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� OPE a la Wilson and OPE a la MS 
� The renormalon problem: What is the size of 

their effect? How to deal with it? A  new 
subtraction scale R

� R-RGE and MSR
� Examples: Ellis-Jaffe sum rule, heavy meson 

mass difference.
A new sum rule to probe renormalons

OutlineOutline

� A new sum rule to probe renormalons
� Applications of the sum rule
� Conclusions
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OPE is a standard tool for  perturbative calculations: it allows to 
separate  the perturbative part of a process from a  non-
perturbative piece which can be calculated with different 
devices.

Consider  a  dimensionless observable σ for some hard scattering process that happens at 
scale Q»ΛQCD.  In Wilson OPE: Q>Λf>ΛQCD

¾=C0W(Q,¤f) µ0W(¤f)+C1W(Q,¤f) µ1W(¤f)/Qp +…

Loops are hard too evaluate because of hard cutoff 
Q

OPE a la OPE a la WilsonWilson and MSand MS

Loops are hard too evaluate because of hard cutoff 
No clear separation of scales C0W(Q,¤f)~¤f, ln ¤f/Q
Lorentz and gauge invariance not manifest

Λf

ΛQCD
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MS is used in combination with dimensional regularization 
d=4-2ε.

Now the power counting is manifest  as        contains only          
but  no (¹/Q)k 
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Power counting is manifest

OPE a la Wilson and OPE a la Wilson and MSMS

Lorentz and gauge invariance are  manifest

A lot of technology to make loop calculations, but

Loop integrations are done  on unphysical regions and Wilson 
coefficients and matrix elements have unphysical contributions inside
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This phenomenon appears as “renormalons”

� How to probe them? What is the size of their 
effect?

How to  deal with them consistently?

RenormalonsRenormalons

� How to  deal with them consistently?
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This phenomenon appears as “renormalons”

� How to probe them? What is the size of their 
effect?

We can give an answer 
to both  questions  
combining MSR and R-RGI

RenormalonsRenormalons

� How to  deal with them consistently?
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Renormalons have  a power-like dependence, 
but its normalization is difficult to estimate

RenormalonsRenormalons
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There is a  cancellation
between Wilson coefficient
and  (higher twist) 
matrix element
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t’Hooft, Mueller,
Beneke, Luke, Manohar,  … 



We want OPE  in a  scheme that preserves the good feature 
of MS, but removes the renormalon behavior

C0(Q,R,¹)=C0 (Q,¹)-±C0(Q,R,¹)
µ1(¹,R)=µ1(¹) -±µ1(¹,R) n
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If  for large � the coefficient of C0 and ±C0 behave 

in the same way 

RenormalonsRenormalons cancellation and cancellation and 
MSRMSR

� 

in the same way 
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The cancellation of the 
renormalon involves the 
introduction of  a new scale

R
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The new coefficient  is  such that

One can define  a new  scheme, MSR, for the Wilson 
coefficient C0 such that the coefficient of the subtraction is 
the same MS coefficient.

The MSR schemeThe MSR scheme
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The value of p is derived from the difference in the dimension of 
and 

Gauge  and Lorentz symmetries are preserved 

However the new definition is no good without an RGE

0θ1θ



� No choice of µ,R, Q can minimize logs in  coefficients and 
matrix elements at the same  time !

� We need an R-RGE to resum gluons contributions 
associated to renormalons (beyond the usual µ-RGE)
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The same expression 

A new R-RGE piece

Bigi, Shifman, Uraltsev; Voloshin
Hoang,Jain, IS, Stewart
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The MSR scheme and RThe MSR scheme and R--RGERGE
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The same expression 
as usual µ-AD
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ResummationResummation of Rof R--logslogs
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Moments from polarized DIS in proton structure function
Broadhurst, Kataev

Here a p=2 
renormalon

The EllisThe Ellis--Jaffe sum ruleJaffe sum rule
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This is  dangerous place…

R1=Q
R0=1 GeV

The EllisThe Ellis--Jaffe sum ruleJaffe sum rule
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Data: Osipenko et al.
RS-scheme: Campanario, Pineda

R0=1 GeV



EllisEllis--Jaffe sum ruleJaffe sum rule
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Here a p=1 renormalon:
Grozin, Neubert

3-loops from Grozin, Marquard, 
Piclum, Steinhauser

Heavy Quark Mass SplittingHeavy Quark Mass Splitting
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And using MSR
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This phenomenon appears as “renormalons”

� How to probe them?
We can give an answer 
to both  questions  
combining MSR and R-RGI

RenormalonsRenormalons

� How to remove them?

combining MSR and R-RGI
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The R-RGE can be used also to probe the normalization 
of a renormalon. An example is provided by the 
O(ΛQCD) renormalon in the pole mass.

),(),( RmRmmpole µδµ +=

The pole mass does not depend on R.. So for µ-independent 
schemes

MS, 1S, PS, Kinetic,Jet mass…
Beneke, Bigi,Uraltsev,Hoang,Manohar, us…

A new   sum rule for detecting A new   sum rule for detecting 
renormalonsrenormalons
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d
d lnR

m(R) = −
d

d lnR
δm(R) = RγR α s R( )[ ] We can compute 

m(R1)-m(R0), in a 
renormalon free way 
and of large log(R1/R0)
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The pole mass is obtained in 

the limit

We have a sum rule

The  The  thethe sum rule for pole masssum rule for pole mass
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P1/2 is the normalization of the  first renormalon and  we can show
that its series is absolutely convergent. 

We have a sum rule
to fix renormalons!
No need of bubble
resummation!
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The renormalon coefficient 
P1/2 depends only on 
R-anomalous dimension 
Through Sk. 
However the anomalous 
dimension changes by a 
rescaling  R      ¸ R

If all terms of the series where known P1/2 would be  really a constant 
as a function  of . In practice we expect it to be constant for ½< <2.

PP1/21/2 and  the scaling  of Rand  the scaling  of R
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If all terms of the series where known P1/2 would be  really a constant 
as a function  of ¸. In practice we expect it to be constant for ½<¸<2.
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The renormalon of 
the pole mass in MSR,
PS, Static

The pole mass The pole mass renormalonrenormalon in in 
several schemesseveral schemes
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O(®)

O(®4) 
nf part+Pade

Peter, 
Schroeder,
AV Smirnov,
VA Smirnov,
Steinhauser

O(®3)

The heavy quark static potentialThe heavy quark static potential
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O(®2)

nf part+Pade



� It is possible to express  the usual MS It is possible to express  the usual MS It is possible to express  the usual MS It is possible to express  the usual MS b----function in terms of  the function in terms of  the function in terms of  the function in terms of  the 
renormalon free ‘trenormalon free ‘trenormalon free ‘trenormalon free ‘t----Hooft  Hooft  Hooft  Hooft  b----function function function function 
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The 2  forms of The 2  forms of The 2  forms of The 2  forms of b----functions define functions define functions define functions define 
two different   couplings two different   couplings two different   couplings two different   couplings 
which can be related onewhich can be related onewhich can be related onewhich can be related one----another.  another.  another.  another.  
In order to check  the renormalon In order to check  the renormalon In order to check  the renormalon In order to check  the renormalon 
behaviorbehaviorbehaviorbehavior
in the MS  in the MS  in the MS  in the MS  b----function we function we function we function we 
considerconsiderconsiderconsider

Asymptotic behavior of the QCDAsymptotic behavior of the QCD
¯̄̄̄̄̄̄̄--functionfunction
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considerconsiderconsiderconsider
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and  apply the sum rule Pand  apply the sum rule Pand  apply the sum rule Pand  apply the sum rule P2/22/22/22/2 to  to  to  to  



Asymptotic behavior of the Asymptotic behavior of the 
¯̄̄̄̄̄̄̄--functionfunction
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b4 comes from Pade appriximants : J.R. Ellis et al PRD57(1998)26654 comes from Pade appriximants : J.R. Ellis et al PRD57(1998)26654 comes from Pade appriximants : J.R. Ellis et al PRD57(1998)26654 comes from Pade appriximants : J.R. Ellis et al PRD57(1998)2665



Asymptotic behavior of the Asymptotic behavior of the 
¯̄̄̄̄̄̄̄--functionfunction
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� OPE in MSR: same technical advantages as MS.
� A new IR cut is reintroduced in OPE through  a 

new scale R
� Logs of the infrared cut R can be resummed with 

R-RGE
� IR renormalons are removed  from Wilson 

coefficients
� Great improvement of the convergence of  

perturbative expansion

Conclusions IConclusions I

perturbative expansion
� We can estimate the higher order contributions 

with the variation of R0

27/10/2009 RADCOR2009 26



� The R-RGE can be used to understand the 
renormalon structure of perturbation series

� If “enough” terms of the perturbative series are 
known one can evaluate the normalization of a  
renormalon. (The word “enough” depends on the position of the 
renormalon)

� Many applications are still to be worked out.

Conclusions IIConclusions II
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We want OPE  in a  scheme that preserves the good feature 
of MS, but removes the renormalon behavior

C0(Q,R,¹)=C0 (Q,¹)-± C0(Q,R,¹)
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If  for large � the coefficient of C0 and ±C0 behave 

in the same way 

This effect should 
be included if the 
information about 
the higher twist 
operator Wilson 
coefficient is 
available. We omit it 
in the following 

RenormalonsRenormalons cancellation and cancellation and 
MSRMSR

� 
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The cancellation of the 
renormalon involves the 
introduction of  a new scale

R



OPE is a standard tool for  perturbative calculations: it allows 
to separate  the perturbative part of a process from a  non-
perturbative piece which can be calculated with different 
devices.

Consider  a  dimensionless observable σ for some hard scattering process that happens 

at scale Q»ΛQCD. In Wilson OPE: Q>Λf>ΛQCD

OPE a la OPE a la WilsonWilson and MSand MS
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MS is used in combination with dimensional regularization 
d=4-2ε.

OPE a la Wilson and OPE a la Wilson and MSMS
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