Associated production of a W or Z boson with bottom quarks at the Tevatron and the LHC

Doreen Wackeroth
 University at Buffalo, SUNY and

Karlsruhe Institute of Technology (KIT)

西

University at Buffalo

The State University of New York

Karlsruhe Institute of Technology
in collaboration with
Fernando Febres Cordero and Laura Reina
J. Campbell, R.K. Ellis, F. Maltoni, and S. Willenbrock

RADCOR 2009, Ascona, Switzerland, October 25 - 30, 2009

Introduction

$W b \bar{b}$ and $Z b \bar{b}$ production at NLO QCD

Improving predictions for $W b$ production

Conclusion and Outlook

$Z, W+b$-jets at hadron colliders

$p \bar{p}, p p \rightarrow Z b \bar{b}, Z b$ and $p \bar{p}, p p \rightarrow W b \bar{b}, W b$

- are important background processes to
- Standard Model (SM) Higgs boson searches for a light Higgs boson ($M_{H}<135 \mathrm{GeV}$):

$$
p \bar{p}, p p \rightarrow W H \text { and } p \bar{p}, p p \rightarrow Z H \text { with } H \rightarrow b \bar{b},
$$

- single-top production, $t \bar{b}, \bar{t} b$ with $t \rightarrow W^{+} b, \bar{t} \rightarrow W^{-} \bar{b}$,
- searches for signals of physics beyond the SM,
- are interesting in their own right as testing grounds for perturbative QCD, and
- $W+1 b$-jet and $Z+1 b$-jet are sensitive to the b-quark content of the proton.

SM Higgs search at the Tevatron

Light Higgs searches at the Tevatron mainly via $p \bar{p} \rightarrow W^{ \pm} H \rightarrow b \bar{b} /^{ \pm} \nu_{l}$ and $p \bar{p} \rightarrow Z H \rightarrow b \bar{b} I^{+} I^{-}$.
$M_{b \bar{b}}$ distributions for signal ($M_{H}=115 \mathrm{GeV}$) and backgrounds:
2 bs tagged

DO Collaboration, DOnote 5972-CONF (8/2009)

Single top production at the Tevatron

$$
\sigma_{s+t}=2.3_{-0.5}^{+0.6} \mathrm{pb}\left(m_{t}=175 \mathrm{GeV}\right) \quad \sigma_{s+t}=3.94 \pm 0.88 \mathrm{pb}\left(m_{t}=170 \mathrm{GeV}\right)
$$

CDF Collaboration，arXiv：0903．0885［hep－ex］D0 Collaboration，arXiv：0903．0850［hep－ex］
Background and signal prediction vs．CDF and D0 data：
E．Palencia（for the CDF and D0 Collaborations at Moriond09），arXiv：0905：4275［hep－ex］

Event Yields in 2．3 fb －1 Electron＋muon， $\mathbf{1}$ tag +2 tags combined			
Source	$\mathbf{2}$ jets	$\mathbf{3}$ jets	$\mathbf{4}$ jets
s－channel $t b$	62 ± 9	24 ± 4	7 ± 2
t－channel tqb	77 ± 10	39 ± 6	14 ± 3
$W+b \bar{b}$	678 ± 104	254 ± 39	73 ± 11
$W+c \bar{c}$	303 ± 48	130 ± 21	42 ± 7
$W+c j$	435 ± 27	113 ± 7	24 ± 2
$W++j j$	413 ± 26	140 ± 9	41 ± 3
$Z+$ jets	141 ± 33	54 ± 14	17 ± 5
Dibosons	89 ± 11	32 ± 5	9 ± 2
$\ddot{t} \rightarrow \ell \ell$	149 ± 23	105 ± 16	32 ± 6
$t \bar{t} \rightarrow \ell+$ jets	72 ± 13	331 ± 51	452 ± 66
Multijets	196 ± 50	73 ± 17	30 ± 6
Total prediction	$2,615 \pm 192$	$1,294 \pm 107$	742 ± 80
Data	2,579	1,216	724

$Z+b$-jet production at the Tevatron

	CDF Data	PYTHIA	ALPGEN	NLO
$\sigma(Z+b$ jet $)$	$0.86 \pm 0.14 \pm 0.12 \mathrm{pb}$	-	-	0.51 pb
$\sigma(Z+b$ jet $) / \sigma(Z)$	$0.336 \pm 0.053 \pm 0.041 \%$	0.35%	0.21%	0.21%
$\sigma(Z+b$ jet $) / \sigma(Z+$ jet $)$	$2.11 \pm 0.33 \pm 0.34 \%$	2.18%	1.45%	1.88%

CDF Collaboration, arXiv:0812.4458

CDF Collaboration, arXiv:0812.4458

$W+$ bjets at the Tevatron

$$
\begin{aligned}
& \sigma_{b \text { jets }} \times \mathcal{B}(W\rightarrow \ell \nu)=2.74 \pm 0.27(\text { stat. }) \pm 0.42 \text { (syst.) } p b \\
& \Rightarrow 18 \% \text { precision with } 1.9 \mathrm{fb}^{-1}
\end{aligned}
$$

CDF Collaboration, arXiv:0909.1407
Monte Carlo predictions:

- PYTHIA: 1.10 pb
- ALPGEN: 0.78 pb
- NLO QCD: coming up

Study of kinematic jet distributions is under way.

$W+$ bjets and $Z+$ bjets production at the LHC

- Renewed interest in $\mathrm{VH}, \mathrm{H} \rightarrow b b$ for light Higgs searches:
- Requiring $p_{T}>200 \mathrm{GeV}$ for both $V=W, Z$ and H reduces background and enhances kinematic significance.
- $W+j e t$ background is dominated by $W b \bar{b}$.
- Study of theoretical uncertainty in this new kinematic region is needed.
ATLAS Collaboration, ATL-PHYS-PUB-2009-088
- $\delta \sigma\left(Z b \bar{b}, Z \rightarrow I^{+} I^{-}\right) / \sigma=30 \%$ with $\mathcal{L}=100 \mathrm{pb}^{-1}$.

CMS Collaboration, CMS PAS EWK-08-001

Status of SM predictions

	NLO QCD	NLO EW
$W H, Z H$	HW 1991/MY 1997/BDH 2003 (NNLO)	CDK 2003
single top	SSW 1997+1998/HLPSW 2002/CSBBY 2005	BMRV 2006
	CSY 2004/CY 2004/S 2004+2005	
$W b \bar{b}$	EV 1998/FRW 2006+2009	
$Z b \bar{b}$	CE 2000/FRW 2008+2009	
$Z Q$	CEMW 2003	
$W c / W b$	GKL 1995/CEMW+FRW 2008	
$Z Q j$	CEMW 2005	
$W Q j$	CEMW 2006	

Han, Willenbrock (HW); Mrenna, Yuan (MY); Brein, Djouadi, Harlander (BDH); Ciccolini, Dittmaier, Krämer (CDK); Stelzer, Sullivan, Willenbrock (SSW); Harris, Laenen, Phaf, Sullivan, Weinzierl (HLPSW); Cao, Schwienhorst, Benitez, Brock, Yuan (CSBBY); Cao, Schwienhorst, Yuan (CSY); Cao, Yuan (CY); Sullivan (S); Beccaria, Macorini, Renard, Verzegnassi (BMRV); Ellis, Veseli (EV); Campbell, Ellis (CE); Campbell, Ellis, Maltoni, Willenbrock (CEMW); Giele, Keller, Laenen (GKL); Febres Cordero, Reina, W. (FRW)
CE/CEMW/EV implemented in MCFM (J.Campbell, K.Ellis, mcfm.fnal.gov) CE/CEMW/EV assume massless bottom-quarks
FRW take into account full bottom-quark mass effects

$W b \bar{b}$ and $Z b \bar{b}$ production at NLO QCD

NLO QCD predictions are needed

- for theoretical stable predictions by decreasing the scale dependence,
- $\mathcal{O}\left(\alpha_{s}\right)$ corrections can strongly increase/decrease the total production rate, and
- $\mathcal{O}\left(\alpha_{s}\right)$ corrections can significantly affect the shape of kinematic distributions.

$\mathcal{O}\left(\alpha_{s}\right)$ corrections to $p \bar{p}, p p \rightarrow W / Z b \bar{b}$: technical details

Feynman-diagrams at LO QCD:

Examples of real and virtual $\mathcal{O}\left(\alpha_{s}\right)$ corrections to $p \bar{p}, p p \rightarrow b \bar{b} Z$:

NLO QCD total inclusive cross section to $p \bar{p}, p p \rightarrow V b \bar{b}(V=W, Z)$:
$\sigma_{N L O}=\sum_{i j=q \bar{q}, g g, q g} \frac{1}{1+\delta_{i j}} \int d x_{1} d x_{2}\left[\mathcal{F}_{i}^{p}\left(x_{1}, \mu\right) \mathcal{F}_{j}^{\bar{p}}\left(x_{2}, \mu\right) \hat{\sigma}_{\text {NLO }}^{i j}\left(x_{1}, x_{2}, \mu\right)+(1 \leftrightarrow 2)\right]$
with the parton level cross sections

$$
\hat{\sigma}_{\mathrm{NLO}}^{i j}=\hat{\sigma}_{\mathrm{LO}}^{i j}+\frac{\alpha_{s}}{\pi} \delta \hat{\sigma}_{\mathrm{NLO}}^{i j} \text { with } \delta \hat{\sigma}_{\mathrm{NLO}}^{i j}=\hat{\sigma}_{\mathrm{virt}}^{i j}+\hat{\sigma}_{\text {real }}^{i j}
$$

$\hat{\sigma}_{\text {virt }}^{i j}$:

- UV divergences: renormalized in $d=4-2 \epsilon$ dimensions by a suitable set of counterterms and finite parts are fixed in the $\overline{M S}$ scheme.
- IR divergences: regularized in $d=4-2 \epsilon$ dimensions \Rightarrow soft and collinear singularities appear as poles in $\frac{1}{\epsilon^{2}}, \frac{1}{\epsilon}$. IR singularities are completely canceled by corresponding IR poles in
$\hat{\sigma}_{\text {real }}^{i j}$:
- IR divergences: extracted by suitable cuts on the gluon phase space using phase space slicing and the remaining initial-state IR singularities are absorbed in PDFs (mass factorization).

Phase Space Slicing with two cut-off parameters: δ_{S}, δ_{C}

Phase Space Slicing: isolate the region of the $V b \bar{b}+g$ phase space where

$$
s_{i g}=2 p_{i} \cdot p_{g}=2 E_{i} E_{g}\left(1-\beta_{i} \cos \theta_{i g}\right) \rightarrow 0
$$

by introducing suitable cut-off parameters: Bergman, Baer, Ohnemus, Owens, Reno, ..., for a review see, e.g., B.Harris, J.Owens, PRD 65 (2002)

$$
\hat{\sigma}_{\text {real }}^{i j}=\int d\left(P S_{4}\right)\left|\mathcal{A}_{\text {real }}(i j \rightarrow V b \bar{b}+g)\right|^{2}=\hat{\sigma}_{\text {soft }}\left(E_{g}<\frac{\sqrt{s}}{2} \delta_{s}\right)+\hat{\sigma}_{\text {hard }}\left(E_{g}>\frac{\sqrt{s}}{2} \delta_{s}\right)
$$

In the soft limit $\left(E_{g} \rightarrow 0\right)$:

$$
\begin{gathered}
d\left(P S_{4}\right) \xrightarrow{\text { soft }} d\left(P S_{3}\right) d\left(P S_{g}\right)=d\left(P S_{3}\right) \frac{d^{d-1} k}{(2 \pi)^{d-1} 2 E_{g}} \\
\left|\mathcal{A}_{\text {real }}\right|^{2} \xrightarrow{\text { soft }}\left(4 \pi \alpha_{s}\right)\left|\mathcal{A}_{L o}\right|^{2} \Phi_{\text {eik }} \text { with } \Phi_{\text {eik }} \propto \sum_{i j}\left(\frac{s_{i j}}{s_{i g} s_{j g}}-\frac{m_{i}^{2}}{s_{i g}^{2}}-\frac{m_{j}^{2}}{s_{j g}^{2}}\right) \\
\hat{\sigma}_{\text {soft }}=\int d\left(P S_{3}\right)\left|A_{L O}\right|^{2} \int d\left(P S_{g}\right) \Phi_{\text {eik }}
\end{gathered}
$$

Analytical integration in $d=4-2 \epsilon: \hat{\sigma}_{\text {soft }} \propto \frac{1}{\epsilon}, \frac{1}{\epsilon^{2}}$

$$
\hat{\sigma}_{\text {hard }}=\hat{\sigma}_{\text {coll }}\left(\left(1-\cos \theta_{\text {ig }}\right)<\delta_{c}\right)+\hat{\sigma}_{\text {non-coll }}\left(\left(1-\cos \theta_{\text {ig }}\right)>\delta_{c}\right)
$$

In the collinear limit $\left(i \rightarrow i^{\prime} g, p_{i}^{\prime}=z p_{i}, p_{g}=(1-z) p_{i}\right)$

$$
\begin{gathered}
d\left(P S_{4}\right)(i j \rightarrow V b \bar{b}+g) \xrightarrow{\text { collinear }} d\left(P S_{3}\right)\left(i^{\prime} j \rightarrow V b \bar{b}\right) z d\left(P S_{g}\right) \\
\left|\mathcal{A}_{\text {real }}(i j \rightarrow V b \bar{b}+g)\right|^{2} \xrightarrow{\text { collinear }}\left|A_{\llcorner o}\right|^{2}\left(4 \pi \alpha_{s}\right) \frac{2 P_{i i^{\prime}}(z)}{z s_{i g}}
\end{gathered}
$$

with $P_{i i^{\prime}}$ denoting the Altarelli-Parisi splitting functions.

$$
\hat{\sigma}_{c o l l} \propto \int d\left(P S_{3}\right)\left|A_{L O}\right|^{2} \int d\left(P S_{g}\right) \sum_{i} \frac{P_{i i^{\prime}}}{s_{i g}}
$$

Analytical integration in $d=4-2 \epsilon: \hat{\sigma}_{\text {coll }} \propto \frac{1}{\epsilon}$. The remaining real hard part

$$
\hat{\sigma}_{\text {non-coll }}=\int d\left(P S_{4}\right)_{\text {non-coll }}\left|\mathcal{A}_{\text {real }}(i j \rightarrow V b \bar{b}+g)\right|^{2}
$$

is computed numerically.

Cancellation of cut－off dependences in $\sigma_{\mathrm{NLO}}(W b \bar{b})$

from F．Febres Cordero，L．Reina，DW，PRD74（2006）
see also F．Febres Cordero，arXiv：0809．3829

Cancellation of cut-off dependences in $\sigma_{\mathrm{NLO}}(Z b \bar{b})$

from F.Febres Cordero, L.Reina, DW, PRD78 (2008)
see also F.Febres Cordero, arXiv:0809.3829

Numerical instabilities due to spurious divergences

- Veltman-Passarino reduction of high-ranked tensor integrals to scalar integrals involves inverse powers of so-called Gram Determinantes (GD), which may vanish in certain phase space regions, e.g.,

$$
\frac{\left[s-\left(2 m_{b}+M_{V}\right)^{2}\right]}{64}\left[M_{V}^{4}+\left(s-s_{b \bar{b}}\right)^{2}-2 M_{V}^{2}\left(s+s_{b \bar{b}}\right)\right] s s_{b \bar{b}} \sin ^{2} \theta_{b \bar{b}} \sin ^{2} \phi_{b \bar{b}}
$$

- Our solution:

Reduction of powers of GD by combining gauge invariant subsets of diagrams and cancel propagators against numerators wherever possible before the reduction \Rightarrow so far worked well for NLO QCD calculations of $2 \rightarrow 3$ processes such as $t \bar{t} H, b \bar{b} H$ and $V b \bar{b}$.

- Check with unitarity based method: F.Febres Cordero, arXiv:0809.3829 One can extract the coefficients of the scalar integrals for a given scalar box integral by cutting the four corresponding propagators:

$$
i /\left(\ell^{2}-m^{2}+i \epsilon\right) \rightarrow 2 \pi \delta^{(+)}\left(\ell^{2}-m^{2}\right)
$$

Numerical results

- Jet identification as implemented in MCFM: k_{t} jet algorithm with cone size $R=0.7$
- We require all events to have a $b \bar{b}$ jet pair in the final state with

$$
p_{T}^{b, \bar{b}}>15,25 \mathrm{GeV} \text { and }\left|\eta^{b, \bar{b}}\right|<2(2.5)
$$

- The hard non-collinear extra parton is treated either inclusively, i.e. two- and three-jet events are included, or exclusively, i.e. exactly two b-quark jets are required in the event
- LO/NLO CTEQ6 set of PDFs with LO/NLO running of α_{s} for LO/NLO predictions

Scale dependence of $\sigma(W / Z b \bar{b})$ at the Tevatron

$p \bar{p} \rightarrow b \bar{b} W$ at the Tevatron

$p \bar{p} \rightarrow b \bar{b} Z$ at the Tevatron

$\delta \sigma_{N L O} / \sigma_{N L O} \approx 20 \%$ (inclusive), 10% (exclusive)
$K=\sigma_{N L O} / \sigma_{L O}(Z b \bar{b})=1.54$ (inclusive), 1.27 (exclusive)
$K=\sigma_{N L O} / \sigma_{L O}(W b \bar{b})=1.45$ (inclusive), 1.20 (exclusive)
from F.Febres Cordero, L.Reina, DW, PRD74 (2006); PRD78 (2008)

Scale dependence of $\sigma\left(W^{ \pm} b \bar{b}\right)$ at the LHC

Scale dependence of $\sigma(Z b \bar{b})$ at the LHC

$\delta \sigma_{N L O} / \sigma_{N L O} \approx 26 \%($ inclusive $), 3 \%($ exclusive $)$
$K=\sigma_{N L O} / \sigma_{L O}(Z b \bar{b})=1.4($ inclusive $), 0.9($ exclusive $)$
from F.Febres Cordero, L.Reina, DW, arXiv:0906.1923 [hep-ph]

b-quark mass effects in $d \sigma_{\mathrm{NLO}}(W b \bar{b}) / d M_{b \bar{b}}$ (Tevatron)

from F.Febres Cordero, L.Reina, DW, PRD74 (2006)

b-quark mass effects in $d \sigma_{N L O}(Z b \bar{b}) / d M_{b \bar{b}}$ (Tevatron)

from F.Febres Cordero, L.Reina, DW, PRD78 (2008)

Rescaling of NLO $\left(m_{b}=0\right)$ with LO ratios

$$
\Delta \frac{d \sigma}{d m_{b \bar{b}}}=\frac{d \sigma^{N L O}}{d m_{b \bar{b}}}\left(m_{b} \neq 0\right)-\frac{d \sigma^{N L O}}{d m_{b \bar{b}}}\left(m_{b}=0\right) \frac{d \sigma^{L O}\left(m_{b} \neq 0\right)}{d \sigma^{L O}\left(m_{b}=0\right)} .
$$

from F.Febres Cordero, L.Reina, DW, PRD74 (2006); PRD78 (2008)

$Z b \bar{b}$ Studies for CMS

Inclusive production of $Z+2 b$ jets using the following setup F.Febres Cordero, L.Reina (2009):

- $p_{T}^{b}>5 \mathrm{GeV}$ and $\left|\eta_{b}\right|<6$;
- k_{T} jet algorithm with $R=0.4$;
- dynamical and fixed scales $\mu_{0}^{2}=M_{Z}^{2}+\left(p_{T}^{b, 1}\right)^{2}+\left(p_{T}^{b, 2}\right)^{2}$

Improving predictions for Wb production

Assuming that there is only one high- $p_{t} b$-quark in the event increases the production rate and introduces a sensitivity to b quark PDFs:

where $g q \rightarrow W b \bar{b} q^{\prime}$ (one low $p_{T} b$) is equivalent to

convoluted with a b-quark PDF

Improving predictions for $W b$ production

Large logarithms proportional to $\log \left(Q^{2} / m_{b}^{2}\right)$ may arise due to initial and final-state collinear $g \rightarrow b \bar{b}$ splitting.

- Initial-state collinear logarithms $\left[\alpha_{s} \log \left(M_{W}^{2} / m_{b}^{2}\right)\right]^{n}$ can be resummed by using a b-quark PDF at $\mu_{F}=Q=M_{W}$ which is determined perturbatively from DGLAP evolution equations. Approximate solution of DGLAP equation with initial condition $b\left(x, \mu^{2}\right)=0$ at $\mu=m_{b}$:

$$
\tilde{b}\left(x, \mu^{2}\right)=\frac{\alpha_{s}\left(\mu^{2}\right)}{2 \pi} \log \left(\frac{\mu^{2}}{m_{b}^{2}}\right) \int_{x}^{1} \frac{d z}{z} P_{q g}(z) g\left(\frac{x}{z}, \mu^{2}\right)
$$

Aivazis et al, hep-ph/9312319; Collins, hep-ph/9806259; Olness, Scalise, PRD57 (1998); see also Stelzer et al, hep-ph/9705398

- Improved prediction for $q g$-initiated process by including a subset of higher-order corrections.
- $q \bar{q}^{\prime} \rightarrow W b \bar{b}$ is included with full mass dependence at NLO.

Improving predictions for $W b$ production

There are a variety of processes that must be included at NLO QCD:

1. $q \bar{q}^{\prime} \rightarrow W b \bar{b}$ at tree level and one loop $\left(m_{b} \neq 0\right)$
2. $q \bar{q}^{\prime} \rightarrow W b \bar{b} g$ at tree level $\left(m_{b} \neq 0\right)$
3. $b q \rightarrow W b q^{\prime}$ at tree level and one loop $\left(m_{b}=0\right)$
4. $b q \rightarrow W b q^{\prime} g$ at tree level $\left(m_{b}=0\right)$
5. $b g \rightarrow W b q^{\prime} \bar{q}$ at tree level $\left(m_{b}=0\right)$
6. $g q \rightarrow W b \bar{b} q^{\prime}$ at tree level $\left(m_{b} \neq 0\right)\left[-\tilde{b} q \rightarrow W b q^{\prime}\right]$

Separation and jet identification cuts:
Tevatron: $p_{T_{j}}>15 \mathrm{GeV} \quad\left|\eta_{j}\right|<2$
LHC: $\quad p_{T j}>25 \mathrm{GeV} \quad\left|\eta_{j}\right|<2.5$
$\left|\Delta R_{b \bar{b}}\right|>0.7 \quad\left|\Delta R_{b j}\right|>0.7$
If $\left|\Delta R_{b \bar{b}}\right|<0.7$, the two b-quarks are considered to be one b-jet.
J.Campbell et al., PRD79 (2009), arXiv:0809.3003

Results for $W b$ production: $\sigma_{L O, N L O}$

	Exclusive cross sections (pb)		
Collider	$W b$		
	$\left[\mathrm{LO}\left(q \bar{q}^{\prime}\right)+\mathrm{LO}(b q)\right] \mathrm{NLO}\left(q \bar{q}^{\prime}\right)+\mathrm{NLO}(b q / b g / q g)(q g)$	$\frac{\sigma_{N L}}{\sigma_{L O}}$	
$\mathrm{TeV} W^{ \pm}$	$[5.28+0.75=6.03] 8.02+0.62=8.64(-0.05)$	1.43	
$\mathrm{LHC} W^{+}$	$[30.2+54.3=84.5] 40.0+48.4=88.4(22.6)$	1.05	
LHC W^{-}	$[21.6+31.4=53.0] 29.8+29.4=59.2(12.6)$	1.12	
	Inclusive cross sections (pb)		
Collider	$W b+X$		
	$\left[\mathrm{LO}\left(q \bar{q}^{\prime}\right)+\mathrm{LO}(b q)\right] \mathrm{NLO}\left(q \bar{q}^{\prime}\right)+\mathrm{NLO}(b q / b g / \mathrm{gq})(q g)$	$\frac{\sigma_{N L O}}{\sigma_{L O}}$	
TeV $W^{ \pm}$	$[7.56+1.81=9.37] 11.77+2.40=14.17(0.77)$	1.51	
LHC W^{+}	$[39.3+106.0=145.3] 53.6+136.1=189.7(68.9)$	1.31	
LHC W^{-}	$[27.9+67.0=94.9] 39.3+88.2=127.5(44.6)$	1.34	

from J.Campbell et al., PRD79 (2009), arXiv:0809.3003
Inclusive: $W+1$ jet with one b jet and may be other jets (up to two at NLO)
Exclusive: $W+1 j e t$ with exactly one b jet (could also be $(b \bar{b})$)

Results for $W(b \bar{b})$ production: $\sigma_{L O, N L O}$

	Exclusive cross sections (pb)	
Collider	$W(b \bar{b})$	
	$\left[\mathrm{LO}\left(q \bar{q}^{\prime}\right)\right] \mathrm{NLO}\left(q \bar{q}^{\prime}\right)+\mathrm{NLO}(g q)$	$\frac{\sigma_{N L O}}{\sigma_{0}}$
$\mathrm{TeV} W^{ \pm}$	$[2.66] 3.73-0.02=3.71$	1.39
$\mathrm{LHC} W^{+}$	$[17.6] 22.7+11.7=34.4$	1.95
LHC W^{-}	$[12.9] 17.2+6.5=23.7$	1.84
	Inclusive cross sections (pb)	
Collider	$W(b \bar{b})+X$	
	$\left[\mathrm{LO}\left(q \bar{q}^{\prime}\right)\right] \mathrm{NLO}\left(q \bar{q}^{\prime}\right)+\mathrm{NLO}(g q)$	$\frac{\sigma_{N L O}}{\sigma_{L 0}}$
TeV $W^{ \pm}$	$[2.66] 4.17+0.39=4.56$	1.71
LHC W^{+}	$[17.6] 25.1+35.9=61.0$	3.47
LHC W^{-}	$[12.9] 18.9+23.6=42.5$	3.29

from J.Campbell et al., PRD79 (2009), arXiv:0809.3003

Scale dependence of $\sigma_{L O, N L O}$ in $W b$ production

	Exclusive cross sections (pb)
Collider	Wb
	$\left[\mathrm{LO}\left(\mu_{r}+\mu_{f}\right)\right] \mathrm{NLO}\left(\mu_{r}+\mu_{f}\right)$
TeV $W^{ \pm}$	$\left[6.03 \times\left(1_{-0.19}^{+0.27+0.03)}\right.\right.$) ${ }^{\text {a }}$ ($8.64 \times\left(1_{-0.12}^{+0.13+0.003}\right)$
LHC W^{+}	
LHC W^{-}	$\left[53.0 \times\left(1_{-0.19-0.14}^{+0.27+0.12}\right)\right] 59.2 \times\left(1_{-0.11-0.10}^{+0.12+0.08}\right)$
	Inclusive cross sections (pb)
Collider	Wb $+x$
	$\left[\mathrm{LO}\left(\mu_{r}+\mu_{f}\right)\right] \mathrm{NLO}\left(\mu_{r}+\mu_{f}\right)$
$\mathrm{TeV} W^{ \pm}$	$\left[9.37 \times\left(1_{-0.19}^{+0.27+0.03}\right)\right] 14.17 \times\left(1_{-0.13}^{+0.15+0.0002}\right)$
LHC W^{+}	
LHC W^{-}	$\left[94.9 \times\left(1_{-0.19}^{+0.27+0.15}\right)\right] 127.5 \times\left(1_{-0.13-0.10}^{+0.15}\right)$

from J.Campbell et al., PRD79 (2009), arXiv:0809.3003

Scale dependence of $\sigma_{L O, N L O}$ in $W(b \bar{b})$ production

	Exclusive cross sections (pb)
Collider	$W(b \bar{b})$
	$\left[\mathrm{LO}\left(\mu_{r}+\mu_{f}\right)\right] \mathrm{NLO}\left(\mu_{r}+\mu_{f}\right)$
TeV $W^{ \pm}$	$\left[2.66 \times\left(1_{-0.19}^{+0.0 .04}\right)\right] 3.71 \times\left(1_{-0.12-0.01}^{0.12+0.01}\right)$
LHC W^{+}	$\left[17.6 \times\left(1_{-0.19-0.10}^{+0.19}+0.04\right)\right] 34.4 \times\left(1_{-0.16}^{+0.02+0.04}+0.01\right)$
LHC W^{-}	$\left[12.9 \times\left(1_{-0.19-0.11}^{+0.27+0.09}\right)\right] 23.7 \times\left(1_{-0.15-0.04}^{+0.21+0.03}\right)$
	Inclusive cross sections (pb)
Collider	$W(b b)+X$
	$\left[\mathrm{LO}\left(\mu_{r}+\mu_{f}\right)\right] \mathrm{NLO}\left(\mu_{r}+\mu_{f}\right)$
LHC W^{+}	$\left[17.6 \times\left(1_{-0.19}^{+0.19 .09}+0\right)\right] \quad 61.0 \times\left(1_{-0.21}^{+0.13+0.02}+0.02\right)$
LHC W^{-}	$\left[12.9 \times\left(1_{-0.19-0.11}^{+0.27+0.09}\right)\right] 42.5 \times\left(1_{-0.21-0.03}^{+0.32+0.02}\right)$

from J.Campbell et al., PRD79 (2009), arXiv:0809.3003

$W+b j e t s$ at the Tevatron: comparison with experiment

See F.Febres Cordero's talk at Northwest Terascale Research Projects: $W / Z+b$ physics at the LHC (University of Oregon), for details:
J.Campbell, F.Febres Cordero, L.Reina (2009)

- only accept events with exactly 1 or 2 jets
- jet cross section instead of event-level: weight of events with two b-jets counts twice

$$
\sigma_{b \text { jets }} \times \mathcal{B}(W \rightarrow \ell \nu)=2.74 \pm 0.27(\text { stat. }) \pm 0.42 \text { (syst.) } p b
$$

CDF Collaboration, arXiv:0909.1407
Monte Carlo predictions:

- PYTHIA: 1.10 pb
- ALPGEN: 0.78 pb
- LO: $0.91_{-0.20}^{+0.29} \mathrm{pb}$, NLO QCD: $1.22 \pm 0.14 \mathrm{pb}$

Possible improvements for $Z b$ production

Work in progress (see L.Reina's talk at Northwest Terascale Research Projects: $W / Z+b$ physics at the LHC (University of Oregon), for details):

- Combination of the NLO calculations of $Z b \bar{b}\left(m_{b} \neq 0\right)$ and $Z b j$ ($m b=0, \mathrm{MCFM}$) by carefully subtracting contributions that are included in both calculations.
- Compared to Wb production there is much more overlap between these two calculations.
- There are $H b \bar{b}$-like contributions such as $g g \rightarrow Z b \bar{b}$ where we expect 4FNS and 5FNS to be consistent within their theoretical uncertainties.
- For $W b \bar{b}$-like contributions such as $q \bar{q} \rightarrow Z b \bar{b}$, where the Z is radiated off initial-state light quarks, we expect to see a similar improvement as in the Wb case.

Conclusion and Outlook

$W b \bar{b}$ and $Z b \bar{b}$ production:

- The associated production of a weak gauge boson and one or two b-quark jets constitutes an important background to SM Higgs boson searches at the Tevatron, single top production and to searches for signals of physics beyond the SM at both the Tevatron and the LHC.
- We calculated and studied the impact of NLO QCD corrections to $W b \bar{b}$ and $Z b \bar{b}$ production on the total production rate and the $M_{b \bar{b}}$ distribution and compared our results with a calculation based on the massless b-quark approximation (MCFM).

Conclusion and Outlook

- Findings:
- factorization and renormalization dependence is considerably reduced: $\delta \sigma_{N L O} / \sigma_{N L O} \approx 20 \%$ (inclusive), 10% (exclusive),
- bottom-quark mass effects can amount to about 8% of $\sigma_{N L O}$ and considerably impact the shape of the $M_{b \bar{b}}$ distribution,
- bottom-quark mass effects can be sufficiently well described by rescaling $\sigma_{N L O}\left(m_{b}=0\right)$ with $\sigma_{L O}\left(m_{b} \neq 0\right)$.
- We improved the NLO QCD calculation of $W b$ production by combining the NLO QCD calculations of $W b \bar{b}\left(m_{b} \neq 0\right)$ with $W b j\left(m_{b}=0\right)(M C F M)$. The latter resums initial-state collinear singularities $\left(\alpha_{s} \log \left(M_{W}^{2} / m_{b}^{2}\right)\right)$ to all orders by using a b-quark PDF. We studied observables to $W b$ and $W(b \bar{b})$ production and found modest NLO corrections in the $W b$ case but large corrections to $W(b \bar{b})$.
- Possible further improvements:
- resummation of final-state collinear singularities
- applications of alternative jet algorithms $(W b)$
- $q g$ initiated process at NLO QCD $(W / Z b \bar{b})$

