mu T^a b_L) & \mathcal{O}_2 & = & (\bar{s}_L\gamma_\mu c_L)(\bar{c}_L\gamma^\mu b_L) \\ \mathcal{O}_3 & = & (\bar{s}_L\gamma_\mu b_L) \sum_q (\bar{q}\gamma^\mu q) & \mathcal{O}_4 & = & (\bar{s}_L\gamma_\mu T^a b_L) \sum_q (\bar{q}\gamma^\mu T^a q) \\ \mathcal{O}_5 & = & (\bar{s}_L\gamma_\mu\gamma_\nu\gamma_\rho b_L) \sum_q (\bar{q}\gamma^\mu\gamma^\nu\gamma^\rho q) & \mathcal{O}_6 & = & (\bar{s}_L\gamma_\mu\gamma_\nu\gamma_\rho T^a b_L) \sum_q (\bar{q}\gamma^\mu\gamma^\nu\gamma^\rho T^a q) \\ \mathcal{O}_7 & = & \frac{e}{g_S^2} m_b (\bar{s}_L\sigma^{\mu\nu} b_R) F_{\mu\nu} & \mathcal{O}_8 & = & \frac{1}{g_S} m_b (\bar{s}_L\sigma^{\mu\nu} T^a b_R) G_{\mu\nu}^a \\ \mathcal{O}_9 & = & \frac{e^2}{g_S^2} (\bar{s}_L\gamma_\mu b_L) \sum_\ell (\bar{\ell}\gamma^\mu \ell) & \mathcal{O}_{10} & = & \frac{e^2}{g_S^2} (\bar{s}_L\gamma_\mu b_L) \sum_\ell (\bar{\ell}\gamma^\mu\gamma_5 \ell) \end{array}$$

▶ Wilson coefficients C_i contain physics of the order m_t and M_W and resum large logarithms $\ln(m_b/M_W)$: LL: $(\alpha_s \ln \frac{m_b}{M_W})^n$, NLL: $\alpha_s(\alpha_s \ln \frac{m_b}{M_W})^n$, NNLL: $\alpha_s^2(\alpha_s \ln \frac{m_b}{M_W})^n$

Effective Hamiltonian

Decay amplitude is given by matrix elements of an effective Hamiltonian:

$$\langle s\ell^+\ell^-|\mathcal{H}_{\mathsf{eff}}|b
angle = \sum_i C_i \langle s\ell^+\ell^-|\mathcal{O}_i|b
angle$$
 with

$$\begin{array}{llll} \mathcal{O}_1 & = & (\overline{s}_L\gamma_\mu T^a c_L)(\overline{c}_L\gamma^\mu T^a b_L) & \mathcal{O}_2 & = & (\overline{s}_L\gamma_\mu c_L)(\overline{c}_L\gamma^\mu b_L) \\ \mathcal{O}_3 & = & (\overline{s}_L\gamma_\mu b_L) \sum_q (\overline{q}\gamma^\mu q) & \mathcal{O}_4 & = & (\overline{s}_L\gamma_\mu T^a b_L) \sum_q (\overline{q}\gamma^\mu T^a q) \\ \mathcal{O}_5 & = & (\overline{s}_L\gamma_\mu\gamma_\nu\gamma_\rho b_L) \sum_q (\overline{q}\gamma^\mu\gamma^\nu\gamma^\rho q) & \mathcal{O}_6 & = & (\overline{s}_L\gamma_\mu\gamma_\nu\gamma_\rho T^a b_L) \sum_q (\overline{q}\gamma^\mu\gamma^\nu\gamma^\rho T^a q) \\ \mathcal{O}_7 & = & \frac{e^2}{g_S^2} m_b (\overline{s}_L\sigma^{\mu\nu} b_R) F_{\mu\nu} & \mathcal{O}_8 & = & \frac{1}{g_S} m_b (\overline{s}_L\sigma^{\mu\nu} T^a b_R) G_{\mu\nu}^8 \\ \mathcal{O}_9 & = & \frac{e^2}{g_S^2} (\overline{s}_L\gamma_\mu b_L) \sum_\ell (\overline{\ell}\gamma^\mu \ell) & \mathcal{O}_{10} & = & \frac{e^2}{g_S^2} (\overline{s}_L\gamma_\mu b_L) \sum_\ell (\overline{\ell}\gamma^\mu\gamma_5 \ell) \end{array}$$

- ▶ Wilson coefficients C_i contain physics of the order m_t and M_W and resum large logarithms $\ln(m_b/M_W)$: LL: $(\alpha_s \ln \frac{m_b}{M_W})^n$, NLL: $\alpha_s (\alpha_s \ln \frac{m_b}{M_W})^n$, NNLL: $\alpha_s^2 (\alpha_s \ln \frac{m_b}{M_W})^n$
- Note extra factor $1/g_s^2$ in \mathcal{O}_9 \Rightarrow Counting for the matrix elements: LO $\sim \alpha_s^{-1}$, NLO $\sim \alpha_s^0$, NNLO $\sim \alpha_s^1$,

Typical diagrams

Two-quark operators

Four-quark operators

 \Rightarrow lead to $c\bar{c}$ resonances that spoil OPE

Wilson Coefficients up to NNLL

Adel, Yao '94; Buchalla, Buras, Lautenbacher '96; Greub, Hurth '97; Chetyrkin, Misiak, Münz '97; Bobeth, Misiak, Urban '00; Bobeth, Gambino, Gorbahn, Haisch '04; Gorbahn, Haisch '05

Wilson Coefficients up to NNLL

Adel, Yao '94; Buchalla, Buras, Lautenbacher '96; Greub, Hurth '97; Chetyrkin, Misiak, Münz '97; Bobeth, Misiak, Urban '00; Bobeth, Gambino, Gorbahn, Haisch '04; Gorbahn, Haisch '05

- ▶ Matrix elements $\langle \mathcal{O}_i \rangle$
 - LO and NLO

Grinstein, Savage, Wise '89; Misiak '93; Buras, Münz '95

Wilson Coefficients up to NNLL

Adel, Yao '94; Buchalla, Buras, Lautenbacher '96; Greub, Hurth '97; Chetyrkin, Misiak, Münz '97; Bobeth, Misiak, Urban '00; Bobeth, Gambino, Gorbahn, Haisch '04; Gorbahn, Haisch '05

- ▶ Matrix elements $\langle \mathcal{O}_i \rangle$
 - LO and NLO

Grinstein, Savage, Wise '89; Misiak '93; Buras, Münz '95

▶ Power Corrections 1/m_b², 1/m_c², 1/m_b³
Falk, Luke, Savage '94; Ali, Hiller, Handoko, Morozumi '97; Chen, Rupak, Savage '97; Buchalla, Isidori, Rey '98; Buchalla, Isidori '98; Bauer, Burrell '00; Ligeti, Tackmann '07

Wilson Coefficients up to NNLL

Adel, Yao '94; Buchalla, Buras, Lautenbacher '96; Greub, Hurth '97; Chetyrkin, Misiak, Münz '97; Bobeth, Misiak, Urban '00; Bobeth, Gambino, Gorbahn, Haisch '04; Gorbahn, Haisch '05

- ▶ Matrix elements $\langle \mathcal{O}_i \rangle$
 - LO and NLO

Grinstein, Savage, Wise '89; Misiak '93; Buras, Münz '95

- ▶ Power Corrections 1/m_b², 1/m_c², 1/m_b³
 Falk, Luke, Savage '94; Ali, Hiller, Handoko, Morozumi '97; Chen, Rupak, Savage '97; Buchalla, Isidori, Rey '98; Buchalla, Isidori '98; Bauer, Burrell '00; Ligeti, Tackmann '07
- ► Electromagnetic corrections

 Huber, Lunghi, Misiak, Wyler '06: Huber, Hurth, Lunghi '08

Wilson Coefficients up to NNLL

Adel, Yao '94; Buchalla, Buras, Lautenbacher '96; Greub, Hurth '97; Chetyrkin, Misiak, Münz '97; Bobeth, Misiak, Urban '00; Bobeth, Gambino, Gorbahn, Haisch '04; Gorbahn, Haisch '05

- ▶ Matrix elements $\langle \mathcal{O}_i \rangle$
 - LO and NLO

Grinstein, Savage, Wise '89; Misiak '93; Buras, Münz '95

▶ Power Corrections 1/m_b², 1/m_c², 1/m_b³
Falk, Luke, Savage '94; Ali, Hiller, Handoko, Morozumi '97; Chen, Rupak, Savage '97; Buchalla, Isidori, Rey '98; Buchalla, Isidori '98; Bauer, Burrell '00; Ligeti, Tackmann '07

Electromagnetic corrections

Huber, Lunghi, Misiak, Wyler '06; Huber, Hurth, Lunghi '08

- NNLO of ⟨O₁⟩ and ⟨O₂⟩
 - ▶ Low q^2 : Expansion in m_c/m_b and q^2/m_b^2 Asatrian, Asatryan, Greub, Walker '01 '02 '02
 - ▶ High q^2 :
 Numerically Ghinculov, Hurth, Isidori, Yao '04
 Analytically in an expansion in m_c/m_b Greub, V.P., Schüpbach '08

NNLO calculation in the high q^2 region

Diagrams occurring at NNLO

NNLO calculation in the high q^2 region

Diagrams occurring at NNLO

▶ Two ratios of scales: q^2/m_b^2 and m_c/m_b High q^2 region \Rightarrow We keep $q^2 = \mathcal{O}(m_b^2)$ and expand in m_c/m_b

NNLO calculation in the high q^2 region

Diagrams occurring at NNLO

- ▶ Two ratios of scales: q^2/m_b^2 and m_c/m_b High q^2 region \Rightarrow We keep $q^2 = \mathcal{O}(m_b^2)$ and expand in m_c/m_b
- ▶ Due to slow convergence we need powers up to $(m_c/m_b)^{20}$ to obtain an error less than 1%

Evaluation of two-loops Feynman integrals

 Reduction of tensor integrals to scalar integrals via Passarino-Veltman

$$\int d^d k_1 d^d k_2 \frac{[k_1^{\mu_1} \dots k_1^{\mu_m}][k_2^{\nu_1} \dots k_2^{\nu_n}]}{\prod D_i(k_1, k_2, p_{\text{extern}})} = p_{\text{ext.}}^{\mu_1} \dots p_{\text{ext.}}^{\nu_n} S_1 + g^{\mu_1, \mu_2} p_{\text{ext.}}^{\mu_3} \dots p_{\text{ext.}}^{\nu_n} S_2 + \dots$$

Evaluation of two-loops Feynman integrals

 Reduction of tensor integrals to scalar integrals via Passarino-Veltman

$$\int d^d k_1 d^d k_2 \frac{[k_1^{\mu_1} \dots k_1^{\mu_m}][k_2^{\nu_1} \dots k_2^{\nu_n}]}{\prod D_i(k_1, k_2, p_{\text{extern}})} = p_{\text{ext.}}^{\mu_1} \dots p_{\text{ext.}}^{\nu_n} S_1 + g^{\mu_1, \mu_2} p_{\text{ext.}}^{\mu_3} \dots p_{\text{ext.}}^{\nu_n} S_2 + \dots$$

 Reduction of scalar integrals to a set of simpler master integrals via integration by parts identities

$$0 = \int d^d k \, p^\mu \frac{\partial}{\partial k^\mu} f(k)$$

 $\Rightarrow \mathcal{O}(20)$ master integrals containing three scales m_b , m_c and q^2

Evaluation of two-loops Feynman integrals

 Reduction of tensor integrals to scalar integrals via Passarino-Veltman

$$\int d^d k_1 d^d k_2 \frac{[k_1^{\mu_1} \dots k_1^{\mu_m}][k_2^{\nu_1} \dots k_2^{\nu_n}]}{\prod D_i(k_1, k_2, p_{\text{extern}})} = p_{\text{ext.}}^{\mu_1} \dots p_{\text{ext.}}^{\nu_n} S_1 + g^{\mu_1, \mu_2} p_{\text{ext.}}^{\mu_3} \dots p_{\text{ext.}}^{\nu_n} S_2 + \dots$$

 Reduction of scalar integrals to a set of simpler master integrals via integration by parts identities

$$0 = \int d^d k \, p^\mu \frac{\partial}{\partial k^\mu} f(k)$$

- $\Rightarrow \mathcal{O}(20)$ master integrals containing three scales m_b, m_c and q^2
- ▶ Evaluation of master integrals in expansion in m_c/m_b

Power expansion of Feynman integrals

Expansion of Feynman integrals in powers of $z = m_c^2/m_b^2$ by solving a set of differential equations in z

$$rac{d}{dz}I_{lpha}=\sum_{eta}h_{lphaeta}I_{eta}+g_{lpha}$$

 $h_{lphaeta}$: rational functions in z, g_lpha : simpler master integrals

Power expansion of Feynman integrals

Expansion of Feynman integrals in powers of $z = m_c^2/m_b^2$ by solving a set of differential equations in z

$$rac{d}{dz}I_{lpha}=\sum_{eta}h_{lphaeta}I_{eta}+g_{lpha}$$

 $h_{lphaeta}$: rational functions in z, g_lpha : simpler master integrals

▶ Most general ansatz: Expansion of I_{α} in powers of z and $\ln z$

$$I_{lpha} = \sum_{i,j,k \in \mathcal{S}} I_{lpha,i}^{(j,k)} \epsilon^i z^j \ln^k z$$

Set of indices S will be determined later

Power expansion of Feynman integrals

Expansion of Feynman integrals in powers of $z = m_c^2/m_b^2$ by solving a set of differential equations in z

$$\frac{d}{dz}I_{lpha}=\sum_{eta}h_{lphaeta}I_{eta}+g_{lpha}$$

 $h_{lphaeta}$: rational functions in z, g_lpha : simpler master integrals

▶ Most general ansatz: Expansion of I_{α} in powers of z and $\ln z$

$$I_{\alpha} = \sum_{i,j,k \in S} I_{\alpha,i}^{(j,k)} \epsilon^i z^j \ln^k z$$

Set of indices S will be determined later

Set of algebraic equations

$$0 = (j+1)I_{\alpha,i}^{(j+1,k)} + (k+1)I_{\alpha,i}^{(j+1,k+1)} - \sum_{\beta} \sum_{i'} \sum_{j'} h_{\alpha\beta,i'}^{(j')}I_{\beta,i-i'}^{(j-j',k)} - g_{\alpha,i}^{(j,k)}$$

where
$$h_{lphaeta}=\sum_{ij}h_{lpha,i}^{(j)}\epsilon^iz^j$$
 and $g_lpha=\sum_{i,j,k}g_{lpha,i}^{(j,k)}\epsilon^iz^j\ln^kz$

▶ We gained: Reduction of higher powers in z to lower powers

- We gained: Reduction of higher powers in z to lower powers
- But:
 - We need leading power as initial condition
 - We have to determine over which powers the sum

$$\sum_{i,j,k\in\mathcal{S}} I_{\alpha,i}^{(j,k)} \epsilon^i z^j \ln^k z$$

runs i.e.

- We do not know a priori which powers of z occur
- At every power in z only a finite number of powers in ln z must contribute

- We gained: Reduction of higher powers in z to lower powers
- But:
 - We need leading power as initial condition
 - We have to determine over which powers the sum

$$\sum_{i,j,k\in\mathcal{S}} I_{\alpha,i}^{(j,k)} \epsilon^i z^j \ln^k z$$

runs i.e.

- We do not know a priori which powers of z occur
- At every power in z only a finite number of powers in ln z must contribute
- Evaluation of the leading power using method of regions
- ➤ Testing the correctness of our ansatz: Formalism that combines sector decomposition (Binoth, Heinrich '00) and Mellin-Barnes techniques provides a formal proof of our ansatz (V.P. '08)
- ► This formalism also allows for numerical evaluation of the coefficients in the expansion ⇒ additional cross-check.

A short description of this formalism

Feynman parametrization:

$$I(z) \sim \int_0^1 d^{n-1}x \, \frac{1}{(zf_1(\vec{x}) + f_2(\vec{x}))^{n-d/2}}$$

A short description of this formalism

Feynman parametrization:

$$I(z) \sim \int_0^1 d^{n-1}x \, \frac{1}{(zf_1(\vec{x}) + f_2(\vec{x}))^{n-d/2}}$$

Mellin-Barnes representation:

$$\frac{1}{(X_1 + X_2)^x} = \frac{1}{\Gamma(x)} \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} ds \, \Gamma(-s) \Gamma(s+x) X_1^s X_2^{-s-x}$$

$$I(z) \sim \int_{-i\infty}^{i\infty} ds \, z^s \int_0^1 d^{n-1} x \, F(\vec{x}, s)$$

A short description of this formalism

Feynman parametrization:

$$I(z) \sim \int_0^1 d^{n-1}x \, \frac{1}{(zf_1(\vec{x}) + f_2(\vec{x}))^{n-d/2}}$$

Mellin-Barnes representation:

$$\frac{1}{(X_1 + X_2)^x} = \frac{1}{\Gamma(x)} \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} ds \, \Gamma(-s) \Gamma(s+x) X_1^s X_2^{-s-x}$$

$$I(z) \sim \int_{-i\infty}^{i\infty} ds \, z^s \int_0^1 d^{n-1} x \, F(\vec{x}, s)$$

Close integration contour to the right half

- ⇒ Summing up residua on the positive real axis leads to power expansion in z
- $\Rightarrow \ln(z)$ terms originate from terms like z^{ϵ}/ϵ

- We have $I(z) \sim \int_{-i\infty}^{i\infty} ds \, z^s \int_0^1 d^{n-1} x \, F(\vec{x}, s)$
 - Position of the poles in s give possible powers in z
 - ▶ We need information about the analytic structure of $\int_0^1 d^{n-1}x \, F(\vec{x}, s)$ without explicit evaluation of the integral

- We have $I(z) \sim \int_{-i\infty}^{i\infty} ds \, z^s \int_0^1 d^{n-1} x \, F(\vec{x}, s)$
 - Position of the poles in s give possible powers in z
 - ▶ We need information about the analytic structure of $\int_0^1 d^{n-1}x \, F(\vec{x}, s)$ without explicit evaluation of the integral
- Sector decomposition provides this property
 - Make sure that divergences in s come from integration over small x
 - Integral can be decomposed into terms like

$$\int_0^1 d^{n-1}x \left(\prod_j x_j^{A_j - B_j \epsilon - C_j s}\right) \times (\text{const.} + \mathcal{O}(x))$$

- We have $I(z) \sim \int_{-i\infty}^{i\infty} ds \, z^s \int_0^1 d^{n-1}x \, F(\vec{x}, s)$
 - Position of the poles in s give possible powers in z
 - We need information about the analytic structure of $\int_0^1 d^{n-1}x \, F(\vec{x}, s)$ without explicit evaluation of the integral
- Sector decomposition provides this property
 - Make sure that divergences in s come from integration over small x
 - Integral can be decomposed into terms like

$$\int_0^1 d^{n-1}x \left(\prod_j x_j^{A_j - B_j \epsilon - C_j s}\right) \times (\text{const.} + \mathcal{O}(x))$$

Location of the poles can be read off

$$s_{jN} = rac{1 + N + A_j - B_j \epsilon}{C_i} \quad N \in \mathbb{N}_0$$

- We have $I(z) \sim \int_{-i\infty}^{i\infty} ds \, z^s \int_0^1 d^{n-1} x \, F(\vec{x}, s)$
 - Position of the poles in s give possible powers in z
 - ▶ We need information about the analytic structure of $\int_0^1 d^{n-1}x \, F(\vec{x}, s)$ without explicit evaluation of the integral
- Sector decomposition provides this property
 - Make sure that divergences in s come from integration over small x
 - Integral can be decomposed into terms like

$$\int_0^1 d^{n-1}x \left(\prod_j x_j^{A_j - B_j \epsilon - C_j s}\right) \times (\text{const.} + \mathcal{O}(x))$$

Location of the poles can be read off

$$s_{jN} = \frac{1 + N + A_j - B_j \epsilon}{C_i} \quad N \in \mathbb{N}_0$$

- Analytical structure in z of I(z) is known
 - → Ansatz

$$I(z) = \sum_{i,j,k \in S} I_i^{(j,k)} \epsilon^i z^j \ln^k z$$

where the set of indices S is known

Decomposition of the NNLO matrix elements

$$\langle s\ell^+\ell^-|\mathcal{O}_i|b
angle_{ ext{2-loops}} = -\left(rac{lpha_s}{4\pi}
ight)^2\left[F_i^{(7)}\langle\mathcal{O}_7
angle_{ ext{tree}} + F_i^{(9)}\langle\mathcal{O}_9
angle_{ ext{tree}}
ight]$$

▶ Decomposition of the NNLO matrix elements

$$\langle \boldsymbol{s}\ell^{+}\ell^{-}|\mathcal{O}_{i}|\boldsymbol{b}\rangle_{\text{2-loops}} = -\left(\frac{\alpha_{\textbf{s}}}{4\pi}\right)^{2}\left[\boldsymbol{F}_{i}^{(7)}\langle\mathcal{O}_{7}\rangle_{\text{tree}} + \boldsymbol{F}_{i}^{(9)}\langle\mathcal{O}_{9}\rangle_{\text{tree}}\right]$$

Here z=0.1, $\hat{s}=q^2/m_b^2$, red curve: up to $\mathcal{O}(z^6)$, blue curve: up to $\mathcal{O}(z^8)$, black curve: up to $\mathcal{O}(z^{10})$

Decomposition of the NNLO matrix elements

$$\langle \boldsymbol{s}\ell^+\ell^-|\mathcal{O}_i|\boldsymbol{b}\rangle_{\text{2-loops}} = -\left(\frac{\alpha_{\textbf{s}}}{4\pi}\right)^2\left[\boldsymbol{F}_i^{(7)}\langle\mathcal{O}_7\rangle_{\text{tree}} + \boldsymbol{F}_i^{(9)}\langle\mathcal{O}_9\rangle_{\text{tree}}\right]$$

Here z=0.1, $\hat{s}=q^2/m_h^2$, red curve: up to $\mathcal{O}(z^6)$, blue curve: up to $\mathcal{O}(z^8)$, black curve: up to $\mathcal{O}(z^{10})$

For $\hat{s} > 0.6$ good numerical convergence

Decomposition of the NNLO matrix elements

$$\langle s\ell^+\ell^-|\mathcal{O}_i|b
angle_{ ext{2-loops}} = -\left(rac{lpha_{ extsf{S}}}{4\pi}
ight)^2\left[F_i^{(7)}\langle\mathcal{O}_7
angle_{ ext{tree}} + F_i^{(9)}\langle\mathcal{O}_9
angle_{ ext{tree}}
ight]$$

- Here z=0.1, $\hat{s}=q^2/m_b^2$, red curve: up to $\mathcal{O}(z^6)$, blue curve: up to $\mathcal{O}(z^8)$, black curve: up to $\mathcal{O}(z^{10})$
- For $\hat{s} > 0.6$ good numerical convergence
- By comparison with numerical calculation of Ghinculov et al. we find deviation less than 1%

Numerical impact of $\langle \mathcal{O}_{1,2} \rangle_{2\text{-loops}}$ on the BRs

▶ Simple ratio with small dependence on $m_{b,pole}$:

$$R(\hat{\mathbf{s}}) = rac{1}{\Gamma(ar{B}
ightarrow X_c e^- ar{
u}_e)} rac{d\Gamma(ar{B}
ightarrow X_{\mathcal{S}} \ell^+ \ell^-)}{d\hat{\mathbf{s}}}$$

Numerical impact of $\langle \mathcal{O}_{1,2} \rangle_{2\text{-loops}}$ on the BRs

▶ Simple ratio with small dependence on $m_{b,pole}$:

$$R(\hat{s}) = \frac{1}{\Gamma(\bar{B} \to X_c e^- \bar{\nu}_e)} \frac{d\Gamma(\bar{B} \to X_s \ell^+ \ell^-)}{d\hat{s}}$$

Significant effect of 2-loops contribution on R(ŝ) of the order 10%

Red curve: not including $\langle \mathcal{O}_{1,2} \rangle_{\text{2-loops}}$ Black curve: including $\langle \mathcal{O}_{1,2} \rangle_{\text{2-loops}}$

Numerical impact of $\langle \mathcal{O}_{1,2} \rangle_{2\text{-loops}}$ on the BRs

▶ Simple ratio with small dependence on $m_{b,pole}$:

$$R(\hat{s}) = \frac{1}{\Gamma(\bar{B} \to X_c e^- \bar{\nu}_e)} \frac{d\Gamma(\bar{B} \to X_s \ell^+ \ell^-)}{d\hat{s}}$$

► Reduction of scale-dependence of $R_{\text{high}} = \int_{0.6}^{1} d\hat{s} R(\hat{s})$ to 2% (2GeV $\leq \mu \leq$ 10GeV)

Red curve: not including $\langle \mathcal{O}_{1,2} \rangle_{\text{2-loops}}$ Black curve: including $\langle \mathcal{O}_{1,2} \rangle_{\text{2-loops}}$

Final Analysis

Comprehensive analysis from Huber, Hurth and Lunghi '08

$$\text{Br}(\bar{B} \to X_{\mathcal{S}} \ell^+ \ell^-)_{q^2 > 14.4 \text{GeV}^2} = \left\{ \begin{array}{l} 2.40 \times 10^{-7} (1^{+0.29}_{-0.26}) & \ell = \mu \\ 2.09 \times 10^{-7} (1^{+0.32}_{-0.30}) & \ell = e \end{array} \right.$$
 (Note: $\ell = \mu$, e differ by $\ln(m_\ell/m_b)$)

Final Analysis

Comprehensive analysis from Huber, Hurth and Lunghi '08

$$\mathsf{Br}(\bar{B} \to X_{\mathcal{S}} \ell^+ \ell^-)_{q^2 > 14.4 \mathsf{GeV}^2} = \left\{ \begin{array}{l} 2.40 \times 10^{-7} (1^{+0.29}_{-0.26}) & \ell = \mu \\ 2.09 \times 10^{-7} (1^{+0.32}_{-0.30}) & \ell = e \end{array} \right.$$

(Note: $\ell = \mu$, e differ by $\ln(m_{\ell}/m_b)$)

Appropriate ratio

$$\begin{split} &\int_{q_0^2}^1 \frac{d\Gamma(\bar{B}\to X_{\rm S}\ell^+\ell^-)}{dq^2} / \int_{q_0^2}^1 \frac{d\Gamma(\bar{B}^0\to X_{\rm U}\ell\nu)}{dq^2} = \\ &\left\{ \begin{array}{ll} 2.29\times 10^{-3}(1\pm 0.13) & \ell=\mu \\ 1.94\times 10^{-3}(1\pm 0.16) & \ell=e \end{array} \right. \end{split}$$

with
$$q_0^2 = 14.4 \text{GeV}^2$$

Summary

- ▶ We did the NNLL calculation of the matrix elements of $\mathcal{O}_{1,2}$ in the high q^2 region
- ▶ Combining method of regions with differential equation techniques we obtained an expansion in m_c/m_b of the Feynman integrals
- ► This analytical result confirmed a former numerical calculation and is now completely published