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Constructing a NLO Generator
 There are many LO generators (e.g. Alpgen, Madgraf, 

Amegic, Comix, …).

 These generators are important tools for phenomenology 
and experimenters.

 They give a qualitative understanding of prediction 
uncertainties.

 Adding NLO corrections will give us a more quantitative 
understanding of the uncertainties in the predictions due to 
the      expansionS

Not ROCKET



  

Traditional method for numerical evaluation of virtual correction (within our framework):
 Separate color factor from amplitude to obtain ordered amplitudes

Berends, Giele (1987)
Del Duca, Dixon, Maltoni (2000)

Maltoni, Paul, Stelzer, Willenbrock (2003)



  

 Use generalized unitarity combined with OPP parametric integration to build a purely 
numerical implementation of generalized unitarity 

 We use D=5 unitarity cuts to calculate the D-dimensional coefficients of the master 
integrals

Bern, Dixon, Dunbar, Kosower (1995) 
Britto, Cachazo, Feng (2002)

Ossola, Papadopoulos, Pittau (2007)

Ellis, Giele, Kunszt (2007)

Giele, Kunszt, Melnikov (2008)
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 Most salient feature is factorization of the 
Feynman graphs in on-shell tree-level blobs!

 This beats the factorial scaling of the amplitude
 There are       cuts per ordered amplitude
 The ordered tree-level blobs are calculated using 

Berends-Giele recursion relations, scaling as
 The resulting scaling of the calculation of the 

ordered one-loop amplitude is 
 Crucial in the polynomial scaling of the algorithm 

is the recursion relation, why is this not a factorial 
algorithm?

nVmax
nD

nDV max=n9



  

 Again, this is based on factorization of Feynman diagrams into common factors:

9 vertex operations

6 vertex operations
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 Formalize into recursion relations which maximizes the factorization.
 Reduces algorithmic scaling from double factorial to polynomial for ordered 

amplitudes.

Berends, Giele (1988)



  

To calculate the virtual corrections to n-gluon scattering in the leading color 
approximation we are done now:

 The factorial permutation sum over orderings is irrelevant in the leading color 
approximation .       Polynomial scaling

 Without any color approximations the permutation sum over orderings needs to be 
performed               Factorial scaling is back



  

Including quarks, the non-leading color contributions add more complexity

T yT a1T a2T xijxy T yT x ij F
a1 F a2xy T yT a1T x ij F

a2xy

 Ordered amplitudes break up in primitive amplitudes each with its own color factor
 This is understood through the internal flavor structure of the loop
 From an algorithmic point of view this adds complications (have to keep track of these 

many different types primitive amplitudes)
 (At leading color again no issue as only primitive amplitude contributes.)

Bern, Dixon, Dunbar, Kosower (1994) 

Del Duca, Dixon, Maltoni (2000)



  

Adding more quarks results in more “chaos”: Eg W+qqb+QQb+g 

Ellis, Giele, Kunszt, Melnikov, Zanderighi (2008)



  

 For calculating virtual corrections to specific processes the use of primitive amplitudes 
is convenient.

 The primitive amplitude decomposition is not well suited for algorithmic evaluation 
generic multi-parton processes.

 (In the large color limit the primitive amplitude description is greatly simplified and 
suitable of algorithmic implementation.) 

 Following the development path of the LO generators we introduce
(1) MC sampling over external quantum numbers (color, helicity,...)
(2) Dressed recursive algorithms for tree-level blobs



  

 The HELAC group uses MC sampling over color/helicity within the primitive 
amplitude decomposition framework (following their LO sampling using ordered 
amplitudes)

 We will call this technique in what follows “ordered sampling”
 Ordered sampling is efficient because lots of color factors are zero
 We are interested in virtual corrections, so the simpler LO color factors are the 

relevant quantities to examine

 Because colors are explicit we can calculate 
the color weight for each ordering 

 ~95% of the weight are zero
 We only have to calculate the non-zero color 

weight ordering at tree-level and one-loop to get 
the virtual corrections 

 However, we still have factorial scaling of the 
algorithm. Not desirable...

Van Hameren, Papadopoulos, Pittau (2009)



  

 To beat the factorial we follow the method of COMIX by employing dressed recursion 
relations


P12

1,. .. , n P12 3
1,. .. , n

11

3

2

2

1

Duhr, Hoche, Maltoni (2006)

Gleisberg, Hoche (2008)



  

 Fully specified external state; Particle content irrelevant: gluon current, quark current, 
W current,...

 Calculates full amplitude
 Add in all vertices and set a vertex like (q,g,g) to zero.
 Algorithmic implementation is “blind” to the particle content.
 Scales as             instead of the ordered amplitude scaling  
 Algorithm scales exponential (it beats the factorial).

V max
n nVmax

These formula specify the algorithm, which can be implemented easily in any object 
oriented language

 Gives an automated tree-level generator (COMIX) for any Feynman graph based 
theory.

 Simply add all vertices and choose the external sources to produce the matrix element 
squared.  



  

 We implemented the dressed recursion relation (with the appropriate extensions 
needed for use in the D-dimensional generalized unitarity framework)

 Some results:



  



  

We can summarize the previous graph in a more informative graph or even better in 
quantitative numbers:
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 D-dimensional Generalized Unitarity + OPP gives a fully 
numerical implementation of one-loop calculations

 The physics input is tree-level blobs.
 The one-loop amplitude inherits the color dressing from 

tree-level recursion.
 Requires color summation over internal lines (color 

ordered sampling does not).
 How fast is it compared the color ordered evaluation with 

its more analytic treatment of color?
 Below is the full algorithmic definition which again has 

exponential scaling
 The numerical implementation is more challenging, but 

my younger collaborator programmed it without much 
problems 



  

Evaluation time for single phase space point evaluation of the n-
gluon virtual correction:



  

n=a∗b
n

Note that the 
algorithmic behavior is 
independent from 
particle content
(e.g. 7-gluon, 7-
photon, EW virtual 
corrections to ggg+t-
tbar+b-bbar will all give 
same order of 
evaluation time)



  

 Apart from timing, accuracy is an important aspect of a numerical 
implementation
 We are currently focusing on sources of numerical instabilities in the hope to 

cure (some) of them without resorting the quadrupole (or beyond) precision.
 Just calculating the 6-gluon virtual corrections at double precision gives

Clearly there are numerical 
instabilities which need to be 
dealt with.



  

The main two sources of instabilities are
(1) Given some external momenta, we have to construction additional orthogonal base 

vectors such that they span the whole 5-dimensional space. 
This becomes unstable if the external momenta  are nearly linear dependent.
This is the remnant of the so-called “gram-determinant” problem.
However, constructing orthogonal basis is a well classified numerical issue and 
should be solvable without switching to higher precision.

(2) The accumulation of errors into the 4-dimensional part of bubble coefficients (these 
coefficients depend on subtractions from all higher point cuts)
This might be unavoidable within the OPP parametric method, forcing the algorithm 
to use higher precision (still under investigation) 

For now we simply veto events which suffer from these two instabilities.



  

Numerical uncertainties for 
virtual corrections using 
dressed and ordered color 
sampling



  

It is useful to know the 
magnitude of the 
virtual correction given 
a certain relative 
uncertainty 



  



  

The accuracy 
difference of ordered 
vs dressed increases 
with number of gluons.



  

The final issue is convergence of phase space integration:



  



  

Conclusions:

We are making good progress on the way to construct a generic NLO 
generator
 The virtual corrections for arbitrary processes are possible (thanks to 
particle “blind” dressed recursion relations) with exponential scaling 
(~    )
 So far we validated the algorithm by calculating the virtual corrections to 
multi-gluon scattering
Validation of the code remains a big issue as many processes become 
available at once
There remain speed, accuracy and convergence issues which need to 
be resolved.
We have started on adding in real corrections

How “automated” are automated subtraction programs?
Maybe simpler phase space methods are better (which use brute force 
phase space point generation)

This is a large project but we feel confident this can all come together in 
the coming year(s)

First target: NLO QCD corrections to multi-jet processes (+external 
EW particles).

7n
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