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» Induced by flavour changing neutral current
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Some features about b — s/ ¢~

» Induced by flavour changing neutral current
= loop-induced in the SM and sensitive to new physics

» Three body decay
= many kinematic observables can be measured like
invariant mass spectrum of 7/~ and forward-backward
asymmetry



Theoretical treatment of the decay mode

» Expansion in 1/mj, by means of operator product
expansion (OPE)
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my,
» Leading power is approximated by partonic decay rate
» Power corrections start at 1/mz



Theoretical treatment of the decay mode
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Expansion in 1/mj by means of operator product
expansion (OPE)

/\2
[(B— Xst™07) =T(b— Xstt¢7) + O(—22)
my
» Leading power is approximated by partonic decay rate
» Power corrections start at 1/mz
» We aim an accuracy of 10% in the region where OPE is
valid

» However OPE is not valid over the complete range of the
invariant mass squared of ¢/~



Break down of OPE for dilepton invariant mass squared g at

» ccC resonances (e.g. B — XgJ/v — XglT07)
= Precise theoretical predictions are possible by
appropriate cuts:
Low g2 1GeV? < g2 < 6GeV?
High ¢2: g2 > 14.4GeV? (Topic of the present talk)
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» ccC resonances (e.g. B — XgJ/v — XglT07)
= Precise theoretical predictions are possible by
appropriate cuts:
Low g2 1GeV? < g2 < 6GeV?
High g2: g2 > 14.4GeV? (Topic of the present talk)
» the endpoint m2

For f dq2I' B — Xstt¢™) effective expansion in
/\QCD/(mb — 14/ qO) (Bauer, Ligeti, Luke '00, Neubert '00)

Normalizing by fqgmf’ dg?r (B — X,tv) reduces the effect of
(]
1/m corrections (Ligeti, Tackmann '07)



Effective Hamiltonian

» Decay amplitude is given by matrix elements of an
effective Hamiltonian:
(SUTL™ [Hett|b) = >=; Ci(st™E~|0j|b)
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My and resum large logarithms In(my, /My ):
LL: (asIn72)", NLL: as(asin g2)", NNLL: of(asIn 72)"



Effective Hamiltonian

» Decay amplitude is given by matrix elements of an
effective Hamiltonian:
(SUTL™ [Hett|b) = >=; Ci(st™E~|0j|b)

with
O1 = (GyvuT)(@y"Th) Ox = (SyucL)Cybr)
O3 = (StvubL) Xg(@v*q) Oy = (BrvuT) 4@ T2q)
Os = (SLvuvvpbL) Zg(av* Y7 q) Os = (BLyuvwrpT2bL) Xg(avH vV~ T2q)
07 = émb(ELUWbR)Fuu Og = gGomp(ELo" TbR)GY,
O = L(Euvub) SolPr"0) O =  GEb) TeFr*s50)
S S

» Wilson coefficients C; contain physics of the order m; and
My and resum large logarithms In(my, /My ):
LL: (asIn72)", NLL: as(asin g2)", NNLL: of(asIn 72)"

» Note extra factor 1/g2 in Og
— Counting for the matrix elements: LO ~ ag ', NLO ~ o,
NNLO ~ al,



Typical diagrams

» Two-quark operators

b O: s

a8 I

» Four-quark operators

O12 036

= lead to cc resonances that spoil OPE
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» Matrix elements (O;)
» LO and NLO
Grinstein, Savage, Wise '89; Misiak '93; Buras, Miinz '95
» Power Corrections 1/m2, 1/m2,1/m3
Falk, Luke, Savage '94; Ali, Hiller, Handoko, Morozumi '97; Chen, Rupak, Savage '97; Buchalla,
Isidori, Rey '98; Buchalla, Isidori *98; Bauer, Burrell '00; Ligeti, Tackmann '07
» Electromagnetic corrections
Huber, Lunghi, Misiak, Wyler '06; Huber, Hurth, Lunghi '08
» NNLO of (0) and (O5)
» Low g?: Expansion in m¢/m, and G*/m asatrian, Asatryan, Greub,
Walker 01’02 '02
» High ¢°:
Numerically Ghinculov, Hurth, Isidori, Yao ‘04
Analytically in an expansion in mc/myp Greub, V.P., Schiipbach '08
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NNLO calculation in the high g2 region
» Diagrams occurring at NNLO

b O s b Q2 s

’ @ﬁ ’ @§

b O s b Q2 s
% : % :

b Q2 s

e
()

» Two ratios of scales: g?/m2 and m¢/my
High g region = We keep g = O(m2) and expand in
Mme/Mp

» Due to slow convergence we need powers up to
(m¢/mp)?° to obtain an error less than 1%



Evaluation of two-loops Feynman integrals

» Reduction of tensor integrals to scalar integrals via
Passarino-Veltman
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Evaluation of two-loops Feynman integrals

» Reduction of tensor integrals to scalar integrals via
Passarino-Veltman
[k KPR k]

d%%; d%%:
/ 1 2 H Di(k1 s k2: pextern)
Plst. - - - Pyt St + "2 005 - Pey S2 + ...

» Reduction of scalar integrals to a set of simpler master
integrals via integration by parts identities

0
_ d L
0—/d kp —akuf(k)

= ((20) master integrals containing three scales my, mc
and ¢?
» Evaluation of master integrals in expansion in m¢/mj,
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Power expansion of Feynman integrals

» Expansion of Feynman integrals in powers of z = mg/mg
by solving a set of differential equations in z

d
— Iy = hasl o
dz zﬁ: glg + 9
h.s @ rational functionsinz, g, : simpler master integrals
» Most general ansatz: Expansion of /, in powers of z and

Inz
Z l’k) iz Ink z
ij,keS

Set of indices S will be determined later
» Set of algebraic equations

where ha5:2hg,e’zf and ga:Zga’i ¢z nk z
if i,k
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» We gained: Reduction of higher powers in z to lower
powers
» But:

» We need leading power as initial condition
» We have to determine over which powers the sum

> /g:f)e’zf'lnkz
ij,keS
runsi.e.
» We do not know a priori which powers of z occur
» At every power in z only a finite number of powers in In z
must contribute
» Evaluation of the leading power using method of regions
» Testing the correctness of our ansatz: Formalism that
combines sector decomposition inoth, Heinrich 00) and
Mellin-Barnes techniques provides a formal proof of our
ansatz (vr s
» This formalism also allows for numerical evaluation of the
coefficients in the expansion = additional cross-check.
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A short description of this formalism
» Feynman parametrization:
! n—1 1
I(z) N/o d X(zf1 ) 1 H(x)" 972
» Mellin-Barnes representation:
1 1 1 [l
(X + %)~ T(x) 2mi J_jne

asT(—s)I(s+ x)X7 X557

ico 1
I(z) ~ ds z° / d"'x F(X,s)
—ioco 0
» Close integration contour to the right half
. plm(s) = Summing up residua on the positive
real axis leads to power expansion
in z
Re(s)

J = In(z) terms originate from terms like
z%/e
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» We have /(z) ~ ['F_dsz® [; d"'x F(X,s)
» Position of the poles in s give possible powers in z
» We need information about the analytic structure of

f01 d"'x F(X, s) without explicit evaluation of the integral
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> We have I(z) ~ ['%_dsz® [ d"'x F(X, s)
» Position of the poles in s give possible powers in z
» We need information about the analytic structure of
f01 d"'x F(X, s) without explicit evaluation of the integral
» Sector decomposition provides this property
» Make sure that divergences in s come from integration over
small x
» Integral can be decomposed into terms like

/ d"™'x (HXA Bre Cs) x (const. + O(x))

» Location of the poles can be read off

1+-N+A - B;
Sin = + +C-l i N € Ny
j

» Analytical structure in z of /(z) is known

= Ansatz o
I(z) = Z /,(/’k)e’z/ Ink z
ij,keS
where the set of indices S is known
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» Decomposition of the NNLO matrix elements

(%

(s £71O11b)z00ps = — (3

2
) [’:,'(7)<O7>tree + F,-(g)

<09>tree

078 01 = 2
10
o8 0 ™
0.8 0.1 °
os2 T 02 s
s s
-4 E € 2 E 50
08 03 ®
086 04 o %
os8 05 5 n
04 05 05 07 08 09 1 04 05 06 07 08 05 1 o4 05 o5 07 o5 09 1 o4 05 05 07 08 05 1
5 s B s
53 25 B
52 ) » 1
B
1
= 5 18 _ 0
T N Zu 2
s 1
) s -
& . E ) £ 10
05
47 12 20
46 ° 10
45 05 s B
04 05 06 07 08 09 1 04 05 06 07 08 09 1 o4 05 06 07 08 09 1 o4 05 06 07 08 03 1
3 B B s

Here z = 0.1, 8 = q°/m3, red curve: up to O(z%), blue curve: up to O(28), black curve:

» For § > 0.6 good numerical convergence

upto O(z'%)



Numerical convergence of the power expansion
» Decomposition of the NNLO matrix elements
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Here z = 0.1, 8 = g?/m?, red curve: up to O(z°), blue curve: up to O(2®8), black curve: up to O(2'%)
» For 5 > 0.6 good numerical convergence

» By comparison with numerical calculation of Ghinculov et
al. we find deviation less than 1%
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Numerical impact of (O12)2.100ps ON the BRs

» Simple ratio with small dependence on my, poe:

1 dr(B — Xst+0-)
[(B — X.e~7e) ds

R(3) =

» Significant effect of 2-loops contribution on R(S) of the order
10%

Red curve:

not including (O1 2)2-i00ps
Black curve:

including (O1,2)2-00ps

R(8)[1079]

0.6 0.65 0.7 0.75 0.8 0.85 0.9



Numerical impact of (O12)2.100ps ON the BRs

» Simple ratio with small dependence on my, poe:

1 dr(B — Xsl+e)

R(8) = — -
(5) (B — X.e ) ds

» Reduction of scale-dependence of Rhigh = f016 dSR(5) to 2%
(2GeV < < 10GeV)

0.55

05
Red curve:

not including (O1,2)2-100ps
Black curve:

including (O1,2)2-100ps

0.45 -

Rnign[1079]

04

0.35

1 2 3 4 5 6 7 8 9 10
n[GeV]



Final Analysis

» Comprehensive analysis from Huber, Hurth and Lunghi ’08

2.40 x 1077(11022)

_ 3 C=p
Br(B — Xs(™¢ )q2>14.4Gev2 = { 2.09 x 1077(17932) - ¢

0.30

(Note: ¢ = p, e differ by In(my/mp))



Final Analysis

» Comprehensive analysis from Huber, Hurth and Lunghi ’08

E _ 2.40 x 1077(11929) ¢
BF(B - XS£+€ )q2>14.4GeV2 = { 2.09 x 1077(1+§E§§) /

(Note: ¢ = p, e differ by In(my/mp))
» Appropriate ratio

/ dr(B — Xst*07) / dr(B — Xylv)
@ olol aq?
2.29 x 10~ (1j:0.13) C=p
1.94x1073(1+£0.16) (=¢e

with g8 = 14.4GeV?



Summary

» We did the NNLL calculation of the matrix elements of O »
in the high g2 region

» Combining method of regions with differential equation
techniques we obtained an expansion in m;/m, of the
Feynman integrals

» This analytical result confirmed a former numerical
calculation and is now completely published
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