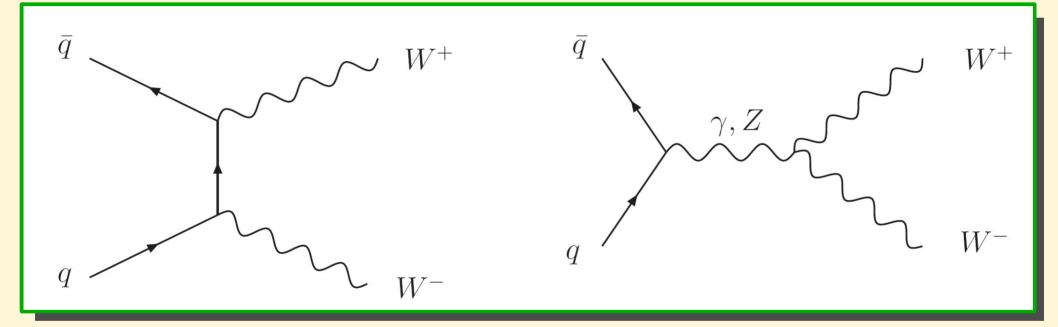
Towards $p p \rightarrow W W$ at NNLO

Grigorios Chachamis, PSI

in collaboration with M. Czakon and D. Eiras RADCOR, Ascona, 29 October 2009

The process

W Pair Production in the quark-anti-quark annihilation channel – Tree level diagrams



It is a $2 \rightarrow 2$ process with **massive** particles Goal: Calculate this process at NNLO (two-loop) in QCD

One is bound to ask:

Do we really need to go up to NNLO?

- NNLO is needed when
- NLO corrections are large
- For benchmark measurements
- Theoretical uncertainty smaller or matching

the experimental errors State of the art (for LHC):

Outline

- Focus on hadronic W pair production: Virtual two-loop and one-loop squared amplitudes
- Motivation for studying $q q \rightarrow W W$ accurately
- **Results:** NNLO Virtual Corrections in the High Energy Limit, Power Corrections (11 terms)
- Conclusions Outlook

Full mass dependence

Motivation I

W pair production important as a **signal** in searches for **New Physics.** Testing ground for non-abelian structure of SM, triple gauge couplings, γ WW, ZWW

$$\sigma(p\bar{p} \rightarrow W^+W^-) =$$

 $14.6^{+5.8}_{-5.1}$ (stat) $^{+1.8}_{-3.0}$ (syst) ± 0.9 (lum) pb

$$13.8^{+4.3}_{-3.8}$$
(stat) $^{+1.2}_{-0.9}$ (syst) ± 0.9 (lum) pb

$\sqrt{s} = 2 \text{ TeV}$	W^+W^-			$\sqrt{s} = 14 \text{ TeV}$	W^+W^-	
$(p\bar{p})$	MRS98	CTEQ5		(pp)	MRS98	CTEQ5
Born [pb]	10.0	10.3		Born [pb]	81.8	86.7
Full [pb]	13.0	13.5		Full [pb]	120.6	127.8

Tevatron

Campbell, Ellis ('99)

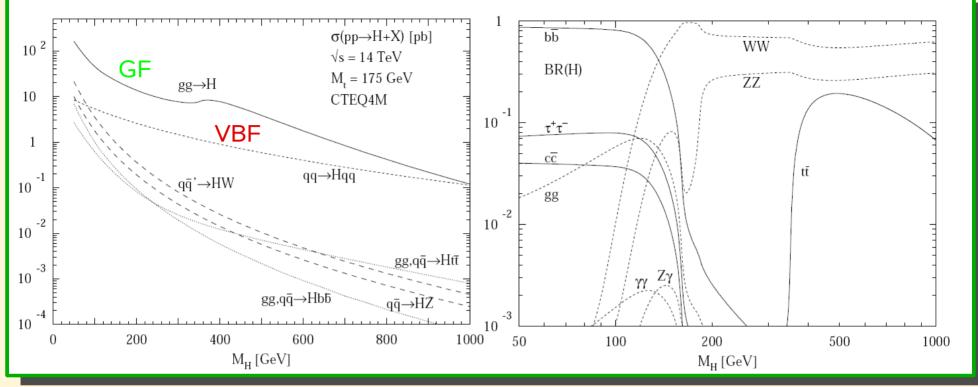
Motivation II

The 'elusive' Higgs boson Higgs:

- Only constituent of the SM not experimentally observed yet.
- Electroweak symmetry breaking
- Description of particle masses

Discovery by itself is not enough! Properties of the Higgs needed to exclude or verify alternative models

Motivation II

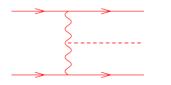


LHC Higgs production ...

Gluon Fusion channel is the dominant production mechanism up to $\rm M_{_H}$ ~ 1 TeV : $g~g \rightarrow H$

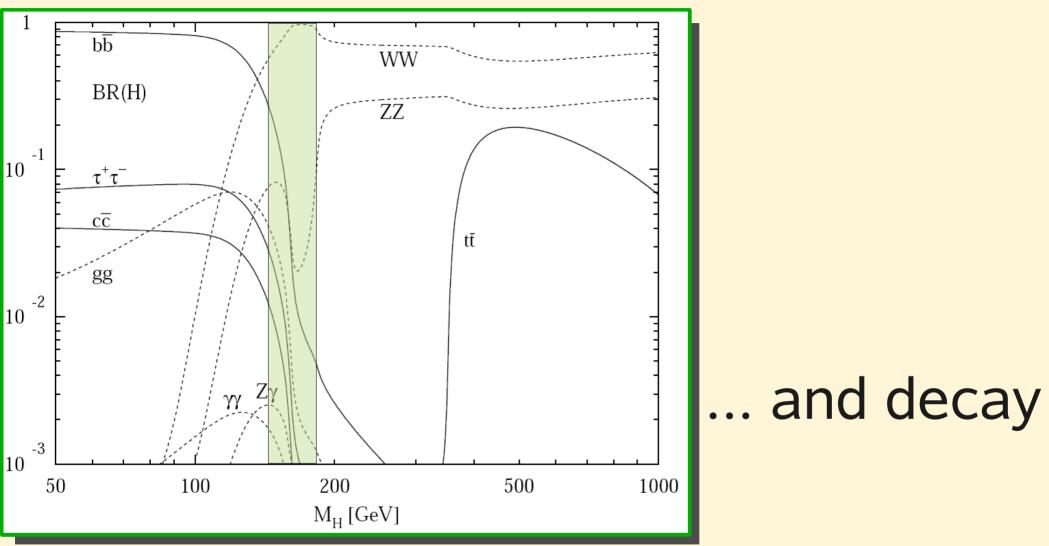
Sub-dominant production process is Vector Boson Fusion: $q\;q \rightarrow V\;V\; \rightarrow q\;q\;H$

Spira '97 Spira '97 Gluon fusion (GF)



vector boson fusion (VBF)

Motivation II



Once the Higgs is produced it will eventually decay into different particles depending on its mass. In the Higgs mass range 140 - 180 GeV the main decay mode is into W pairs

Motivation II

Going after the Higgs: Main discovery Channels

 $M_{H}: 114 - 140 \text{ GeV}$ $H \rightarrow \gamma \gamma$

 $M_{\rm H} : 180 - 600 \text{ GeV}$ $H \to Z Z \to 4 l$

 $M_{H}: 140 - 180 \text{ GeV}$ $H \rightarrow W W \rightarrow 2 l + \text{missing Energy } E_{T}$

Pick up the signal process
Avoid or suppress the usually large <u>background</u>
Accurate theoretical predictions for both signal and background

Main background (irreducible): W pair production

Mini Summary

W Pair Production is important at the LHC:

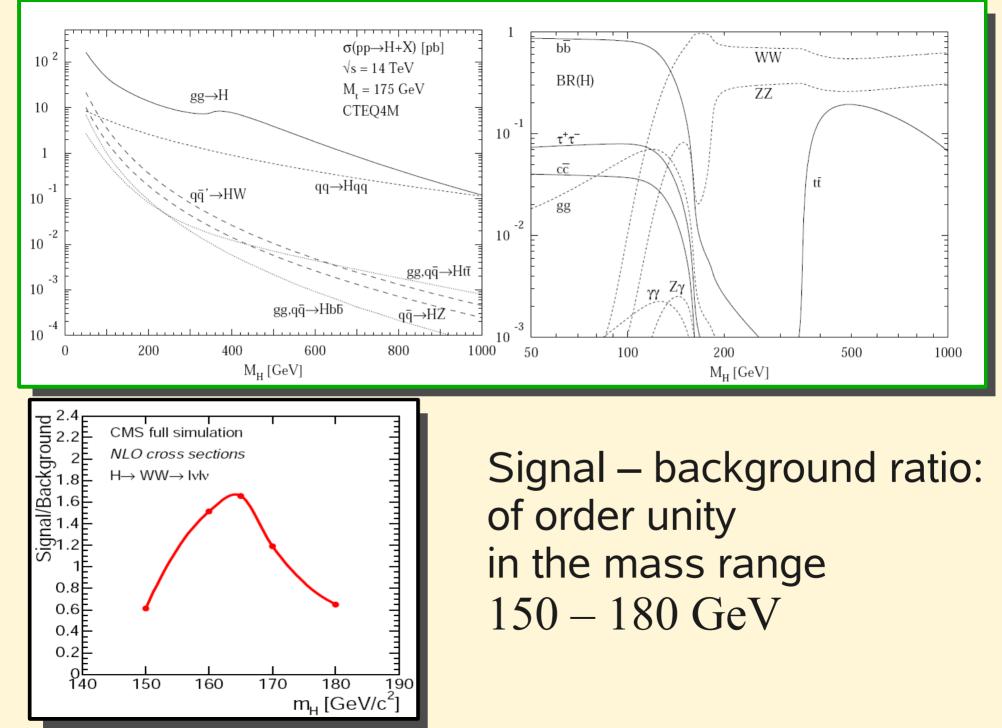
Searches for New Physics

 Irreducible background to Higgs production W Pair Production All these are nice but still ...

... do we really need to go up to NNLO?

The answer is YES!

W Pair Production Signal/background



Signal known to NNLO

QCD corrections to :

 $g g \rightarrow H$ NLO: Contribute ~ 70% Dawson ('91); Djouadi, Graudenz, Spira, Zerwas ('95) NNLO: Contribute an additional 20% for LHC Harlander, Kilgore ('02); Anastasiou, Melnikov ('02) Ravindran, Smith, van Neerven ('03) With a Jet veto at NNLO: corrections ~ 85% Catani, de Florian, Grazzini ('02) Davatz, Dissertori, Dittmar, Grazzini, Pauss ('04) Anastasiou, Melnikov, Petrielo ('04) $H \rightarrow W W \rightarrow l v l v$ **NNLO** Anastasiou, Dissertori, Stöckli, Webber ('08) Grazinni ('08)

Background

• <u>qq</u>→WW

70% enhancement at NLO. With a jet veto the enhancements fall to 20-30%

Dixon, Kunszt, Signer ('98, '99)

• <u>loop induced gg</u> \rightarrow WW Contributes to the quark annihilation channel at $\mathcal{O}(\alpha_s^2)$. Enhanced by the **large gluon flux.** After Higgs search cuts it increases the background by 30%, with no cuts by 5%

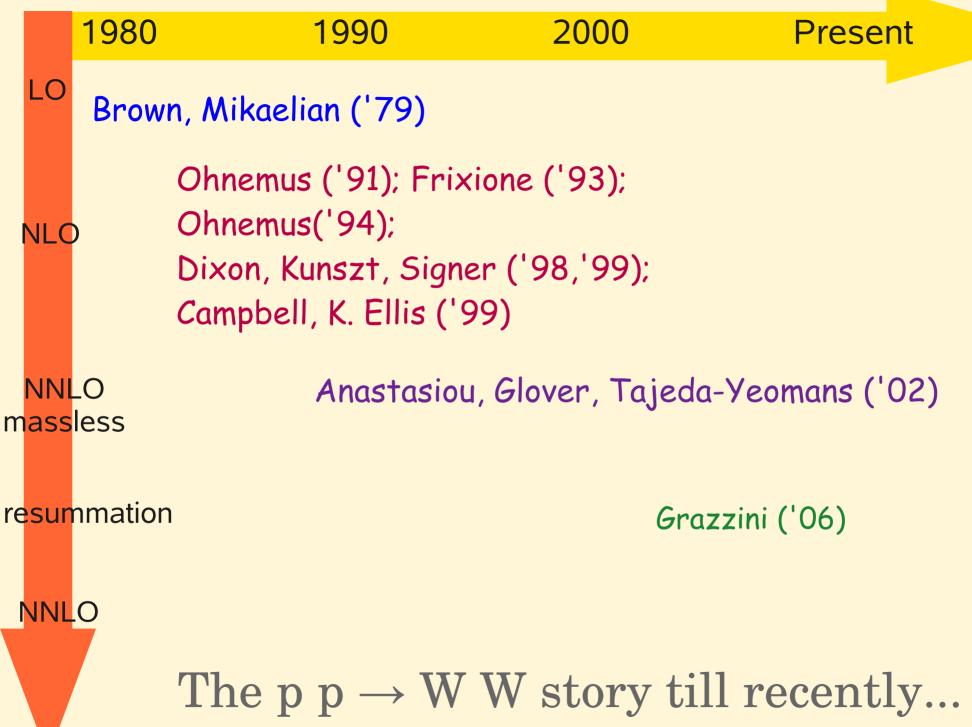
> Glover, van der Bij ('89); Kao, Dicus ('91) Binoth, Ciccolini, Kauer, Krämer ('05)

Duhrssen, Jackobs, v. d. Bij, Marquard ('05)

• EW corrections

Accomando, Denner, Kaiser('05)

Necessity of NNLO calculation for a few % level accuracy



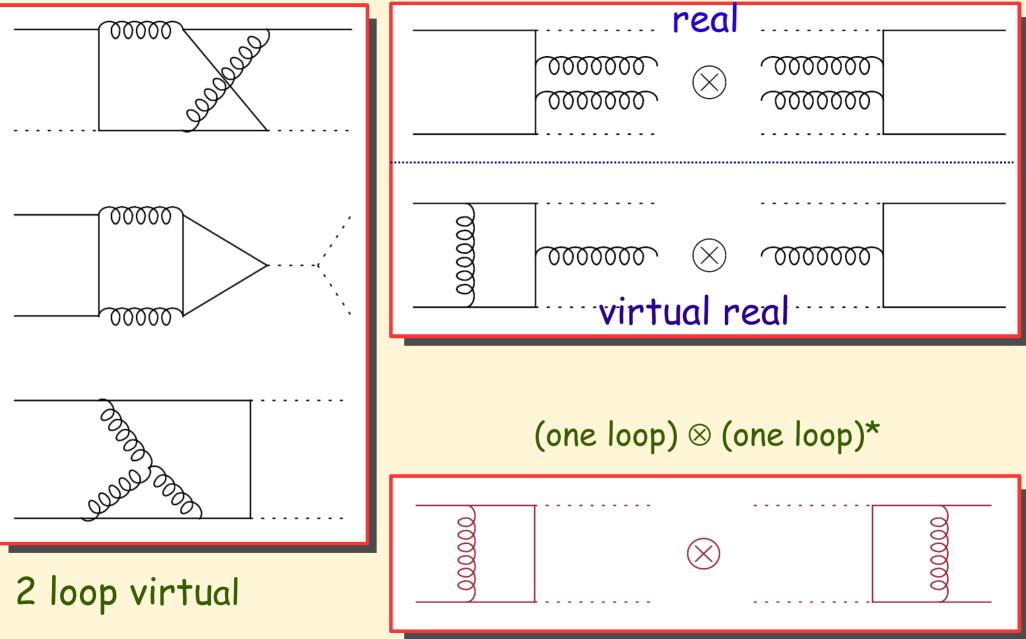
We would now like to have...

... Cross sections for W Pair production at NNLO

with full mass dependence...

- ... Then start with the amplitudes...
- ... The difficult part on the amplitude level is the virtual corrections, in particular the two-loop diagrams contracted with the Born ones

W Pair Production Well, that means... many diagrams



So what is at stake?

• A NNLO (4 legs, 2 loops) calculation of a process with massive particles (similarities to "heavy quark production")

Czakon, Mitov, Moch('07), Czakon ('08)

- Color and spin averaged amplitudes
- Kinematical region: all kinematical invariants large compared to the W mass: $M_w^2 \ll s, t, u$
- We expand with respect to $m_s = M_w^2/s$
- Exact analytic result in the high energy limit (up to terms suppressed by powers of m_s)
- Reconstruct (numerically) **full mass dependence** for the whole phase space

The main difficulty

For the 2-loop amplitude the difficult part here is to compute the Feynman Integrals

We choose to do that using the Mellin-Barnes representations technique

W Pair Production Mellin-Barnes: a simple example

$$\frac{1}{(A+B)^n} = \frac{1}{2\pi i\Gamma(n)} \int_{-i\infty}^{i\infty} dz \frac{A^z}{B^{n+z}} \Gamma(-z)\Gamma(n+z)$$

• Example

$$\left\{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right\} e^{\epsilon \gamma} \Gamma(2+\epsilon) \int dx_1 \dots dx_4 \delta(1-x_1-\dots-x_4) \frac{1}{(-sx_2x_3-tx_1x_4)^{2+\epsilon}} \right\}$$

$$\frac{e^{\epsilon\gamma}}{2\pi i} \frac{1}{(-s)^{2+\epsilon}} \int_{-i\infty}^{i\infty} dz \ \left(\frac{t}{s}\right)^z \frac{\Gamma^2(-1-\epsilon-z)\Gamma(-z)\Gamma^2(1+z)\Gamma(2+\epsilon+z)\Gamma$$

 $\operatorname{Re} \epsilon = -\frac{1}{2}, \quad \operatorname{Re} z = -\frac{3}{4}$

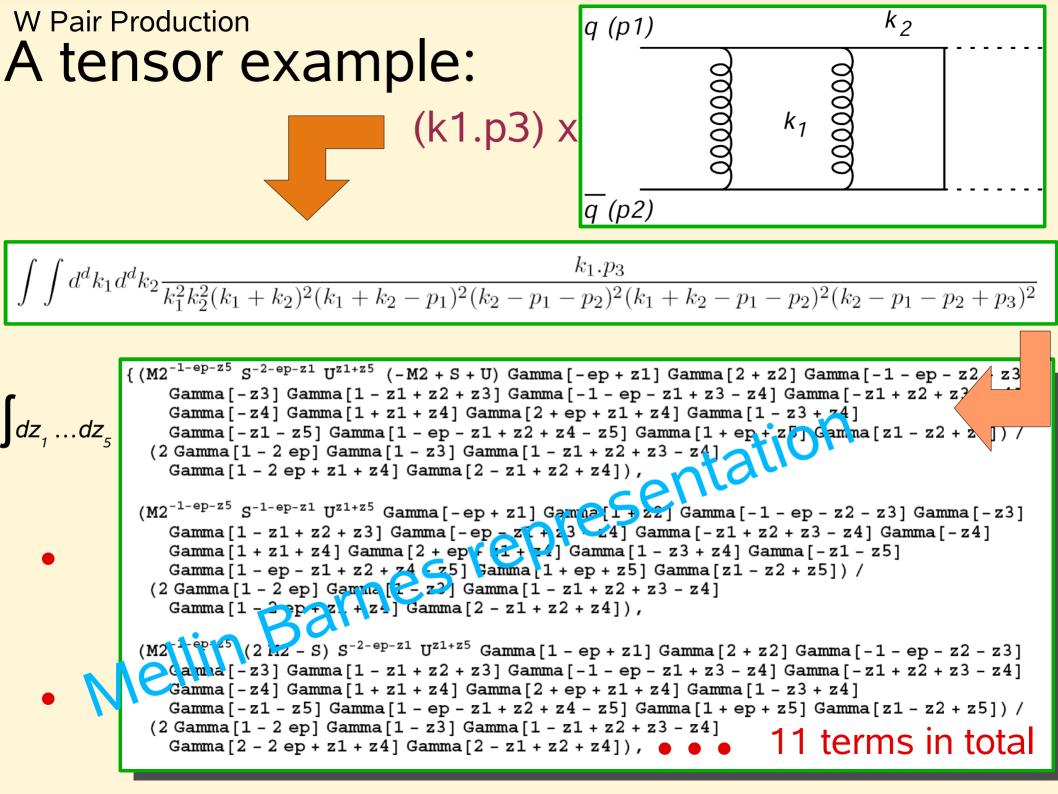
Mellin-Barnes

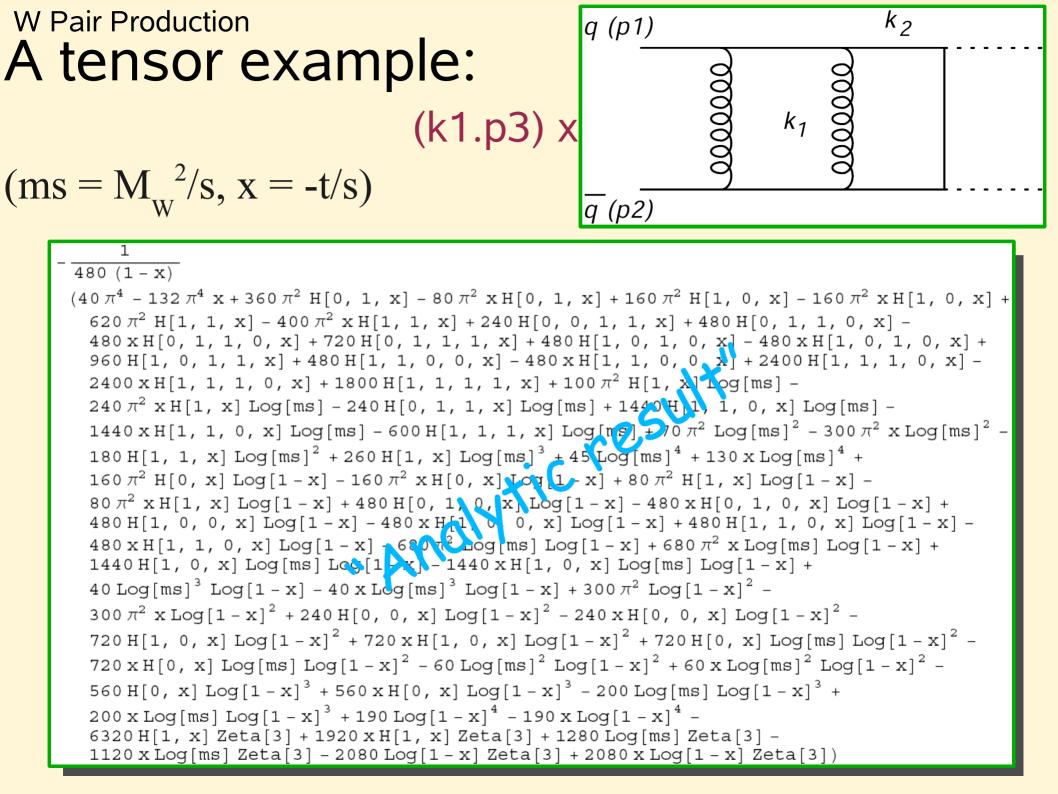
Do a reduction a la Laporta into Masters, then starting from the Feynman parameters representation of a master, "walk" the following <u>Steps</u>:

- produce representations (MBrepresentations.m)
- analytically continue in ε to the vicinity of 0 and expand in mass (MB.m)
- perform as many as possible integrations using Barnes lemmas (BarnesRoutines.m, Kosower)
- resum the remaining integrals by transforming into harmonic series (**Xsummer**)
- resum remaining constants by high-precision numerical evaluation (quadprec.m) and fit them to a transcendental basis (PSLQ)

Software

(GC, Czakon) **MBrepresentations.m** Produces representations for any multi-loop, planar or non-planar, scalar or tensor integral of any rank! (Czakon) MB.m Determination of contours, analytic continuation, expansion in a chosen parameter, numerical integration (Moch, Uwer) <u>XSummer</u> Evaluation of harmonic sums (Bailey) **PSLO** Fitting to a transcendental basis (Czakon) quadprec.m High precision numerical evaluation with up to 64 digits





Catani's recipe: An important test

One loop: For the IR pole structure of the renormalized amplitude you need the tree level amplitude and $I^{(!)}$: (Catani, Seymour '98)

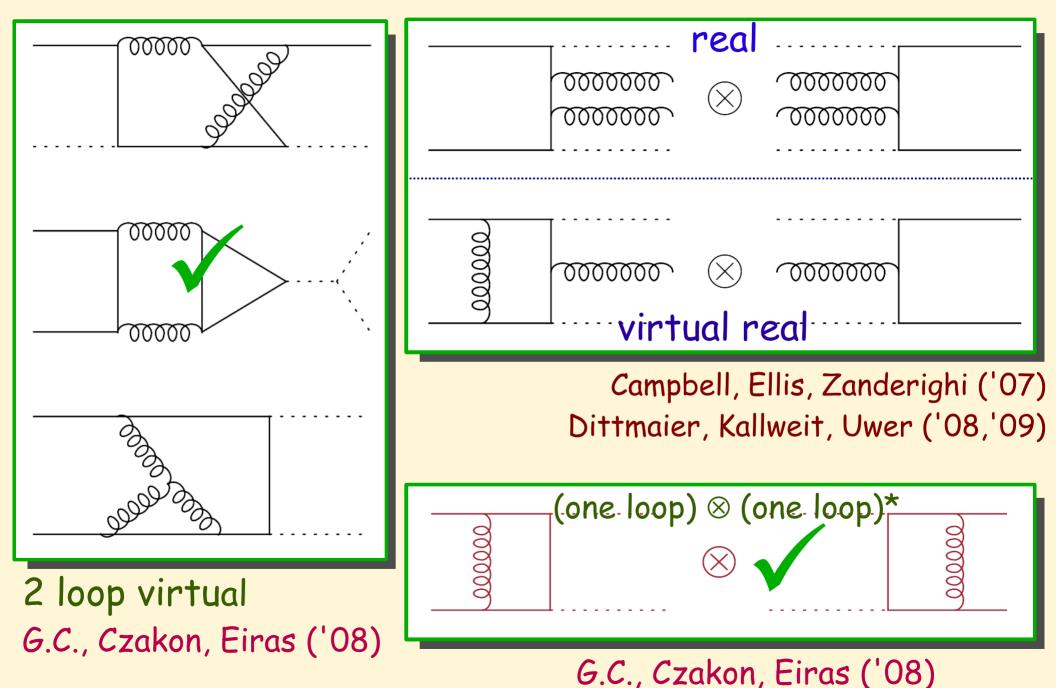
 $|\mathcal{M}_{m}^{(1)}(\mu^{2};\{p\})\rangle_{\text{RS}} = \boldsymbol{I}^{(1)}(\epsilon,\mu^{2};\{p\}) |\mathcal{M}_{m}^{(0)}(\mu^{2};\{p\})\rangle_{\text{RS}} + |\mathcal{M}_{m}^{(1)}^{(1)}(\mu^{2};\{p\})\rangle_{\text{RS}}$

<u>Two loop</u>: Now you need tree and one loop level amplitude: (Catani '98)

$$\begin{split} |\mathcal{M}_{m}^{(2)}(\mu^{2};\{p\})\rangle_{\text{RS}} &= \mathbf{I}^{(1)}(\epsilon,\mu^{2};\{p\}) |\mathcal{M}_{m}^{(1)}(\mu^{2};\{p\})\rangle_{\text{RS}} \\ &+ \mathbf{I}^{(2)}_{\text{RS}}(\epsilon,\mu^{2};\{p\}) |\mathcal{M}_{m}^{(0)}(\mu^{2};\{p\})\rangle_{\text{RS}} + |\mathcal{M}_{m}^{(2)\text{fin}}(\mu^{2};\{p\})\rangle_{\text{RS}} \end{split}$$

Singular dependence embodied in the operators $I^{(1)}$ and $I^{(2)}$

Check list:



Mid talk summary

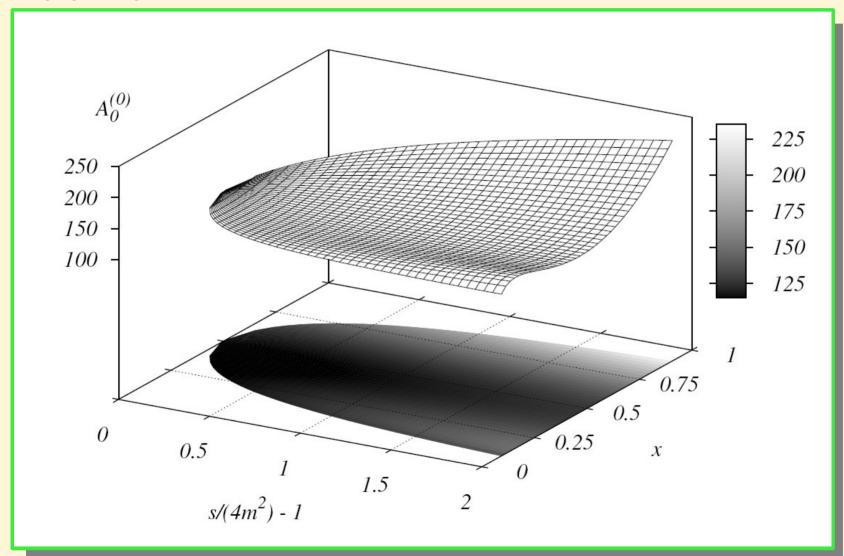
We have the full (virtual) result up to O(m_s⁰) in the high energy limit for the virtual corrections.
Mellin Barnes representations approach is a powerful technique though not an easy one (especially for the non-planar graphs).

Nevertheless, ready for the next step: **Full mass dependence** Similar to M. Czakon [arXiv:0803.1400] using

•Numerical Differential Equation method Caffo, Czyz, Laporta, Remiddi ('98)

W Pair Production Full mass dependence-how to

•Numerical solution of differential equations: an example from Top pair production



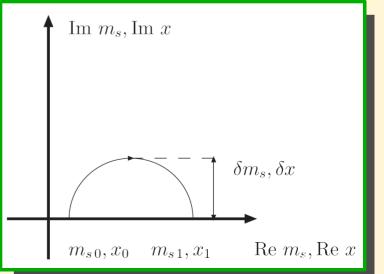
Plot stolen from M. Czakon's paper "Mass effects and..." '08

W Pair Production **Towards a numerical solution**

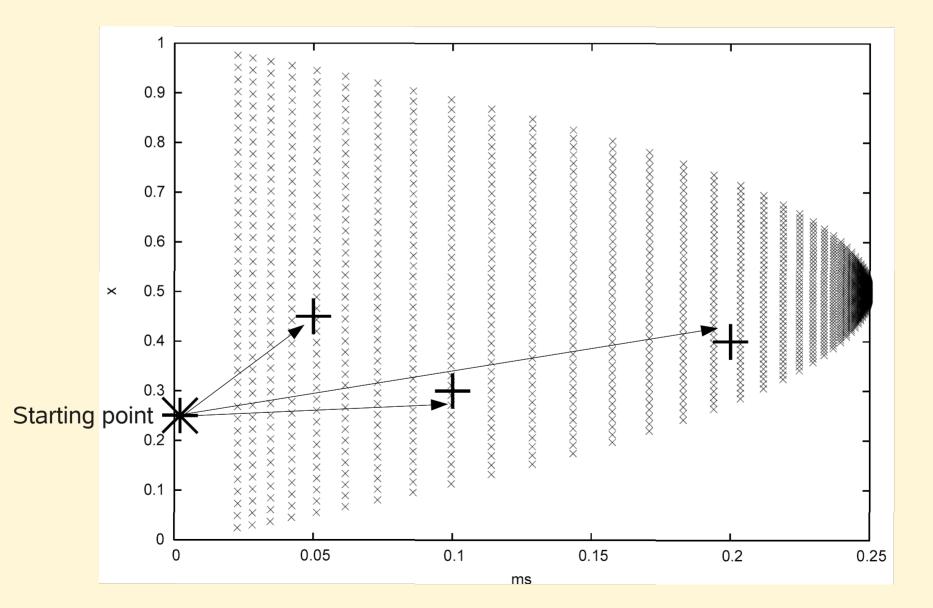
- Compute the high energy asymptotics of the master integrals obtaining the leading behaviour of the amplitude
- Determine the coefficients of the mass expansions using differential equations in $m_{_{\rm S}}$ obtaining the power corrections

$$m_{s} \frac{d}{d m_{s}} M_{i}(m_{s}, x, \epsilon) = \sum_{j} C_{ij}(m_{s}, x, \epsilon) M_{j}(m_{s}, x, \epsilon)$$

- Evaluate the expansions for $m_s \ll 1$ to obtain the desired numerical precision of the boundaries
- Evolve the functions from the boundary point with differential equations first in $m_{_{\rm S}}$ and then in x (<code>ZVODE</code>)



Phase space and some sample points-Numerics works!



DE numerics

- Find the optimal set of masters
- Solve the differential equations for a grid of points
- Run numerical checks (e.g. use different contours) and control errors
- Renormalize
- Pass once more through Catani's purgatory
- Interpolate

W Pair Production Conclusions - Outlook

- Working numerics for full mass dependencefurther checks need to be done though!
- The first steps have been done, many more are to follow for the full NNLO corrections in the $q q \rightarrow W W$ channel
 - Next: **<u>gg</u> → WW channel**

and Z pair production

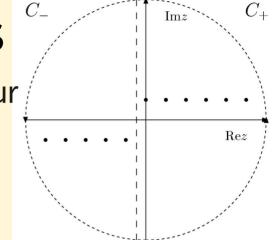
 The ultimate goal is to have a NNLO Monte Carlo generator for gauge boson pair production

Back up slides

Mellin-Barnes representations

Under the assumption that n>0 and that the contour separates the poles of the Gamma functions

$$\frac{1}{(A+B)^n} = \frac{1}{2\pi i\Gamma(n)} \int_{-i\infty}^{i\infty} dz \frac{A^z}{B^{n+z}} \Gamma(-z)\Gamma(n+z)$$



Behaviour of the Gamma functions around non-positive arguments

$$z\Gamma(z) = \Gamma(1+z) \qquad \Rightarrow \qquad \Gamma(-n+z) = \frac{\Gamma(1+z)}{(-n+z)...(z)} \sim \frac{(-)^n}{n!} \frac{1}{z}$$

Take residues depending on the values of A and B

For
$$A > B \Rightarrow z < 0 \Rightarrow z = -N - n, N = 0, 1, ...$$

$$\sum_{N=0}^{\infty} \frac{(-)^N}{N!} \frac{\Gamma(N+n)}{\Gamma(n)} \frac{B^N}{A^{N+n}} = \frac{1}{A^n} \sum_{N=0}^{\infty} \frac{(N+n-1)!}{(n-1)!N!} \left(-\frac{B}{A}\right)^N = \frac{1}{A^n} \frac{1}{\left(1+\frac{B}{A}\right)^n} = \frac{1}{(A+B)^n}$$

$$\begin{array}{cccc} \mbox{For} & A < B & \Rightarrow & z > 0 & \Rightarrow & z = N, \ N = 0, 1, .. \end{array}$$

$$\sum_{N=0}^{\infty} \frac{(-)^N}{N!} \frac{\Gamma(N+n)}{\Gamma(n)} \frac{A^N}{B^{N+n}} = \frac{1}{B^n} \sum_{N=0}^{\infty} \frac{(N+n-1)!}{(n-1)!N!} \left(-\frac{A}{B}\right)^N = \frac{1}{B^n} \frac{1}{\left(1+\frac{A}{B}\right)^n} = \frac{1}{(A+B)^n}$$

$\underline{1st Barnes' lemma}$

$$\int_{-i\infty}^{i\infty} dz \, \Gamma(a+z)\Gamma(b+z)\Gamma(c-z)\Gamma(d-z) = \frac{\Gamma(a+c)\Gamma(a+d)\Gamma(b+c)\Gamma(b+d)}{\Gamma(a+b+c+d)}.$$

<u>2nd Barnes' lemma</u>

$$\int_{-i\infty}^{i\infty} dz \, \frac{\Gamma(a+z)\Gamma(b+z)\Gamma(c+z)\Gamma(d-z)\Gamma(e-z)}{\Gamma(a+b+c+d+e+z)} = \frac{\Gamma(a+d)\Gamma(a+e)\Gamma(b+d)\Gamma(b+e)\Gamma(c+d)\Gamma(c+e)}{\Gamma(a+b+d+e)\Gamma(a+c+d+e)\Gamma(b+c+d+e)}.$$

$$\mathbf{I}^{(1)}(\mathbf{\varepsilon}) = -C_F \frac{e^{\varepsilon \gamma}}{\Gamma(1-\varepsilon)} \left(\frac{1}{\varepsilon^2} + \frac{3}{2\varepsilon}\right) \left(-\frac{\mu^2}{s}\right)^{\varepsilon}$$

$$\begin{split} \mathrm{I}^{(2)}(\varepsilon) &= -\frac{1}{2} \mathrm{I}^{(1)}(\varepsilon) \left(\mathrm{I}^{(1)}(\varepsilon) + \frac{2\beta_0}{\varepsilon} \right) + \frac{e^{-\varepsilon\gamma}\Gamma(1-2\varepsilon)}{\Gamma(1-\varepsilon)} \left(\frac{\beta_0}{\varepsilon} + K \right) \mathrm{I}^{(1)}(2\varepsilon) \\ &+ H^{(2)}(\varepsilon) \,, \end{split}$$

$$K = \left(\frac{67}{18} - \frac{\pi^2}{6}\right) C_A - \frac{10}{9} T_F n_f.$$

$$\begin{aligned} H^{(2)}(\varepsilon) &= 2\frac{e^{\varepsilon\gamma}}{4\varepsilon\Gamma(1-\varepsilon)} \left(-\frac{\mu^2}{s}\right)^{2\varepsilon} \left\{ \left(\frac{\pi^2}{2} - 6\,\zeta_3 - \frac{3}{8}\right) C_F^2 \right. \\ &+ \left(\frac{13}{2}\zeta_3 + \frac{245}{216} - \frac{23}{48}\pi^2\right) C_A C_F + \left(-\frac{25}{54} + \frac{\pi^2}{12}\right) C_F T_F n_f \right\} \end{aligned}$$

$$\begin{split} g^{3}(m_{s},x) &= \\ C_{A}C_{F} \left\{ \frac{1}{ms^{2}} \left[\frac{31}{240} (1-x)x\pi^{4} - \frac{107}{72} (1-x)x\pi^{2} - \frac{51157(1-x)x}{1296} + \frac{659}{36} (1-x)x\zeta_{3} + \frac{44}{3} (1-x)xL_{s} \right] \right. \\ &+ \frac{1}{ms} \left[\frac{31}{240} \left(4x^{2} - 4x + 3 \right) \pi^{4} - \frac{107}{72} \left(4x^{2} - 4x + 3 \right) \pi^{2} - \frac{51157(4x^{2} - 4x + 3)}{1296} + \frac{659}{36} \left(4x^{2} - 4x + 3 \right) \zeta_{3} \right. \\ &+ \frac{44}{3} \left(4x^{2} - 4x + 3 \right) L_{s} \right] + \left[-\frac{31}{20} \left(x^{2} - x + 1 \right) \pi^{4} + \frac{107}{6} \left(x^{2} - x + 1 \right) \pi^{2} + \frac{1}{108} \left(51157x^{2} - 51157x + (-23724x^{2} + 23724x - 23724) \zeta_{3} + 51157 \right) - 176 \left(x^{2} - x + 1 \right) L_{s} \right] \right\} \\ &+ C_{F}^{2} \left\{ \frac{1}{ms^{2}} \left[-\frac{11}{90} (1-x)x\pi^{4} + \frac{29}{12} (1-x)x\pi^{2} + \frac{255}{16} (1-x)x - 15(1-x)x\zeta_{3} \right] \right. \\ &+ \frac{1}{ms} \left[-\frac{11}{90} \left(4x^{2} - 4x + 3 \right) \pi^{4} + \frac{29}{12} \left(4x^{2} - 4x + 3 \right) \pi^{2} + \frac{255}{16} \left(4x^{2} - 4x + 3 \right) - 15 \left(4x^{2} - 4x + 3 \right) \zeta_{3} \right] \right. \\ &+ \left. \left. \left[\frac{22}{15} \left(x^{2} - x + 1 \right) \pi^{4} - 29 \left(x^{2} - x + 1 \right) \pi^{2} + \frac{45}{4} \left(-17x^{2} + 17x + (16x^{2} - 16x + 16) \zeta_{3} - 17 \right) \right] \right\} \\ &+ n_{f} T_{F} C_{F} \left\{ \frac{1}{ms^{2}} \left[\frac{7}{18} (1-x)x\pi^{2} + \frac{4085}{324} \left(1-x \right) x - \frac{1}{9} (1-x)x\zeta_{3} - \frac{16}{3} (1-x)xL_{s} \right] \\ &+ \left[-\frac{14}{3} \left(x^{2} - x + 1 \right) \pi^{2} + \frac{1}{27} \left(-4085x^{2} + 4085x + \left(36x^{2} - 36x + 36 \right) \zeta_{3} - 4085 \right) + 64 \left(x^{2} - x + 1 \right) L_{s} \right] \right\} \end{split}$$

$$L_m = \log(m_s)$$
, $L_s = \log\left(\frac{s}{\mu^2}\right)$, $L_x = \log(x)$, $L_y = \log(1-x)$