Radcor 2009

Resonant Particle Production

at Hadron Colliders

Adrian Signer
IPPP, Durham University

in collaboration with Pietro Falgari and Paul Mellor
25.-30. Осtober 2009, Ascona, Switzerland

introduction	\bullet background
	\bullet main question
	\bullet ET and "normal" approach
general approach	\bullet virtual corrections (ET)
	\bullet real corrections (FO)
single top $u b \rightarrow d b W$	\bullet overview
	\bullet tree level
	\bullet virtual corrections
	\bullet real corrections
conclusions	\bullet work in progress
	\bullet outlook

Production of an on-shell heavy (unstable) particle $X: \quad p_{X}^{2}=m_{X}^{2}$

- often this is a reasonable approximation but
- cuts on decay products not possible
- off-shell effects of X not taken into account

Production of an on-shell heavy (unstable) particle X, including decay: $\quad p_{X}^{2}=m_{X}^{2}$

- (improved) narrow width approximation, $M_{\text {decay }}^{2}=m_{X}^{2}$
- cuts on decay products possible
- off-shell effects of X not taken into account

Production of an on-shell heavy (unstable) particle X, including decay: $p_{X}^{2}=m_{X}^{2}$

- (improved) narrow width approximation, $M_{\text {decay }}^{2}=m_{X}^{2}$
- cuts on decay products possible
- off-shell effects of X not taken into account

Production of an resonant heavy (unstable) particle X, including decay: $\quad p_{X}^{2} \sim m_{X}^{2}$

- tree-level background diagrams (no particle X, but same final state)
- do not want to compute one-loop background diagrams
- real background diagrams
- off-shell effects of X are taken into account, but calculation complicated

Production of an resonant heavy (unstable) particle X, including decay: $\quad p_{X}^{2} \sim m_{X}^{2}$

- tree-level background diagrams (no particle X, but same final state)
- use pole approximation [Stuart, Aeppli et.al.]
- within pole approximation at one loop [Fadin, Khoze, Martin]
- factorizable corrections
- non-factorizable corrections
gauge invariant separation
- real background diagrams
- off-shell effects of X are taken into account, calculation simplified
non-factorizable corrections have been extensively studied [Fadin et.al; Melnikov et.al;
Beenakker et.al; Denner et.al.; Jadach et.al; . . .] but are usually neglected at hadron colliders, because:
- they seem to be more difficult to compute (not really)
- they are generally small [Beenakker et.al; Pittau]
- resonant \rightarrow non-resonant propagator unless $E \lesssim \Gamma$ is small (soft)
- cancellations for "inclusive" observables [Fadin, Khoze, Martin]
purpose of this work:
- do not neglect non-factorizable corrections
- try to obtain an efficient way to identify and compute minimal amount required
- why? consider e.g. top mass measurement, $\delta m_{t} \sim 1 \mathrm{GeV} \lesssim \Gamma_{t}$
in this talk I will not consider many other (sometimes related) issues such as
- (soft) connection of unstable particle to beam remnant
- issues related to using pole mass for unstable particle $\delta m_{t} \simeq \Lambda_{\mathrm{QCD}}$??
- small scale $\left(p_{X}^{2}-m_{X}^{2}\right) / m_{X}^{2} \sim \delta \ll 1 \rightarrow$ effective theory (ET) approach
- expand in all small parameters α and $\left(p_{X}^{2}-m_{X}^{2}\right) / m_{X}^{2}$
- expand integrand, method of regions [Beneke, Smirnov]
- new identification [Chapovsky, Khoze, AS, Stirling]
- factorizable corrections = hard corrections (ET, method of regions)
- non-factorizable corrections = soft corrections (ET)
- applicable for virtual corrections and total cross section (forward scattering amplitude)
- worked out in detail for toy model and realistic applications [Beneke, Chapovsky, Falgari, Schwinn, AS, Zanderighi]
- arbitrary real corrections problematic (new scales from definition of observable)
power counting: $\alpha \sim \frac{p_{X}^{2}-m_{X}^{2}}{m_{X}^{2}} \equiv \frac{\Delta}{m_{X}^{2}} \sim \frac{\Gamma_{X}}{m_{X}} \sim \delta \ll 1$
use method of regions [Beneke, Smirnov] and expand integrand (in principle to any order):
- hard corrections $p \sim m_{X}$ ($=$ factorizable corrections)
- soft corrections $p \sim m_{X} \delta$ ($=$ non-factorizable corrections)

q

$$
\int \frac{d^{d} \ell}{(p+\ell)^{2} \ell^{2}} \quad \text { hard: } \quad \text { full } \quad \begin{array}{ll}
\text { soft: } \quad \int \frac{d^{d} \ell(2 p \cdot \ell)}{p^{2} \ell^{2}}=0
\end{array}
$$

$$
\int \frac{d^{d} \ell}{\left(\ell^{2}+2 p \cdot \ell+\Delta\right) \ell^{2}}
$$

hard: $\quad \int \frac{d^{d} \ell}{\ell^{2}\left(\ell^{2}+2 p \cdot \ell\right)} \neq 0$
soft: $\quad \int \frac{d^{d} \ell}{\ell^{2}(2 p \cdot \ell+\Delta)} \neq 0$

- leads to resummation of hard part (= leading part in Δ) of self-energy insertions
- no issues with gauge invariance (compare fermion-loop scheme)
integrate out hard modes \rightarrow effective Lagrangian
$\mathcal{L}=\phi^{\dagger} B \phi+c_{p} \phi\left(\Pi \psi_{i}\right)+c_{d} \phi\left(\Pi \chi_{j}\right)+c_{b}\left(\Pi \psi_{i} \chi_{j}\right)+\bar{\psi} D_{s} \psi+\ldots$

- matching coefficients c_{i} contain effects of hard modes
- matching is done on shell, i.e. $p_{X}^{2}=\bar{s}=m_{X}^{2}+\mathcal{O}(\Delta)$, with \bar{s} the complex position of pole. \rightarrow compare complex mass scheme [Denner, Dittmaier]
- at NLO, can take $p_{X}^{2}=m_{X}^{2}$ for virtual corrections
- soft (and collinear ...) d.o.f. still dynamical
- can be combined with further resummations (e.g. non-relativistic \rightarrow ET has more complicated structure)

For total cross section can proceed as for virtual (forward scattering amplitude)

- $e^{+} e^{-} \rightarrow t \bar{t}$ near threshold [Hoang et.al; Beneke et.al; Melnikov et.al; Yakovlev et.al . . .]
- $e^{+} e^{-} \rightarrow W^{+} W^{-}$near threshold [Beneke et.al.]

For an arbitrary observable

- not clear what expansion parameter is
- observable can introduce new scales \rightarrow change in structure of ET
- case by case study for some observables possible, but not viable as general approach for hadron colliders
- base real corrections on fixed-order approach
take full real matrix element (including bg diagrams) and apply (say) subtraction method

$$
\begin{aligned}
\int d \Phi_{n+1}\left|M_{n+1}\right|^{2} & =\int d \Phi_{n+1}\left(\left|M_{n+1}\right|^{2}-\left|M_{n(+1)}^{\operatorname{sing}}\right|^{2}\right)+\int d \Phi_{n+1}\left|M_{n(+1)}^{\operatorname{sing}}\right|^{2} \\
& \simeq \int d \Phi_{n+1}\left(\left|M_{n+1}\right|^{2}-\left|M_{n(+1)}^{\operatorname{sing}}\right|^{2}\right)+\int d \Phi_{n+1}\left|M_{n(+1)}^{\operatorname{sing} \exp }\right|^{2}
\end{aligned}
$$

$\int d \Phi_{n+1}\left|M_{n(+1)}^{\text {sing }}\right|^{2}$ matches singularity structure of full virtual correction $\int d \Phi_{n}\left|M_{n}^{\mathrm{v}}\right|^{2}$
$\int d \Phi_{n+1}\left|M_{n(+1)}^{\text {sing exp }}\right|^{2}$ matches singularity structure of virtual term $\int d \Phi_{n}\left|M_{n}^{\mathrm{v}}{ }^{\exp }\right|^{2}$
we subtract something and add back something different, but difference is higher order in δ expansion only required for n parton kinematics
for those who like gauge invariance arguments: each part is separately gauge independent
politically incorrect comment about gauge invariance:
we can replace full matrix element $\left|M_{n+1}\right|^{2}$ by a gauge-dependent subset $\left|M_{n+1}^{\text {res }}\right|^{2}$ containing all leading in δ terms (i.e. all diagrams with resonant propagators)

$$
\int d \Phi_{n+1}\left|M_{n+1}\right|^{2} \simeq \underbrace{\int d \Phi_{n+1}\left(\left|M_{n+1}^{\mathrm{res}}\right|^{2}-\left|M_{n(+1)}^{\mathrm{res} \operatorname{sing}}\right|^{2}\right)}_{\text {gauge dependent, but only at NLO in } \delta}+\int d \Phi_{n+1}\left|M_{n(+1)}^{\text {sing exp }}\right|^{2}
$$

if we compute at order δ^{n}, we end up with residual gauge dependence at order δ^{n+1}.
this is completely analogous to renormalization/factorization scale/scheme dependence.

what value for ξ ?	what value for μ ?	formally: any
$\xi \sim 1$ (parameter in $\mathcal{L})$	$\mu \sim s_{i j}$	avoid large coefficients
setting $\xi=10^{10}$	setting $\mu=M_{\text {Planck }}$	simply stupid !!
variation of ξ	variation of μ	estimate of h.o. corrections ??

Consider single top in t-channel

- total rate and distributions at NLO [Bordes et.al; Stelzer et.al; Harris et.al; Campbell et.al; Cao et.al; ...]
- implemented in MC@NLO [Frixione et.al.]
- comparison 5-flavour scheme vs. 4-flavour scheme [Campbell et.al.]
- EW corrections [Beccaria et.al.] and numerous studies with BSM effects
here, simply consider $u\left(p_{1}\right) b\left(p_{2}\right) \rightarrow d\left(p_{3}\right) b\left(p_{4}\right) W^{+}(k) \rightarrow d\left(p_{3}\right) b\left(p_{4}\right) e^{+}\left(p_{5}\right) \nu\left(p_{6}\right)$
- use (improved) narrow width for W decay
- signal is $W J_{b}$ pair with invariant mass $\left(p_{W}+p_{J_{b}}\right)^{2} \equiv s_{W b} \sim m_{t}^{2}$
- small parameter: $\delta \equiv \frac{s_{W b}-m_{t}^{2}}{m_{t}^{2}} \equiv \frac{\Delta}{m_{t}^{2}} ; \quad$ counting: $\alpha_{s}^{2} \sim \alpha_{e w} \sim \frac{\Gamma_{t}}{m_{t}} \sim \delta \ll 1$
- use 5 flavour scheme, $m_{b}=0$, and "fixed" order, i.e. no parton shower etc.
- focus on $u b \rightarrow d b W^{+}$partonic process, even at NLO
- \rightarrow result by no means complete
amplitude: $\mathcal{A}^{\text {tree }}=\delta_{31} \delta_{42}(\underbrace{g_{e w}^{3} A_{(-1)}^{(3,0)}}_{\delta^{1 / 2}}+\underbrace{g_{e w}^{3} A_{(0)}^{(3,0)}}_{\delta^{3 / 2}}+\ldots)+\underbrace{T_{31}^{a} T_{42}^{a} g_{e w} g_{s}^{2} A^{(1,2)}}_{\delta \text { signal! }}$

amplitude squared: (no inteference due to colour \rightarrow no $\delta^{3 / 2}$ term)
$|M|^{2}=\underbrace{g_{e w}^{6} N_{c}^{2}\left|A_{(-1)}^{(3,0)}\right|^{2}}_{\delta}+\underbrace{g_{e w}^{6} N_{c}^{2} 2 \operatorname{Re}\left(A_{(-1)}^{(3,0)}\left[A_{(0)}^{(3,0)}\right]^{*}\right)}_{\delta^{2}}+\underbrace{g_{e w}^{2} g_{s}^{4} N_{c} C_{F} / 2\left|A^{(1,2)}\right|^{2}}_{\delta^{2}}+\ldots$
tree-level (squared) $\sim \delta$, compute all $\sim \delta^{3 / 2}$ contributions to $|M|^{2}\left(\sim \mathcal{O}\left(\alpha_{s}\right)\right.$ corrections)
consider subset of resonant virtual diagrams (before expansion in δ this is gauge dependent)

(a)

(b)

hard part of QCD self-energy is superleading, i.e. $\mathcal{O}(1)$ with LO amplitude $\sim \delta^{1 / 2}$ but in pole scheme this is precisely cancelled by counter term soft part of QCD self-energy is NLO, i.e. $\mathcal{O}\left(\delta^{3 / 2}\right)$ for $|M|^{2}$

hard part of EW self-energy is leading, i.e. $\mathcal{O}\left(\delta^{1 / 2}\right) \rightarrow$ resum soft part of EW self-energy is beyond NLO, i.e. $\mathcal{O}\left(\delta^{2}\right)$ for $|M|^{2}$
denom. $\Delta \ell^{2}\left(\ell-p_{1}\right)^{2}\left(\ell-p_{3}\right)^{2}$

$$
\Delta \ell^{2}\left(\ell-p_{1}\right)^{2}\left(\ell-p_{3}\right)^{2} \quad \sim \frac{g_{e w}^{3} \cdot \alpha_{e w} \cdot 1}{\delta \cdot 1 \cdot 1 \cdot 1} \sim \delta
$$

$$
\text { soft } \quad \Delta \ell^{2}\left(-2 \ell \cdot p_{1}\right)\left(-2 \ell \cdot p_{3}\right)=0
$$

denom. $\quad \Delta \ell^{2}\left(\ell-p_{4}\right)^{2}\left[\left(p_{t}-\ell\right)^{2}-m_{t}^{2}\right]$
hard
$\Delta \ell^{2}\left(\ell-p_{4}\right)^{2}\left[\ell^{2}-2 \ell \cdot p_{t}\right]$ $\sim \frac{g_{e w}^{3} \cdot \alpha_{s} \cdot 1}{\delta \cdot 1 \cdot 1 \cdot 1} \sim \delta$
soft
denom. $\quad \ell^{2}\left(\ell-p_{2}\right)^{2}\left(\ell-p_{4}\right)^{2}\left[\left(p_{t}-\ell\right)^{2}-m_{t}^{2}\right]$
hard
$\ell^{2}\left(\ell-p_{2}\right)^{2}\left(\ell-p_{4}\right)^{2}\left[\ell^{2}-2 \ell \cdot p_{t}\right]$
$\sim \frac{g_{e w}^{3} \cdot \alpha_{s} \cdot 1}{1 \cdot 1 \cdot 1 \cdot 1} \sim \delta^{2}$
soft
$\Delta \ell^{2}\left(-2 \ell \cdot p_{1}\right)\left[-2 \ell \cdot p_{t}+\Delta\right] \quad \sim \frac{g_{e w}^{3} \cdot \alpha_{e w} \cdot \delta^{4}}{\delta \cdot \delta^{2} \cdot \delta \cdot \delta} \sim \delta$
$\ell^{2}\left(-2 \ell \cdot p_{1}\right)\left(-2 \ell \cdot p_{4}\right)\left[-2 \ell \cdot p_{t}+\Delta\right]$ $\sim \frac{g_{e w}^{3} \cdot \alpha_{s} \cdot \delta^{4}}{\delta^{2} \cdot \delta \cdot \delta \cdot \delta} \sim \delta$
explicit calculations and results are very simple!
$\mathcal{A}^{(1), \text { soft }}=\mathcal{A}^{(0)} \delta V^{\mathrm{soft}}$
$\delta V^{\mathrm{soft}}=\frac{\alpha_{s} C_{F}}{2 \pi}\left(-\frac{\Delta}{\mu m_{t}}\right)^{-2 \epsilon}\left[\frac{1}{\epsilon}\left(1-\ln \frac{s_{2 t} s_{4 t}}{m_{t}^{2} s_{24}}\right)+2+\operatorname{Li}_{2}\left(1-\frac{s_{2 t} s_{4 t}}{m_{t}^{2} s_{24}}\right)\right]$
$\mathcal{A}^{\mathrm{hard},(b)}=\mathcal{A}^{(0)} \delta V^{\mathrm{hard},(b)}+\frac{\alpha_{s} C_{F}}{2 \pi} \frac{-i g_{e w}^{4}\langle 46\rangle\langle 3| 2|1\rangle[25]}{\left(s_{13}+M_{W}^{2}\right) \Delta} \frac{m_{t}^{2}}{m_{t}^{2}-s_{2 t}} \ln \frac{s_{2 t}}{m_{t}^{2}}$
$\delta V^{\mathrm{hard},(b)}=\frac{\alpha_{s} C_{F}}{2 \pi}\left[-\frac{1}{2 \epsilon^{2}}+\frac{1}{\epsilon}\left(\ln \frac{s_{2 t}}{m_{t} \mu}-\frac{1}{2}\right)+\operatorname{Li}_{2}\left(1-\frac{m_{t}^{2}}{s_{2 t}}\right)-2-\frac{\pi^{2}}{24}\right.$
$-\frac{1}{2} \ln ^{2} \frac{s_{2 t}}{m_{t} \mu}+\frac{1}{8} \ln ^{2} \frac{m_{t}^{2}}{\mu^{2}}+\frac{s_{2 t}}{4\left(m_{t}^{2}-s_{2 t}\right)} \ln \frac{m_{t}^{2}}{\mu^{2}}$
$\left.+\frac{1}{2} \ln \frac{s_{2 t}}{m_{t} \mu}\left(2-\frac{s_{2 t}}{m_{t}^{2}-s_{2 t}}-\ln \frac{m_{t}^{2}}{\mu^{2}}\right)\right]$
consider only subset of real diagrams (in general gauge dependent) could use full real amplitude, difference is $\mathcal{O}\left(\alpha_{s} \delta^{2}\right)=\mathcal{O}\left(\delta^{5 / 2}\right)$ for $|M|^{2}$

The only ET-input is the resummed propagator for the top.

LHC $\sqrt{s}=10 \mathrm{TeV}$, only partonic subprocess $u b \rightarrow d W b$
define jets: k_{\perp} cluster algorithm $\Rightarrow \begin{aligned} & J_{b} \text { with }\left|k_{J_{b} \perp}\right|>40 \mathrm{GeV} \\ & J_{q} \text { with }\left|k_{J_{q} \perp}\right|>40 \mathrm{GeV}\end{aligned}$
top window: $150 \mathrm{GeV}<\sqrt{\left(k_{J_{b}}+k_{e}+k_{\nu}\right)^{2}}<200 \mathrm{GeV}$
$E_{\perp}>40 \mathrm{GeV},\left|k_{e}\right|>20 \mathrm{GeV}, m_{t}=171.3 \mathrm{GeV}$, MSTW 2008, NLO pdf
transverse mass of W (improved narrow width) and t (off-shell effects taken into account)

- using ET inspired approach, the computational effort to include off-shell effects for unstable particles is modest
- single top (work in progress)
- preliminary comparison to [Campbell et.al.] confirms off-shell effects $\mathcal{O}\left(\alpha_{s} \delta\right)$ are relatively small for total cross section
- perform full analysis for generic observables
- consider effects of $\log \Gamma_{t} / m_{t}$
- higher order contributions in Δ are not too difficult to compute and can be numerically important (e.g. QCD "background")
- full calculation beyond $\mathcal{O}\left(\delta^{3 / 2}\right)$ for $|M|^{2}$ would require two-loop matching coefficient
- the really interesting process is top pair production (outlook)
- off-shell effects at tree level have been considered [Kauer, Zeppenfeld]
- (inclusive) non-factorizable corrections to invariant mass distributions are small [Beenakker et.al.]
- but cancellations between real and virtual contributions are disturbed by cuts
- to have confidence in a top mass measurement with $\delta m_{t} \sim 1 \mathrm{GeV}$ these corrections have to be considered

