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background

Production of an on-shell heavy (unstable) particle X: p2X = m2
X

• often this is a reasonable approximation but

• cuts on decay products not possible

• off-shell effects of X not taken into account
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background

Production of an on-shell heavy (unstable) particle X, including decay: p2X = m2
X

• (improved) narrow width approximation,M2
decay = m2

X

• cuts on decay products possible

• off-shell effects of X not taken into account
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background

Production of an resonant heavy (unstable) particle X, including decay: p2X ∼ m2
X

• tree-level background diagrams (no particle X, but same final state)

• do not want to compute one-loop background diagrams

• real background diagrams

• off-shell effects of X are taken into account, but calculation complicated
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background

Production of an resonant heavy (unstable) particle X, including decay: p2X ∼ m2
X

• tree-level background diagrams (no particle X, but same final state)

• use pole approximation [Stuart, Aeppli et.al.]

• within pole approximation at one loop [Fadin, Khoze, Martin]
• factorizable corrections
• non-factorizable corrections

• real background diagrams

• off-shell effects of X are taken into account, calculation simplified

ff

gauge invariant separation
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main question

non-factorizable corrections have been extensively studied [Fadin et.al; Melnikov et.al;
Beenakker et.al; Denner et.al.; Jadach et.al; . . .] but are usually neglected at hadron colliders,
because:

• they seem to be more difficult to compute (not really)

• they are generally small [Beenakker et.al; Pittau]
• resonant → non-resonant propagator unless E . Γ is small (soft)
• cancellations for “inclusive” observables [Fadin, Khoze, Martin]

purpose of this work:

• do not neglect non-factorizable corrections

• try to obtain an efficient way to identify and compute minimal amount required

• why? consider e.g. top mass measurement, δmt ∼ 1 GeV . Γt

in this talk I will not consider many other (sometimes related) issues such as

• (soft) connection of unstable particle to beam remnant

• issues related to using pole mass for unstable particle δmt ≃ ΛQCD ??
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ET and normal approach

• small scale (p2X −m2
X)/m2

X ∼ δ ≪ 1 → effective theory (ET) approach

• expand in all small parameters α and (p2X −m2
X )/m2

X

• expand integrand, method of regions [Beneke, Smirnov]

• new identification [Chapovsky, Khoze, AS, Stirling]
• factorizable corrections = hard corrections (ET, method of regions)
• non-factorizable corrections = soft corrections (ET)

• applicable for virtual corrections and total cross section (forward scattering amplitude)

• worked out in detail for toy model and realistic applications [Beneke, Chapovsky, Falgari,
Schwinn, AS, Zanderighi]

• arbitrary real corrections problematic (new scales from definition of observable)
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virtual corrections

power counting: α ∼ p2X −m2
X

m2
X

≡ ∆

m2
X

∼ ΓX

mX
∼ δ ≪ 1

use method of regions [Beneke, Smirnov] and expand integrand (in principle to any order):

• hard corrections p ∼ mX ( = factorizable corrections)

• soft corrections p ∼ mX δ ( = non-factorizable corrections)

W W

q̄

q

Z
ddℓ

(p+ ℓ)2ℓ2

hard: full

soft:
Z

ddℓ(2p · ℓ)
p2ℓ2

= 0

W

W

W

γ
Z

ddℓ

(ℓ2 + 2p · ℓ+ ∆)ℓ2

hard:
Z

ddℓ

ℓ2(ℓ2 + 2p · ℓ) 6= 0

soft:
Z

ddℓ

ℓ2(2p · ℓ+ ∆)
6= 0

• leads to resummation of hard part ( = leading part in ∆) of self-energy insertions

• no issues with gauge invariance (compare fermion-loop scheme)
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virtual corrections

integrate out hard modes → effective Lagrangian

L = φ†Bφ+ cp φ(Πψi) + cdφ(Πχj) + cb (Πψiχj) + ψ̄Dsψ + . . .

φ†Bφ

cdφv(Πχj)

cp φv(Πψi)

ψ̄Dsψ + . . .

cb (Πψiχj)

• matching coefficients ci contain effects of hard modes

• matching is done on shell, i.e. p2X = s̄ = m2
X + O(∆), with s̄ the complex position of pole.

→ compare complex mass scheme [Denner, Dittmaier]

• at NLO, can take p2X = m2
X for virtual corrections

• soft (and collinear . . .) d.o.f. still dynamical

• can be combined with further resummations (e.g. non-relativistic → ET has more
complicated structure) Radcor 2009, 25.–30 Oct – p. 9/21



real corrections

For total cross section can proceed as for virtual (forward scattering amplitude)

• e+e− → tt̄ near threshold [Hoang et.al; Beneke et.al; Melnikov et.al; Yakovlev et.al . . .]

• e+e− →W+W− near threshold [Beneke et.al.]

For an arbitrary observable

• not clear what expansion parameter is

• observable can introduce new scales → change in structure of ET

• case by case study for some observables possible, but not viable as general approach for
hadron colliders

• base real corrections on fixed-order approach
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real corrections

take full real matrix element (including bg diagrams) and apply (say) subtraction method

Z

dΦn+1|Mn+1|2 =

Z

dΦn+1

“

|Mn+1|2 − |M sing
n(+1)

|2
”

+

Z

dΦn+1|M sing
n(+1)

|2

≃
Z

dΦn+1

“

|Mn+1|2 − |M sing
n(+1)

|2
”

+

Z

dΦn+1|M sing exp
n(+1)

|2

Z

dΦn+1|M sing
n(+1)

|2 matches singularity structure of full virtual correction
Z

dΦn|Mv
n|2

Z

dΦn+1|M sing exp
n(+1)

|2 matches singularity structure of virtual term
Z

dΦn|Mv exp
n |2

we subtract something and add back something different, but difference is higher order in δ

expansion only required for n parton kinematics

for those who like gauge invariance arguments: each part is separately gauge independent
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real corrections

politically incorrect comment about gauge invariance:

we can replace full matrix element |Mn+1|2 by a gauge-dependent subset |M res
n+1|2 containing

all leading in δ terms (i.e. all diagrams with resonant propagators)
Z

dΦn+1|Mn+1|2 ≃
Z

dΦn+1

“

|M res
n+1|2 − |M res sing

n(+1)
|2

”

| {z }

gauge dependent, but only at NLO in δ

+

Z

dΦn+1|M sing exp
n(+1)

|2

if we compute at order δn, we end up with residual gauge dependence at order δn+1.

this is completely analogous to renormalization/factorization scale/scheme dependence.

what value for ξ ? what value for µ ? formally: any

ξ ∼ 1 (parameter in L) µ ∼ sij avoid large coefficients

setting ξ = 1010 setting µ = MPlanck simply stupid !!

variation of ξ variation of µ estimate of h.o. corrections ??
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single top: overview

Consider single top in t-channel

• total rate and distributions at NLO [Bordes et.al; Stelzer et.al; Harris et.al; Campbell et.al;
Cao et.al; . . . ]

• implemented in MC@NLO [Frixione et.al.]

• comparison 5-flavour scheme vs. 4-flavour scheme [Campbell et.al.]

• EW corrections [Beccaria et.al.] and numerous studies with BSM effects

here, simply consider u(p1)b(p2) → d(p3)b(p4)W+(k) → d(p3)b(p4)e+(p5)ν(p6)

• use (improved) narrow width for W decay

• signal is WJb pair with invariant mass (pW + pJb
)2 ≡ sWb ∼ m2

t

• small parameter: δ ≡ sWb −m2
t

m2
t

≡ ∆

m2
t

; counting: α2
s ∼ αew ∼ Γt

mt
∼ δ ≪ 1

• use 5 flavour scheme, mb = 0, and “fixed” order, i.e. no parton shower etc.

• focus on ub→ dbW+ partonic process, even at NLO

• → result by no means complete
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single top: tree level

amplitude: Atree = δ31δ42

„

g3ew A
(3,0)
(−1)

| {z }

δ1/2

+ g3ew A
(3,0)
(0)

| {z }

δ3/2

+ . . .

«

+ Ta
31T

a
42 gewg

2
s A

(1,2)

| {z }

δ signal!

q(p1) q′(p3)

b(p2) b(p4)

W−(k)

Z/γ

W

(d)

q(p1) q′(p3)

b(p2) b(p4)

W−(k)

g

(e)

q(p1) q′(p3)

b(p2) b(p4)

W−(k)

g

(f)

q(p1) q′(p3)

b(p2) b(p4)

W−(k)Z/γ

(c)

q(p1) q′(p3)

b(p2) b(p4)

W−(k)Z/γ

(b)(a)

t

b(p4)

W−(k)

b(p2)

q(p1) q′(p3)

amplitude squared: (no inteference due to colour → no δ3/2 term)

|M |2 = g6ew N
2
c

˛
˛
˛A

(3,0)
(−1)

˛
˛
˛
2

| {z }

δ

+ g6ew N
2
c 2Re

“

A
(3,0)
(−1)

[A
(3,0)
(0)

]∗
”

| {z }

δ2

+ g2ewg
4
s Nc CF /2

˛
˛
˛A(1,2)

˛
˛
˛
2

| {z }

δ2

+ . . .
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single top: virtual

tree-level (squared) ∼ δ, compute all ∼ δ3/2 contributions to |M |2 ( ∼ O(αs) corrections)

consider subset of resonant virtual diagrams (before expansion in δ this is gauge dependent)

(a) (b) (c) + ew diagram

(d) (e) (f) vanishes

b

u d

t b

W +

p1 p3

p2

p5

p4

b

u d

t b

W +

p1 p3

p2

p5

p4

b

u d

t b

W +

p1 p3

p2

p5

p4

b

u d

t
b

W +

p1 p3

p2

p5

p4

b

u d

t b

W +

p1 p3

p2

p5

p4

b

u d

t b

W +

p1 p3

p2

p5

p4
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single top: virtual

b

u d

t b

W +

p1 p3

p2

p5

p4

(c)

denominator ∆2 ℓ2 [(pt − ℓ)2 −m2
t ]

hard ∆2 ℓ2 [ℓ2 − 2ℓ · pt] ∼ g3ew · αs · 1
δ2 · 1 · 1

∼ 1

soft ∆2 ℓ2 [−2ℓ · pt + ∆] ∼ g3ew · αs · δ4
δ2 · δ2 · δ ∼ δ

hard part of QCD self-energy is superleading, i.e. O(1) with LO amplitude ∼ δ1/2

but in pole scheme this is precisely cancelled by counter term
soft part of QCD self-energy is NLO, i.e. O(δ3/2) for |M |2

(c)

b

u d

t b

W +

p1 p3

p2

p5

p4

denominator ∆2 ℓ2 [(pt − ℓ)2 −m2
t ]

hard ∆2 ℓ2 [ℓ2 − 2ℓ · pt] ∼ g3ew · αew · 1
δ2 · 1 · 1 ∼ δ1/2

soft ∆2 ℓ2 [−2ℓ · pt + ∆] ∼ g3ew · αew · δ4
δ2 · δ2 · δ ∼ δ3/2

hard part of EW self-energy is leading, i.e. O(δ1/2) → resum
soft part of EW self-energy is beyond NLO, i.e. O(δ2) for |M |2
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single top: virtual

b

u d

t b

W +

p1 p3

p2

p5

p4

(a)

denom. ∆ ℓ2 (ℓ− p1)2 (ℓ− p3)2

hard ∆ ℓ2 (ℓ− p1)2 (ℓ− p3)2 ∼ g3ew · αew · 1
δ · 1 · 1 · 1

∼ δ

soft ∆ ℓ2 (−2ℓ · p1) (−2ℓ · p3) = 0

(d)

b

u d

t b

W +

p1 p3

p2

p5

p4

denom. ∆ ℓ2 (ℓ− p4)2 [(pt − ℓ)2 −m2
t ]

hard ∆ ℓ2 (ℓ− p4)2 [ℓ2 − 2ℓ · pt] ∼ g3ew · αs · 1
δ · 1 · 1 · 1 ∼ δ

soft ∆ ℓ2 (−2ℓ · p1) [−2ℓ · pt + ∆] ∼ g3ew · αew · δ4
δ · δ2 · δ · δ ∼ δ

(e)

b

u d

t

b

W +

p1 p3

p2

p5

p4

denom. ℓ2 (ℓ− p2)2 (ℓ− p4)2 [(pt − ℓ)2 −m2
t ]

hard ℓ2 (ℓ− p2)2 (ℓ− p4)2 [ℓ2 − 2ℓ · pt] ∼ g3ew · αs · 1
1 · 1 · 1 · 1

∼ δ2

soft ℓ2 (−2ℓ · p1) (−2ℓ · p4) [−2ℓ · pt + ∆] ∼ g3ew · αs · δ4
δ2 · δ · δ · δ ∼ δ
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single top: virtual

explicit calculations and results are very simple!

A(1),soft = A(0)δV soft

δV soft =
αsCF

2π

„

− ∆

µmt

«−2ǫ »
1

ǫ

„

1 − ln
s2ts4t

m2
t s24

«

+ 2 + Li2

„

1 − s2ts4t

m2
t s24

«–

Ahard,(b) = A(0)δV hard,(b) +
αsCF

2π

−ig4ew〈46〉〈3|2|1〉[25]
(s13 +M2

W )∆

m2
t

m2
t − s2t

ln
s2t

m2
t

δV hard,(b) =
αsCF

2π

»

− 1

2ǫ2
+

1

ǫ

„

ln
s2t

mtµ
− 1

2

«

+ Li2

„

1 − m2
t

s2t

«

− 2 − π2

24

− 1

2
ln2 s2t

mtµ
+

1

8
ln2 m

2
t

µ2
+

s2t

4(m2
t − s2t)

ln
m2

t

µ2

+
1

2
ln

s2t

mtµ

„

2 − s2t

m2
t − s2t

− ln
m2

t

µ2

« –
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single top: results

consider only subset of real diagrams (in general gauge dependent)
could use full real amplitude, difference is O(αsδ2) = O(δ5/2) for |M |2

g

g

g

g

g

(a) (b)

(c) (d) (e)

b

u

d

t b

W +

p1

p3

p2

p5

p4

b

u
d

t b

W +

p1 p3

p2

p5

p4

b

u d

t b

W +

p1 p3

p2

p5

p4

b

u d

t b

W +

p1 p3

p2

p5

p4

b

u d

t b

W +

p1 p3

p2

p5

p4

The only ET-input is the resummed propagator for the top.
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single top: toy plot

LHC
√
s = 10 TeV, only partonic subprocess ub→ dWb

define jets: k⊥ cluster algorithm ⇒
Jb with |kJb ⊥| > 40 GeV

Jq with |kJq ⊥| > 40 GeV

top window: 150 GeV <
q

(kJb
+ ke + kν)2 < 200 GeV

6E⊥ > 40 GeV, |ke ⊥| > 20 GeV, mt = 171.3 GeV, MSTW 2008, NLO pdf

transverse mass of W (improved narrow width) and t (off-shell effects taken into account)
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conclusion and outlook

• using ET inspired approach, the computational effort to include off-shell effects for
unstable particles is modest

• single top (work in progress)
• preliminary comparison to [Campbell et.al.] confirms off-shell effects O(αs δ) are

relatively small for total cross section
• perform full analysis for generic observables
• consider effects of log Γt/mt

• higher order contributions in ∆ are not too difficult to compute and can be numerically
important (e.g. QCD “background”)

• full calculation beyond O(δ3/2) for |M |2 would require two-loop matching coefficient

• the really interesting process is top pair production (outlook)
• off-shell effects at tree level have been considered [Kauer, Zeppenfeld]
• (inclusive) non-factorizable corrections to invariant mass distributions are small

[Beenakker et.al.]
• but cancellations between real and virtual contributions are disturbed by cuts
• to have confidence in a top mass measurement with δmt ∼ 1 GeV these corrections

have to be considered
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