

Radcor 2009

Resonant Particle Production

at Hadron Colliders

Adrian Signer

IPPP, Durham University

IN COLLABORATION WITH PIETRO FALGARI AND PAUL MELLOR

25.-30. October 2009, Ascona, Switzerland

introduction background • main question • ET and "normal" approach general approach • virtual corrections (ET) • real corrections (FO) single top $ub \rightarrow dbW$ overview • tree level virtual corrections real corrections conclusions • work in progress

outlook

Production of an on-shell heavy (unstable) particle *X*: $p_X^2 = m_X^2$

- often this is a reasonable approximation but
- cuts on decay products not possible
- off-shell effects of X not taken into account

Production of an on-shell heavy (unstable) particle X, including decay: $p_X^2 = m_X^2$

- (improved) narrow width approximation, $M^2_{
 m decay}=m^2_X$
- cuts on decay products possible
- off-shell effects of X not taken into account

Production of an on-shell heavy (unstable) particle X, including decay: $p_X^2 = m_X^2$

- (improved) narrow width approximation, $M^2_{
 m decay}=m^2_X$
- cuts on decay products possible
- off-shell effects of X not taken into account

- tree-level background diagrams (no particle X, but same final state)
- do not want to compute one-loop background diagrams
- real background diagrams
- off-shell effects of X are taken into account, but calculation complicated

- tree-level background diagrams (no particle X, but same final state)
- use pole approximation [Stuart, Aeppli et.al.]
- within pole approximation at one loop [Fadin, Khoze, Martin]
 - factorizable corrections
 - non-factorizable corrections
- real background diagrams
- off-shell effects of X are taken into account, calculation simplified

gauge invariant separation

non-factorizable corrections have been extensively studied [Fadin et.al; Melnikov et.al; Beenakker et.al; Denner et.al.; Jadach et.al; ...] but are usually neglected at hadron colliders, because:

- they seem to be more difficult to compute (not really)
- they are generally small [Beenakker et.al; Pittau]
 - resonant \rightarrow non-resonant propagator unless $E \leq \Gamma$ is small (soft)
 - cancellations for "inclusive" observables [Fadin, Khoze, Martin]

purpose of this work:

- do not neglect non-factorizable corrections
- try to obtain an efficient way to identify and compute minimal amount required
- why? consider e.g. top mass measurement, $\delta m_t \sim 1~{
 m GeV} \lesssim \Gamma_t$

in this talk I will not consider many other (sometimes related) issues such as

- (soft) connection of unstable particle to beam remnant
- issues related to using pole mass for unstable particle $\delta m_t \simeq \Lambda_{
 m QCD}$??

- small scale $(p_X^2 m_X^2)/m_X^2 \sim \delta \ll 1 \rightarrow$ effective theory (ET) approach
- expand in all small parameters lpha and $(p_X^2-m_X^2)/m_X^2$
- expand integrand, method of regions [Beneke, Smirnov]
- new identification [Chapovsky, Khoze, AS, Stirling]
 - factorizable corrections = hard corrections (ET, method of regions)
 - non-factorizable corrections = soft corrections (ET)
- applicable for virtual corrections and total cross section (forward scattering amplitude)
- worked out in detail for toy model and realistic applications [Beneke, Chapovsky, Falgari, Schwinn, AS, Zanderighi]
- arbitrary real corrections problematic (new scales from definition of observable)

power counting:
$$\alpha \sim rac{p_X^2 - m_X^2}{m_X^2} \equiv rac{\Delta}{m_X^2} \sim rac{\Gamma_X}{m_X} \sim \delta \ll 1$$

use method of regions [Beneke, Smirnov] and expand integrand (in principle to any order):

- hard corrections $p \sim m_X$ (= factorizable corrections)
- soft corrections $p \sim m_X \delta$ (= non-factorizable corrections)

- leads to resummation of hard part (= leading part in Δ) of self-energy insertions
- no issues with gauge invariance (compare fermion-loop scheme)

integrate out hard modes \rightarrow effective Lagrangian

 $\mathcal{L} = \phi^{\dagger} B \phi + c_p \phi(\Pi \psi_i) + c_d \phi(\Pi \chi_j) + c_b (\Pi \psi_i \chi_j) + \bar{\psi} D_s \psi + \dots$

- matching coefficients c_i contain effects of hard modes
- matching is done on shell, i.e. $p_X^2 = \bar{s} = m_X^2 + O(\Delta)$, with \bar{s} the complex position of pole. \rightarrow compare complex mass scheme [Denner, Dittmaier]
- at NLO, can take $p_X^2 = m_X^2$ for virtual corrections
- soft (and collinear . . .) d.o.f. still dynamical
- can be combined with further resummations (e.g. non-relativistic → ET has more complicated structure)

For total cross section can proceed as for virtual (forward scattering amplitude)

- $e^+e^- \rightarrow t\bar{t}$ near threshold [Hoang et.al; Beneke et.al; Melnikov et.al; Yakovlev et.al ...]
- $e^+e^- \rightarrow W^+W^-$ near threshold [Beneke et.al.]

For an arbitrary observable

- not clear what expansion parameter is
- observable can introduce new scales \rightarrow change in structure of ET
- case by case study for some observables possible, but not viable as general approach for hadron colliders
- base real corrections on fixed-order approach

take full real matrix element (including bg diagrams) and apply (say) subtraction method

$$\int d\Phi_{n+1} |M_{n+1}|^2 = \int d\Phi_{n+1} \left(|M_{n+1}|^2 - |M_{n(+1)}^{\text{sing}}|^2 \right) + \int d\Phi_{n+1} |M_{n(+1)}^{\text{sing}}|^2$$
$$\simeq \int d\Phi_{n+1} \left(|M_{n+1}|^2 - |M_{n(+1)}^{\text{sing}}|^2 \right) + \int d\Phi_{n+1} |M_{n(+1)}^{\text{sing exp}}|^2$$

 $\int d\Phi_{n+1} |M_{n(+1)}^{\text{sing}}|^2 \text{ matches singularity structure of full virtual correction } \int d\Phi_n |M_n^{\text{v}}|^2$ $\int d\Phi_{n+1} |M_{n(+1)}^{\text{sing exp}}|^2 \text{ matches singularity structure of virtual term } \int d\Phi_n |M_n^{\text{v}}|^2$ we subtract something and add back something different, but difference is higher order in δ

expansion only required for n parton kinematics

for those who like gauge invariance arguments: each part is separately gauge independent

politically incorrect comment about gauge invariance:

we can replace full matrix element $|M_{n+1}|^2$ by a gauge-dependent subset $|M_{n+1}^{res}|^2$ containing all leading in δ terms (i.e. all diagrams with resonant propagators)

$$\int d\Phi_{n+1} |M_{n+1}|^2 \simeq \underbrace{\int d\Phi_{n+1} \left(|M_{n+1}^{\text{res}}|^2 - |M_{n(+1)}^{\text{res sing}}|^2 \right)}_{=} + \int d\Phi_{n+1} |M_{n(+1)}^{\text{sing exp}}|^2$$

gauge dependent, but only at NLO in $\boldsymbol{\delta}$

if we compute at order δ^n , we end up with residual gauge dependence at order δ^{n+1} . this is completely analogous to renormalization/factorization scale/scheme dependence.

what value for ξ ?	what value for μ ?	formally: any
$\xi \sim 1$ (parameter in $\mathcal L$)	$\mu \sim s_{ij}$	avoid large coefficients
setting $\xi = 10^{10}$	setting $\mu = M_{\mathrm{Planck}}$	simply stupid !!
variation of ξ	variation of μ	estimate of h.o. corrections ??

Consider single top in t-channel

- total rate and distributions at NLO [Bordes et.al; Stelzer et.al; Harris et.al; Campbell et.al; Cao et.al; ...]
- implemented in MC@NLO [Frixione et.al.]
- comparison 5-flavour scheme vs. 4-flavour scheme [Campbell et.al.]
- EW corrections [Beccaria et.al.] and numerous studies with BSM effects

here, simply consider $u(p_1)b(p_2) \to d(p_3)b(p_4)W^+(k) \to d(p_3)b(p_4)e^+(p_5)\nu(p_6)$

- use (improved) narrow width for W decay
- signal is WJ_b pair with invariant mass $(p_W + p_{J_b})^2 \equiv s_{Wb} \sim m_t^2$

• small parameter:
$$\delta \equiv \frac{s_{Wb} - m_t^2}{m_t^2} \equiv \frac{\Delta}{m_t^2}$$
; counting: $\alpha_s^2 \sim \alpha_{ew} \sim \frac{\Gamma_t}{m_t} \sim \delta \ll 1$

- use 5 flavour scheme, $m_b = 0$, and "fixed" order, i.e. no parton shower etc.
- focus on $ub \rightarrow dbW^+$ partonic process, even at NLO
- \rightarrow result by no means complete

single top: tree level

amplitude squared: (no inteference due to colour \rightarrow no $\delta^{3/2}$ term)

$$|M|^{2} = \underbrace{g_{ew}^{6} N_{c}^{2} \left| A_{(-1)}^{(3,0)} \right|^{2}}_{\delta} + \underbrace{g_{ew}^{6} N_{c}^{2} 2 \operatorname{Re} \left(A_{(-1)}^{(3,0)} [A_{(0)}^{(3,0)}]^{*} \right)}_{\delta^{2}} + \underbrace{g_{ew}^{2} g_{s}^{4} N_{c} C_{F} / 2 \left| A^{(1,2)} \right|^{2}}_{\delta^{2}} + \dots$$

tree-level (squared) ~ δ , compute all ~ $\delta^{3/2}$ contributions to $|M|^2$ (~ $\mathcal{O}(\alpha_s)$ corrections) consider subset of resonant virtual diagrams (before expansion in δ this is gauge dependent)

hard part of QCD self-energy is superleading, i.e. $\mathcal{O}(1)$ with LO amplitude $\sim \delta^{1/2}$ but in pole scheme this is precisely cancelled by counter term soft part of QCD self-energy is NLO, i.e. $\mathcal{O}(\delta^{3/2})$ for $|M|^2$

hard part of EW self-energy is leading, i.e. $\mathcal{O}(\delta^{1/2}) \rightarrow \text{resum}$ soft part of EW self-energy is beyond NLO, i.e. $\mathcal{O}(\delta^2)$ for $|M|^2$

single top: virtual

denom. $\Delta \ell^2 (\ell - p_1)^2 (\ell - p_3)^2$

hard $\Delta \ell^2 \, (\ell - p_1)^2 \, (\ell - p_3)^2 \, ($

hard
$$\Delta \ell^2 (\ell - p_1)^2 (\ell - p_3)^2 \sim \frac{g_{ew}^3 \cdot \alpha_{ew} \cdot 1}{\delta \cdot 1 \cdot 1 \cdot 1} \sim \delta$$

soft $\Delta \ell^2 (-2\ell \cdot p_1) (-2\ell \cdot p_3) = 0$

 $\Delta \ell^2 (\ell - p_4)^2 [(p_t - \ell)^2 - m_t^2]$ denom. hard $\Delta \ell^2 (\ell - p_4)^2 [\ell^2 - 2\ell \cdot p_t] \sim \frac{g_{ew}^3 \cdot \alpha_s \cdot 1}{\delta 1 + 1} \sim \delta$ $\Delta \ell^2 \left(-2\ell \cdot p_1 \right) \left[-2\ell \cdot p_t + \Delta \right] \qquad \sim \frac{g_{ew}^3 \cdot \alpha_{ew} \cdot \delta^4}{\frac{5}{2} - \frac{5}{2} - \frac{5}{2}} \sim \delta$ soft

denom. $\ell^2 (\ell - p_2)^2 (\ell - p_4)^2 [(p_t - \ell)^2 - m_t^2]$ hard $\ell^2 (\ell - p_2)^2 (\ell - p_4)^2 [\ell^2 - 2\ell \cdot p_t] \sim \frac{g_{ew}^3 \cdot \alpha_s \cdot 1}{1 + 1 + 1} \sim \delta^2$ soft $\ell^2 \left(-2\ell \cdot p_1\right) \left(-2\ell \cdot p_4\right) \left[-2\ell \cdot p_t + \Delta\right] \sim \frac{g_{ew}^3 \cdot \alpha_s \cdot \delta^4}{\epsilon^2 \epsilon^2 \epsilon^2 \epsilon^2} \sim \delta$

explicit calculations and results are very simple!

$$\mathcal{A}^{(1),\text{soft}} = \mathcal{A}^{(0)} \delta V^{\text{soft}}$$
$$\delta V^{\text{soft}} = \frac{\alpha_s C_F}{2\pi} \left(-\frac{\Delta}{\mu m_t} \right)^{-2\epsilon} \left[\frac{1}{\epsilon} \left(1 - \ln \frac{s_{2t} s_{4t}}{m_t^2 s_{24}} \right) + 2 + \text{Li}_2 \left(1 - \frac{s_{2t} s_{4t}}{m_t^2 s_{24}} \right) \right]$$

$$\mathcal{A}^{\text{hard},(b)} = \mathcal{A}^{(0)} \delta V^{\text{hard},(b)} + \frac{\alpha_s C_F}{2\pi} \frac{-ig_{ew}^4 \langle 46 \rangle \langle 3|2|1 \rangle [25]}{(s_{13} + M_W^2) \Delta} \frac{m_t^2}{m_t^2 - s_{2t}} \ln \frac{s_{2t}}{m_t^2}$$
$$\delta V^{\text{hard},(b)} = \frac{\alpha_s C_F}{2\pi} \left[-\frac{1}{2\epsilon^2} + \frac{1}{\epsilon} \left(\ln \frac{s_{2t}}{m_t \mu} - \frac{1}{2} \right) + \text{Li}_2 \left(1 - \frac{m_t^2}{s_{2t}} \right) - 2 - \frac{\pi^2}{24} - \frac{1}{2} \ln^2 \frac{s_{2t}}{m_t \mu} + \frac{1}{8} \ln^2 \frac{m_t^2}{\mu^2} + \frac{s_{2t}}{4(m_t^2 - s_{2t})} \ln \frac{m_t^2}{\mu^2} + \frac{1}{2} \ln \frac{s_{2t}}{m_t \mu} \left(2 - \frac{s_{2t}}{m_t^2 - s_{2t}} - \ln \frac{m_t^2}{\mu^2} \right) \right]$$

consider only subset of real diagrams (in general gauge dependent) could use full real amplitude, difference is $\mathcal{O}(\alpha_s \delta^2) = \mathcal{O}(\delta^{5/2})$ for $|M|^2$

The only ET-input is the resummed propagator for the top.

LHC $\sqrt{s} = 10$ TeV, only partonic subprocess $ub \rightarrow dWb$ define jets: k_{\perp} cluster algorithm $\Rightarrow \begin{array}{l} J_b \text{ with } |k_{J_b \perp}| > 40 \text{ GeV} \\ J_q \text{ with } |k_{J_q \perp}| > 40 \text{ GeV} \end{array}$ top window: 150 GeV $< \sqrt{(k_{J_b} + k_e + k_{\nu})^2} < 200 \text{ GeV}$ $E_{\perp} > 40 \text{ GeV}, |k_{e \perp}| > 20 \text{ GeV}, m_t = 171.3 \text{ GeV}, MSTW 2008, NLO pdf$

transverse mass of W (improved narrow width) and t (off-shell effects taken into account)

- using ET inspired approach, the computational effort to include off-shell effects for unstable particles is modest
- single top (work in progress)
 - preliminary comparison to [Campbell et.al.] confirms off-shell effects $\mathcal{O}(\alpha_s \delta)$ are relatively small for total cross section
 - perform full analysis for generic observables
 - consider effects of $\log \Gamma_t/m_t$
 - higher order contributions in ∆ are not too difficult to compute and can be numerically important (e.g. QCD "background")
 - full calculation beyond $\mathcal{O}(\delta^{3/2})$ for $|M|^2$ would require two-loop matching coefficient
- the really interesting process is top pair production (outlook)
 - off-shell effects at tree level have been considered [Kauer, Zeppenfeld]
 - (inclusive) non-factorizable corrections to invariant mass distributions are small [Beenakker et.al.]
 - but cancellations between real and virtual contributions are disturbed by cuts
 - to have confidence in a top mass measurement with $\delta m_t \sim 1~{
 m GeV}$ these corrections have to be considered