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OPE a la Wilson and OPE a la MS

The renormalon problem: What is the size of
their effect? How to deal with it? A new
subtraction scale R

R-RGE and MSR

Examples: Ellis-Jaffe sum rule, heavy meson
mass difference.

A new sum rule to probe renormalons
Applications of the sum rule
Conclusions



OPE is a standard tool for perturbative calculations: it allows to
separate the perturbative part of a process from a non-
perturbative piece which can be calculated with different

devices.
Consider a dimensionless observable o for some hard scattering process that happens at

scale Q»Aqep. IN Wilson OPE: Q>A>Aqcp
0=Co"(Q,4¢) 0™ (A )+C1Y(Q,A ;) W(A,)/QP +...

© Loops are hard too evaluate because of hard cutoff
© No clear separation of scales CoW(Q,A )~Agz In Af/Q Nr
© Lorentz and gauge invariance not manifest

NAQCD




MS is used in combination with dimensional regularization
d=4-2c¢.

0 (ﬂ)

C, (O, )00 (1) +C, (O, 1)

Now the power counting is manifest as C, contains only In* £

but no (1/Q)*

Power counting is manifest
Lorentz and gauge invariance are manifest

A lot of technology to make loop calculations, but

Loop integrations are done on unphysical regions and Wilson
coefficients and matrix elements have unphysical contributions inside



This phenomenon appears as “renormalons”

How to probe them? What is the size of their
effect?

How to deal with them consistently?



This phenomenon appears as “renormalons”

How to probe them? What is the size of their
effect? - - -

How to deal with them consistently?



_ 1 % ax(k):af(”)g[&%)nln”[%]
C,(1,0) =~ C,(1,0) +Ejdk ke (k)
0

Renormalons have a power-like dependence,

but its normalization is difficult to estimate n+l
Y g = 0 1
,up ﬁz(as(ﬂ)ﬂo] n!—)B(u)~—ﬂp Vs
Q IBO n=0 2p7Z' Q ﬂO zu_p

‘91(#) 6 (,U)
Q" Q"

jdk k" a (k)

There is a cancellation
between Wilson coefficient
and (higher twist)

matrix element

u’ 2r 1
Q" By 2u—p

t'Hooft, Mueller,
Beneke, Luke, Manohar, ...

K2 5[ e, (W) By " _
0" 7 nz(;(—zm j n!'— B(u)



We want OPE in a scheme that preserves the good feature
of MS, but removes the renormalon behavior

Co(QR,1)=Cq (Q,1)-6Co(Q,R, 1)
01(1,R)=61(1) -0601(11,R)

(RY &, ([T
5CO(Q,R,M—(QJ Zdn[Rj [—47; }

n=l1

If for large n the coefficient of C; and +C, behave
in the same way

i pp o D The cancellation of the
C,(Q,R, u) ~ = . n!| —> | Z |[renormalon involves the
QP Qp R? : :
" L introduction of a new scale

R




One can define a new scheme, MSR, for the Wilson
coefficient Co such that the coefficient of the subtraction is
the same MS coefficient.

— - ~(R1Q)
C,(Q.R, 1) = C,(Q, 1)|C, (R, 1)]

The new coefficient is such that

The value of p is derived from the difference in the dimension of
g, and g
Gauge and Lorentz symmetries are preserved

However the new definition is no good without an RGE



No choice of y,R, Q can minimize logs in coefficients and

matrix elements at the same time —

(beyond the usual u-RGE)

NEW!!!

Lo, (R)]

d N
Rﬁln CO(Q’R’R) - 7/[as (R)]

The same expression
as usual p-AD

Co(Q, Ry, Ry) = Co(Q, R, R)U (O, R, R)U (R, R,)

(k)

Bigi, Shifman, Uraltsev; Voloshin
Hoang,Jain, IS, Stewart

A new R-RGE piece

o -2
t a,(R)
A%, =Re Be
A, =R & (b B -2
- 23,

oCD

P
InU,(Q,R,,R,)= [AgD J zk: S .(=p) ™ pPh [r(— pb, — j. pt, )—F(— pb, - j. pt, )]
j=0

_ e

27
S =



ﬂs(Rl)ﬁn

ummation of R-logs

:IJ.:+1 1 [
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Moments from polarized DIS in proton structure function
Broadhurst, Kataev

—~ = & &8 A
M1<Q>=CB<Q,u>6’B+CO<Q,m30+.. Oy =25+

G, =0.572 Here a g
al —~(R*/0*)C;(R,R =1.2694
C.(Q,R,R)=C.(Q,R)e *'¢IGFRN gA_Om renormalon

0_ .

M,(Q)=C,(O,R,R)U(O.R.R,)0, +C,(Q,R,,R)U(Q.R,R,)

O ‘f'

CB and CO are known at 3 Ioops (Kodaira; Larin, Ritbergen, Vermaseren)



0.24
M;(Q)

0.20

0.16
R1=Q

R,=1 GeV
0.12

0.4 0.6 0.8 1.0 1.2 1.5 2.0 30 4.0 5.0 6.0

Q (GeV)

Data: Osipenko et al.
RS-scheme: Campanario, Pineda



0.24

M(Q) ' N3LL MSR
0.20 R; variation
[ L — RQ variation

0.16

0.12

u variat gt
. e
| NLOwm
0.08 I I 1 I I
0.4 - 06 15 20 - 30 40 50 6.0

Q (GeV)



Setting H=B,D Am, =m’. —m,,
Here a p=1 renormalon:
Grozin, Neubert

X
P(’u) + 3-loops from Grozin, Marquard,

mQ Piclum, Steinhauser

Amy; = 6G (mQ,,u),ué (1) +
The interesting observable is ratio r=Am, /Am;,

And using MSR

r =

C.(m,,R,R)U, (mb,Rl,R) 2 (Ry,R) 1
mb mc

C,(m.,R,R)U,(m,, RI,R) ,uG(R)



1.0 |-

L01\Ts and LLMSR‘—}

m, =4.7 GeV

r&E Y m =1.6 Gev

(q=s)
I expt

MS: Arp 4. = 0.07

m
3Vmme < p < 2y/myme y M 2ymym,

MSR: Arp.¢n. = 0.008 Jmm,
%memc < Ry <2 /mym, 2

<R =p<2ymm,. r=0.860% 0.0652p +0.008

pert




This phenomenon appears as “renormalons”

- How to probe them?

- How to remove them?



The R-RGE can be used also to probe the normalization
of a renormalon. An example is provided by the
O(/Aqcp) renormalon in the pole mass.

MS, 1S, PS, Kinetic,Jet mass...
mpOle > m(,ua R) + 5m(y, R) | IC a

Beneke, Bigi,Uraltsev,Hoang,Manohar, us...

The pole mass does not depend on R.. So for p-independent
schemes

d d
m(R) = ——5m(R) = RQ/ A R We can compute
dInR dInR K [ ( )] m(R1)-m(RO), in a
renormalon free way
and of large log(R1/R0)




The pole mass is obtained in

K d
m(R)—m_, =A,.,|dt y ()=
(R) pole ecp ;‘- a )dt the limit R, —> 0

It is interesting to see what happens with the Borel transform of

this T(1+b 1)
B(u)=2R 8,0,u)—
{Z =t 1/22 (1 oy )1+b1!i|
B S, We have a sum rule
B, = ;):F (It N 3 to fix renormalons!
) : No need of bubble
resummation!

P, is the normalization of the first renormalon and we can show
that its series is absolutely convergent.



o
Bu=2R | 3 8,0.(0)~R, 3 s, L6 -0

SO0 (=) The renormalon coefficient
S P,,, depends or)ly on
P,=>—* R-anomalous dimension
o L'(1+b, +k) Through S,.

However the anomalous

dimension changes by a
rescaling R— AR

If all terms of the series where known P,,, would be really a constant
as a function of ). In practice we expect it to be constant for 2<\<2.

~R AR
R A 0 >

_ﬁ,__.iﬁ” — )\ {ﬁfi’ _ -f_)___,\--_:;[:]_?,.é?- In )\} __ Pl/z ( ﬂ,) i Z S k (\/1)
R A\ ~ R 12 ~R a2 R 122 R1..2 k=0 F(l +b1 R k)
Yo = [ i — (400m + 2017 ) In A+ 4557 In )\} :



e pole mass renormalon in
eral schemes
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The static potential

heavy quark static potenti
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It s possible to express the usual MS B-function in terms of the
renormalon free ‘t-Hooft B-function

T The 2 forms of B-functions define
B (OtMS ) =20, Zﬂl( M j two different couplings
i=0 4z which can be related one-another.

(n order to check the remormalon

2 3
a o ;
o (a,H ) = —2[ o + P j behavior

47 (472-)2 tn the MsS B-function we
consioer

. — (0
MS tH — f(atH) and aP'PLH the sum rule P2/2 to

t Fla, (R) = R*f(a,, (R))



P2/2)

1.0

BA= BA(Pade)—

mptotic behavior of the
nction
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P(2/2)
121

1.0

e

o.si

5 - B4=2 pA(Pade)
0.6F R

L . —
ol T p4= pA(Pade

rom Pade appriximants : ).R. Ellis et al PRDS5F(1998)2665

mptotic behavior of the
nction
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OPE in MSR: same technical advantages as MS.

A new IR cut is reintroduced in OPE through a
new scale R

Logs of the infrared cut R can be resummed with
R-RGE

IR renormalons are removed from Wilson
coefficients

Great improvement of the convergence of
perturbative expansion

We can estimate the higher order contributions
with the variation of R,



The R-RGE can be used to understand the
renormalon structure of perturbation series

If "enough” terms of the perturbative series are
known one can evaluate the normalization of a

renormalon. (The word “enough” depends on the position of the
renormalon)

Many applications are still to be worked out.



We want OPE in a scheme that preserves the good feature
of MS, but removes the renormalon behavior

—(@ - This effect should
CO(Q’R’M) CO (Qupe)=0 CO(Q’R’M) belisnf:luilcedsifotl;\e

Y = o ; information about
[ H | a (U the higher twist
GOk, (Q] nl d”(Rj [ 0 } operator Wilson

coefficient is
available. We omit it
in the following

If for large n the coefficient of C, and +C, behave
in the same way

T, 28 Y The cancellation of the
C,(Q,R, 1) ~ e n!| == | Z [renormalon involves the
Qp Qp R? i :
" 2 introduction of a new scale

R




OPE is a standard tool for perturbative calculations: it allows
to separate the perturbative part of a process from a non-
perturbative piece which can be calculated with different

devices.
Consider a dimensionless observable ¢ for some hard scattering process that happens

at scale Q»Acp- IN Wilson OPE: Q>/\/>/\QCD

T~ /df“;“’p_lf(kﬂ*f“?@crm)
. (k2 + Q2)»/2

o0 }i.p—l f(;lz 0) 4+ Ag
— dk — +f Ik kP—1 ’312 A
/-\f Uv_z + (Q2)p/2 . ‘ f( QCD) [

i
)
!

o]

i
.:'l
L 4

V(O A NG b1 (A
{T:C?E'JL(Q?_,\LJ‘,JH {\f ‘|‘( (Q ’\Lf ( f)

QP

% ®




E ala Wilson and MS
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