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flexible way (jets, W+jets, Z+jets, Higgs+tiets,...)
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What, Why, How?

Develop a framework for reliably calculating many-parton rates
inclusively (ensemble of 2,3, 4, ... parton rates) and in a
flexible way (jets, W+jets, Z+jets, Higgs+tiets,...)

(n + 1)-jet rate not necessarily small compared to n-jet rate
Inclusive (hard) perturbative corrections important for e.g. hard
end of W p_ -spectrum.

Establish universal behaviour of radiative corrections (in the
so-called High Energy Limit)



Introduction
[e] Te]e]

What, Why, How?

@ Sufficiently simple model for radiative corrections that the
all-order sum can be evaluated explicitly (completely
exclusive)

@ Sufficiently accurate that the description is relevant
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Do we need a new approach?

Already know how to calculate. . .

@ Shower MC: at most 2—2 "hard" processes with additional
parton shower

@ Flexible Tree level calculators:
MadGraph, AlpGen, SHERPA,. ..
Allow most 2 — 4, some 2 — 6 processes to be calculated
at tree level.
Interfaced with Shower MC makes for a powerful mix!

@ MCFM: Many relevant 2 — 3 processes at up to NLO
(i.e. including 2 — 4-contribution).

@ ... (your favourite method here)

Could all be labelled “Standard Model contribution”, but give
vastly different results depending on the question asked!
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All Order Resummation Necessary?

Are tree-level (or generally fixed order) calculation always sufficient?

Sometimes the (n + 1)-jet rate is as large as the n-jet rate
Higgs Boson plus n jets at the LHC at leading order
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Indication that we need to go further! However, fixed order tools ex-
hausted (full 2 — 3 with a massive leg at two loops untenable! ).



Introduction
[e]e]e] ]

All Order Resummation Necessary?

Are tree-level (or generally fixed order) calculation always sufficient?

Sometimes the (n + 1)-jet rate is as large as the n-jet rate
Higgs Boson plus n jets at the LHC at leading order

— Full Tree-level QCD

—500
=)

=

57450
400

350

VY, 1>4:2; Iy <45

300 ja jb

y y. <0, pl">4OGeV, R=0.6

250 Yo
200 i, the two hardest jets
150
100f
50F

E R R R
0 > 3 + z L

# jets

Require that the two jets passing the rapidity cut are also the two
hardest jets . Reduces the 3-jet phase space and the HO corrections
from real emission. Sensitivity to yet HO pert. corrections?
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All Order Resummation Necessary?

Are tree-level (or generally fixed order) calculation always sufficient?

Sometimes the (n + 1)-jet rate is as large as the n-jet rate
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The method we develop will be applicable to both set of cuts, but cru-
cially will allow a stabilisation of the perturbative series by resumma-
tion
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Resummation and Matching

Consider the perturbative expansion of an observable
R=rg+ras+ I’20¢2 + r3a3 + r4a4 + -

Fixed order pert. QCD will calculate a fixed number of terms in this
expansion. r, may contain logarithms so that a; In(- - - )is large.

R=ro+(rf"In(-- ) + 1P as+ (rzLL () + Y In(--) + rfL) a4

=ro+ > ri(asin(---)"+> rias(asIn(- - ))"+sub-leading terms
n n

Need simplifying assumptions to get to all orders - useful iff the terms
really do describe the dominant part of the full pert. series .
Matching combines best of both worlds

R=ro + nas + rna? + (r?EL N3 )+ 3 ) + rBSL) a4
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Factorisation of QCD Matrix Elements

It is well known that QCD matrix elements factorise in certain
kinematical limits:

Soft limit — eikonal approximation — enters all parton
shower (and much else) resummation.

Like all good limits, the eikonal approximation is applied
outside its strict region of validity

Will discuss the less well-studied factorisation  of scattering
amplitudes in a different kinematic limit, better suited for
describing perturbative corrections from hard parton emission

Factorisation only becomes exact in a region outside the
reach of any collider. ..
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The Possibility for Predictions of n-jet Rates

The Power of Reggeisation

Kb, Yb

Ka,Ya
High Energy Limit
—
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it fixed, Y3
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kaaYO

DY, n (@) (Yi 1 —Yi Vi i,di w _ g/
e N I G mw e (Gnia)0n—yni) L8/
0o \i-1 SC ] ST

qlzka+2:;11 k| LL: Fadin, Kuraev, Lipatov; NLL: Fadin, Fiore, Kozlov, Reznichenko

Maintain (at LL) terms of the form

to all orders in as.

At LL only gluon production; at
NLL also quark—anti-quark pairs
produced.

Approximation of any-jet rate pos-
sible.
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Comparison of 3-jet scattering amplitudes

Universal behaviour of scattering amplitudes in the HE limit:
Vie{2,...,n=1}:yi 1>y >Vin
ViLj o lpiL] = |pjLl

‘MMRK 2 _ 4s2 g2Ca (H 492CA> 92 Ca

99799 NE =1 [pael® \ 25 [Picf® ) [pnvl?

—MRK 2 4 s? 5 492C,\ g2 Ca
M —ag--- - )
‘ 497499 N -1 |pu|2 (H piLl? |p ]2

‘—MRK 2 4s? g2Ce <H492CA> 92 Ce

Moo, = )
Q—ae-Q NZ —1 |p1Lf? IPnL|?

Allow for analytic resummation (BFKL equation).
However, how well does this actually approximate the
amplitude?
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Comparison of 3-jet scattering amplitudes

Study just a slice in phase space:
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Comparison of 3-jet scattering amplitudes

Study just a slice in phase space:
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Comparison of 3-jet scattering amplitudes

Study just a slice in phase space:
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Comparison of 3-jet scattering amplitudes

Study just a slice in phase space:
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Comparison of 3-jet scattering amplitudes

Study just a slice in phase space:
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Comparison of 4-jet scattering amplitudes

Study just a slice in phase space:
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Comparison of W+3-jet scattering amplitudes

Study just a slice in phase space:
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Comparison of W+4-jet scattering amplitudes

Study just a slice in phase space:
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Comparison of H+2-jet scattering amplitudes

Study just a slice in phase space:
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Comparison of H+3-jet scattering amplitudes

Study just a slice in phase space:
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Conclusion from Study of Partonic Cross Sections

@ Correct limit is obtained - but outside LHC phase space.
Limit alone irrelevant.

@ Universality obtained before limit is reached.

Will build frame-work which has the right MRK limit but also
retains correct behaviour at smaller rapidities
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Scattering of gQ-Helicity States

Start by describing quark scattering. Simple matrix element for

q(2)Q(b) — a(1)Q(2):

" 2lvlb)

gH
Mg-q-—q-@- = (1|u[a) "

t-channel factorised : Contraction of (local) currents across
t-channel pole

e e

Extendto2 —n ... J.M.Smillie and-JRA: arXiv:0908.2786
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Building Blocks for an Amplitude

Identification of the dominant contributions
perturbative series in the limit of well-separated particles

1
= exp
E/ q2

NolNe]

1
5 %é P2 V?(qi,92) = — (a1 + 92)°

E(
2 \pz2-pa

to the
qll
(&(a)Ay)
1 VHE(di1, ;) ¥ =9y
P2 - Ps P2 - Pn
+ + Ppa <
Pa - PB DA'pn> Pa =P
P2 - Pa P2 -P1\ o
pB'pA+pA'pl> Pe = Ps.

ﬁ( a_ .
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Building Blocks for an Amplitude

Pg -V = 0 can easily be checked (gauge invariance)
The approximation for gqQ — qgQ is given by

1 2
‘MqQ—ﬂgQ - m [Saq—acll

1 1
(¢og) (o)
g°Ca
It

. <‘7 Vu(QLQZ)Vu(QLQZ)) :
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3 Jets @ LHC
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J.M.Smillie and JRA: arXiv:0908.2786
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3 Jets @ LHC
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Building Blocks for an Amplitude

The approximation for qQ — qg - - - gQ is given by
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4 Jets @ LHC
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J.M.Smillie and JRA: arXiv:0908.2786
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4 Jets @ LHC

Full ME

t-channel factorised ME
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J.M.Smillie and JRA: arXiv:0908.2786
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Two currents to calculate for W + jets:
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W+ 3 Jets @ LHC

500 [T T
F Full ME E

t-channel factorised ME
|yl|<4.5, ly <25
P ?4OGeV, P eV>ZOGeV

MSTW2008NLO, J1 =4 =40GeV.

Kjel(R=0.7), pp @ V5=10TeV

150

100

50

1 2 3 4 5 6 7 Ay“

OO
o)

o

J.M.Smillie and JRA: arXiv:0908.2786
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W+ 3 Jets @ LHC
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W+ 3 Jets @ LHC
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Quark-Gluon Scattering

P1 Pa P1 Pa

I

“What happens in 2 — 2-processes with gluons? Surely the
t-channel factorisation is spoiled!” J
P1
P2 Po ; P2
Direct calculatlon g-—qg):
2
M zgf P, <t§et 1/ b _tb 12 1/ ) (blo]2) x (1|o|a).
P21

Complete t-channel factorisation! J.M.Smillie and JRA

P2 Pb
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Quark-Gluon Scattering

The t-channel current generated by a helicity non-flipping gluon
is that of a quark with a colour factor

1 1\ (pg py\ 1
S(ea- ) (R B2}y 2
2( A CA> (pz‘ pg) Ca

instead of Cr. Tends to Cp in MRK limit.
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Quark-Gluon Scattering
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Quark-Gluon Scattering
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All-Orders and Regularisation

@ Have prescription for 2 — n matrix element, including
virtual corrections

@ Organisation of cancellation of IR (soft) divergences easy

@ Can calculate the sum over the n-particle phase space
explicitly (n ~ 25) to get the all-order corrections

V. Del Duca, C.D. White, JRA arXiv:0808.3696, J.M. Smillie, JRA arXiv:0908.2786
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Effect of Central rapidity jet veto in H+diJets
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Outlook and Conclusions

Conclusions

@ Emerging framework for the study of processes with
multiple hard jets

@ For each number of particles n, the approximation to the
matrix element (real and virtual) is sufficiently simple to
allow for the all-order summation to be constructed as an
explicit sum over n-particle final states (exclusive studies
possible)

@ Resummation based on approximation which really does
capture the behaviour of the scattering processes at the
LHC

@ Matching will correct the approximation where the full
matrix element can be evaluated
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