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Ancient History
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Note on the Radiation Field of the Electron

F. BrocH AND A. NORDSIECK*
Stanford University, California
(Received May 14, 1937)

Previous methods of treating radiative corrections in non-
stationary processes such as the scattering of an electron in
an atomic field or the emission of a g-ray, by an expansion’
in powers of e2/ke, are defective in that they predict infinite
low frequency corrections to the transition probabilities.
This difficulty can be avoided by a methed developed here
which is based on the alternative assumption that e%w/me3,
hw/me* and hw/cAp (w=angular frequency of radiation,
Ap=change in momentum of electron) are small compared
to unity. In contrast to the expansion in powers of /e,
this permits the transition to the classical limit A=0.

External perturbations on the electron are treated in the
Born approximation. It is shown that for frequencies such
that the above three parameters are negligible the quantum
mechanical calculation yields just the directly reinterpreted
results of the classical formulae, namely that the total
probability of a given change in the motion of the electron
is unaffected by the interaction with radiation, and that
the mean number of emitted quanta is infinite in such a way
that the mean radiated energy is equal to the energy
radiated classically in the corresponding trajectory.

A remarkable achievement, before quantum field theory was born.



Modern History

Factorization

Di pi
/\/l{,.’.} <E7(1X(ﬂ2)76> = Z./\/IL (;,O@(pz),6> (CL){’}}

L

D; 2 - 2pi -pi (2pi - ni)?
My (//70'.\(;17),() = Sux (i s (), €) Hi (p z o m) ,a\-(;tz)A,f)

w2 n?p?
2[)1 n, 5
><HJ T yas(p), €

Progress

» Exponentiation applies to non-abelian gauge theories.
» Exponentiation extends to collinear divergences.
» Exponentiation is performed at the amplitude level.

» An optimal regularization scheme is used.



Tools: dimensional regularization

Nonabelian exponentiation of IR/C poles requires d-dimensional evolution
equations. The running coupling in d = 4 — 2¢ obeys
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The one-loop solution is
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The /3 function develops an IR free fixed point, so that @(0, ) = 0 for e < 0.
The Landau pole is at
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» Integrations over the scale of the coupling can be analytically performed.

» All infrared and collinear poles arise by integration of cv(p?, €).



Tools: factorization

All factorizations separating dynamics at different energy scales lead to
resummation of logarithms of the ratio of scales.

» Renormalization group logarithms.
Renormalization factorizes cutoff dependence
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Note: Factorization is the difficult step. It requires a diagrammatic analysis

» all-order power counting (UV, IR, collinear ...);

» implementation of gauge invariance via Ward identities.



Tools: factorization

» Collinear factorization logarithms.

Mellin moments of partonic DIS structure functions factorize
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» Altarelli-Parisi evolution resums collinear logarithms into evolved
parton distributions (or fragmentation functions).

Note: Sudakov (double) logarithms are more difficult.

P A double factorization is required: hard vs. collinear vs. soft. Gauge invariance plays a
key role in the decoupling.

P After identification of the relevant modes, effective field theory can be used (SCET).



Leading regions for Sudakov factorization.

Sudakov factorization

| 2

Divergences arise in fixed-angle amplitudes from
leading regions in loop momentum space.

Soft gluons factorize both form hard (easy) and
from collinear (intricate) virtual exchanges.

Jet functions J represent color singlet evolution of
external hard partons.

The soft function S is a matrix mixing the
available color representations.

In the planar limit soft exchanges are confined to
wedges: S o< I

In the planar limit S can be reabsorbed defining
jets J as square roots of elementary form factors.

Beyond the planar limit S is determined by an
anomalous dimension matrix [g.

Phenomenological applications to jet and heavy
quark production at hadron colliders.



Form Factors and Planar Amplitudes

(with Lance Dixon and George Sterman)



Gauge theory form factors
Consider as an example the quark form factor
2
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» The form factor obeys the evolution equation
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» Renormalization group invariance requires
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vk () 1s the cusp anomalous dimension (G. Korchemsky and A. Radyushkin; ...).

» Dimensional regularization provides a trivial initial condition for
evolution if ¢ < 0 (for IR regularization).

a2 =0,e<0)=0 — r(O,aS(uz),e> =TI (1,a(0,¢),e)=1.



Detailed factorization
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Operator factorization for the Sudakov form factor, with subtractions.




Operator definitions

The functional form of this graphical factorization is
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‘We introduced factorization vectors nfl, with n,-2 = 0, to define the jets,
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where @, is the Wilson line operator along the direction n*.
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The jet J has collinear divergences only along p.



Operator definitions

The soft function S is the eikonal limit of the massless form factor

S (81 B2, as(), €) = (01, (00,0) @5, (0, =50) 0)

Soft-collinear regions are subtracted dividing by eikonal jets 7.
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» S and 7 are pure counterterms in dimensional regularization.

» [3;-dependence of S and 7 violates rescaling invariance of Wilson lines.
= It arises from double poles, associated with .

» A single pole function where the cusp anomaly cancels is
S ([7'1 - Ba, as(11?), e)
T, 7 (252, 0 2) )

It can only depend on the scaling variable
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Jet evolution

The full form factor does not depend on the factorization vectors n’".
Defining x; = (3; - n:)* /nZ,

2
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This dictates the evolution of the jet J, through a ‘K + G’ equation
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Imposing RG invariance of the form factor

5 (P12, as) + yu (P12, is) + 27 (as) = 0.

leads to the final evolution equation
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Results for Sudakov form factors

» The counterterm function K is determined by .

pK(ea) = —le) = K(ead) =3 [ S (50%a) .

» The form factor can be written in terms of just G and ,

(0. = {1 [ S o(-17(e).

=> In general, poles up to o /¢! appear in the exponent.

» The ratio of the timelike to the spacelike form factor is

2 e K i [T (i i [ _ (o
log {%} = 1§K(e)+§/0 [G (a <69Q2)76)*§/0 dp vk (Ot (C‘Qz))]

—> Infinities are confined to a phase given by ~x.
= The modulus of the ratio is finite, and physically relevant.



Form factors in N/ = 4 SYM

» Ind = 4 — 2e conformal invariance is broken and () = —2 € a.

» All integrations are trivial. The exponent has only double and single
poles to all orders (Z. Bern, L. Dixon, A. Smirnov).
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» In the planar limit this captures all singularities of fixed-angle
amplitudes in N’ = 4 SYM. The structure remains valid at strong
coupling, in the planar limit (F. Alday, J. Maldacena).

» The analytic continuation yields a finite result in four dimensions,
arguably exact.
%
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Characterizing G( oy, €)
The single-pole function G(ay;, €) is a sum of anomalous dimensions
%) 2
Glas, €) = Ble, as) 5—logH — 5 =2 + > G,
¢ i=1

In d = 4 — 2¢ finite remainders can be neatly exponentiated

C((l‘\(Qz)‘F) = exp |:/0‘Q2 ‘[Ei; {% }:| = exp |:é /(;Qz d{i; Gce <K (52-F> ,6):|

The soft function exponentiates like the full form factor
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G(ay, €) is then simply related to collinear splitting functions and to the
eikonal approximation

G(as, €) = 2Bs (as) + Geik (os) + G (as, €)

= Gy does not generate poles; it vanishes in ' = 4 SYM.
= Checked at strong coupling, in the planar limit (F. Alday).



Beyond the Planar Limit

(with Einan Gardi)




Factorization at fixed angle

Fixed-angle scattering amplitudes in any massless gauge theory can also be
factorized into hard, jet and soft functions.
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The soft function is now a matrix,
mixing the available color tensors.
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Soft exchanges mix color structures.



Soft anomalous dimensions

The soft function S obeys a matrix RG evolution equation
d P D) fa
M@Sm (ﬁ[ - B, ais(p”), E) =-T3 (Bi - By, s (1?), F) Sik (ﬂi - Bj, &s(/iz%f) 5

» Note: I is singular due to overlapping UV and collinear poles.

As before, S is a pure counterterm. In dimensional regularization, then
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Double poles cancel in the reduced soft function
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» S must depend on rescaling invariant variables, p; = % :
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» The anomalous dimension IS (p;, a;) for the evolution of S is finite.



Surprising simplicity

» [ can be computed from UV poles of S

» Non-abelian eikonal exponentiation
selects the relevant diagrams: webs

» [© appears highly complex at high orders.

A web contributing to R,

The two-loop calculation (M. Aybat, L. Dixon, G. Sterman) leads to a surprising
result: for any number of light-like eikonal lines

¢ 67 10
rd=2r = (= —¢(2)) Ca — —TrCr.
sT3's k=15 ~¢®)) G- GTeCr
» No new kinematic dependence; no new matrix structure.

» & is the two-loop coefficient of x, rescaled by the appropriate Casimir,

W (as) = €9 22 + 1 (2)*] +0(ad) .



Factorization constraints

» The classical rescaling symmetry of Wilson line correlators under
[; — k[ is violated only through the cusp anomaly.

=> For eikonal jets, no 3; dependence is possible at all except through the cusp.

» In the reduced soft function S the cusp anomaly cancels.

=> S must depend on (3; only through rescaling-invarant combinations such as pij, or, for
n > 4 legs, the cross ratios pj = (5i - 6;)(Bx - 61)/(8i - Bi)(5; - Br)

Consider then the anomalous dimension for the reduced soft function

< ) P ny
o (Pi/'v 0’«(/1‘)> =Ty (d,- By, as(1?) ) — o Zm (ﬂz),m(uz), f) :
k
This poses strong constraints on the soft matrix. Indeed
» Singular terms in 'S must be diagonal and proportional to .

P Finite diagonal terms must conspire to construct p;;’s combining [; - 3; with x;.

» Off-diagonal terms in IS must be finite, and must depend only on the cross-ratios Pijki-



Factorization constraints

The constraints can be formalized simply by using the chain rule.
I depends on x; in a simple way.
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This leads to a linear equation for the dependence of S on Pij
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» The equation relates S to 7k to all orders in perturbation theory

=> and should remain true at strong coupling as well.
» It correlates color and kinematics for any number of hard partons.

» [t admits a unique solution for amplitudes with up to three hard partons.

=> For n > 4 hard partons, functions of p;;; solve the homogeneous equation.



Minimal solution

The cusp anomalous dimension exhibits Casimir scaling up to three loops.
| 2 1«,(<i) (as) = Ci Yk (cvs) with C; the quadratic Casimir and Jk () universal.
Denoting with 7 possible terms violating Casimir scaling, we write

5
= 9n(py)

5 1 I ~(i .
S (py o) = 5 CiAk (a5) + D (as) | Vi,

By linearity, using the color generator notation, the scaling term yields

0 5 1 .

MSc (pj o) = =T Ti Ak (o) , Vi
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An all-order solution is the dipole formula (E. Gardi, LM; T. Becher, M. Neubert)

< 1. 1 ~
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as easily checked using color conservation, >, 7; = 0.

Note: all known results for massless gauge theories are of this form.



The full amplitude

It is possible to construct a dipole formula for the full amplitude enforcing
the cancellation of the dependence on the factorization vectors »; through

2 2\2 .22
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Soft and collinear singularities can then be collected in a matrix z
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satisfying a matrix evolution equation
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The dipole structure of 'S is inherited by ', which is given by
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Beyond the dipole formula

(with Lance Dixon and Einan Gardi)



Beyond the minimal solution

» The cusp anomalous dimension may violate Casimir scaling starting at
four loops. This would add a contribution ;. satisfying

9 s L)

> s e (o) = 1 3

- (ay) Vi.
= 91n(pj)

» For n > 4 the constraints do not uniquely determine 'S: one may write

[ (pij, as) = r;ﬁp (pij, os) + AS (pijs as)

where AS solves the homogeneous equation
9 A3 S_AS
A ijy Ols ) = 0 4 A° = A iikly Ols ) -
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» By eikonal exponentiation AS must directly correlate four partons.

> A nontrivial function of p;; cannot appear in IS at two loops.

ﬁ[f] =3 ifae T[,"TfT‘/' In (pjr) In (pirgj) In (i) -
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» The minimal solution holds for ‘matter loop’ diagrams at three loops (L. Dixon).



Collinear constraints

Factorization of fixed-angle amplitudes breaks down in collinear limits, as
pi - p; — 0. New singularities are captured by a universal splitting function

1|12
Mo (P11, P2, pji 11, €) 1B sp (p1,p2; 1, €) Mu—y (P, pji s €) -
Infrared poles of the splitting function are generated by a splitting

anomalous dimension
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2 Jo )\
related to the soft anomalous dimensions of the two amplitudes:

Tsp(p1,p2; 1r) = Tu (P12, 0ji i) — Tt (Popji 1) -
If the dipole formula receives corrections, so does the splitting amplitude
Tsp(p1,02i A) = Tsp, aip(P1,p2: A) + B (pijuas ) — Dn—1 (pijusi A) -

Universality of I's, constrains A, — A,_;: it must depend only on the
collinear parton pair (T. Becher, M. Neubert).



Bose symmetry, transcendentality

Contributions to A, (p;) arise from gluon subdiagrams of eikonal
correlators. They must be Bose symmetric. With four hard partons,

Balpi) = > 1y TP T, AL, (i)

i

the symmetries of A{),. must match those of 4} . For polynomials in

Liju = log p;, one easily matches symmetries of available color tensors
mamo e ma 3 - e gl hy l Thy 3 &) / VO
Dg(piu) = 11/1/2)1311 Yo Uy L1[|234 (Lllizz L;;M - (*1)/” £ L1[342L11:123> + cycl.} )

» Transcendentality constrains the powers of the logarithms. At Z loops

hot = hy +hy +hys <7 <2L—1

» For /=4 SYM, and for any massless gauge theory at three loops the
bound is expected to be saturated.

» Collinear consistency requires #; > 1 in any monomial.
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Three loops

A, can first appear at three loops. j k
A general A\, is a ‘sum over quadrupoles’. 5 v
Relevant webs are the same in /' = 4 SYM.

The only available color tensors are f,, f,¢

Polynomials in Z;;, are severely constrained. ; /

Using Jacobi identities for color and
L1234 + Liapz + Li3gp =0 for kinematiCS, Only a d
one structure polynomial in L, survives.

Three-loop web contributing to [,

>
=
>
N
>
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comment

vanishes identically by Jacobi identity

kinematic factor vanishes identically

allowed by symmetry, excluded by transcendentality
viable possibility
viable possibility

viable possibility all coincide

=N W = = N
T
LN = NN = e
U OT O O e e W

viable possibility




Survivors

Just one maximal transcendentality, Bose symmetric, collinear safe
polynomial in the logarithms survives.

122 B e 2
A,(4 )(Pijld) = TTST Tl{fud{f{h Liosa (Liazs Lizan)?

+ foae Fn® L1223 (L1234 L13a2)* + foue foa® L1342 (L1a23 L1234)2] .

Allowing for polylogarithms, structures mimicking the simple symmetries of
Ly must be constructed. Two examples are

AP () = TITSTSTY {/;,1,0/;.,,“ Lis (Lia(1 = prse) = Lia(1 = 1/p130))
X (Liz(l — p1a3) — Lio(1 — 1/#1423)) +F C}’Cl} :

AP (o) = TOTSTSTY {fm o (Liz(1*01342)*Li3(1*1/P134z)> Ll423L1342+C>’C1} '

Higher-order polylogarithms are ruled out by their trancendentality
combined with collinear constraints.



Perspective
After O (10°) years, soft and collinear singularities in massless gauge
theories are still a fertile field of study.

= We are probing the all-order structure of the nonabelian exponent.
= All-order results constrain and test fixed order calculations.
= Understanding singularities has phenomenological applications through resummation.

» Factorization theorems =- Evolution equations = Exponentiation.

» Dimensional continuation is the simplest and most elegant regulator.

= Transparent mapping UV « IR for ‘pure counterterm’ functions.

» Remarkable simplifications in A/ = 4 SYM point to exact results.

» Only three functions, x, G.i. and B; determine all singularities in the

planar limit, and possibly beyond.

Factorization and classical rescaling invariance severely constrain soft
anomalous dimensions to all orders and for any number of legs.

A simple dipole formula may encode all infrared singularites for any
massless gauge theory.

The study of possible corrections to the dipole formula is under way.
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