## R(s), Bjorken sum rule and the Crewther Relation in order $\alpha_{s}^{4}$

Konstantin Chetyrkin
(based on /very/ recent results obtained in collaboration to
P. Baikov and J. Kühn

## RAD © 2009

- intro: current status of $R(s)$ (changes since RADCOR-2007) and NNNLO determinations of $\alpha_{s}$
- the problem of reliability of the $\mathcal{O}\left(\boldsymbol{\alpha}_{\boldsymbol{s}}{ }^{4}\right)$ result for $R(s)$
- DIS sum rules and the generalized Crewther relation
/R. Crewther (1972); D. Broadhurst and A. Kataev (1993)/
- (new!) the Bjorken sum rule in $\mathcal{O}\left(\boldsymbol{\alpha}_{s}{ }^{4}\right)$ for QCD
- (new!) results for the Bjorken sum rule and the (non-singlet) Adler function for a generic gauge group in $\mathcal{O}\left(\alpha_{s}{ }^{4}\right)$
- (new!) successfull test of the both results (and the quenched QED $\beta$ function) with the (generalized) Crewther relation
- Conclusions and Perspectives

$$
R(s)=\sigma_{t o t}\left(e^{+} e^{-} \rightarrow \text { hadrons }\right) / \sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)
$$

related (via unitarity) to the correlator of the EM quark currents:


$$
\begin{gathered}
R(s) \approx \Im \Pi(s-i \delta) \\
3 Q^{2} \Pi\left(q^{2}=-Q^{2}\right)=\int e^{i q x}\langle 0| T\left[j_{\mu}^{v}(x) j_{\mu}^{v}(0)\right]|0\rangle d x
\end{gathered}
$$

To conveniently sum the RG-logs one uses the Adler function:

$$
\begin{aligned}
& D\left(Q^{2}\right)=Q^{2} \frac{d}{d Q^{2}} \Pi\left(q^{2}\right)=Q^{2} \int \frac{R(s)}{\left(s+Q^{2}\right)^{2}} d s \\
& D\left(Q^{2}\right)=1+\sum_{n>1} d_{n} a_{s}^{n} \quad\left(a_{s} \equiv \alpha_{s} / \pi, \mu=Q\right)
\end{aligned}
$$

## Status of R(s) ( $\overline{\mathbf{M S}}$-scheme, $\mu^{2}=s$ ) since 1991 till 2007

$$
\begin{aligned}
& R(s)=1+\frac{\alpha_{\mathrm{s}}}{\pi}+\left(1.9857-0.1152 \mathrm{n}_{\mathrm{f}}\right) \frac{\alpha_{\mathrm{s}}^{2}}{\pi^{2}} \\
& +\left(-6.6369-1.2001 \mathbf{n}_{\mathrm{f}}-0.00518 \mathbf{n}_{\mathrm{f}}^{2}\right) \frac{\alpha_{\mathrm{s}}^{3}}{\pi^{3}}
\end{aligned}
$$

/Gorishnii, Kataev, Larin, (1991); in Feynman gauge /Surguladze, Samuel, (1991); in Feynman gauge
K.Ch, (1997); in general covariant gauge /

$$
\begin{gathered}
d_{4}\left(N_{F}=3\right)= \\
\frac{78631453}{20736}-\frac{1704247}{432} \zeta_{3}+\frac{4185}{8} \zeta_{3}^{2}+\frac{34165}{96} \zeta_{5}-\frac{1995}{16} \zeta_{7}
\end{gathered}
$$

$$
\approx 49.0757
$$

and, finally, for the very $R(s)$ :

$$
1+a_{s}+1.6398 a_{s}^{2}+6.3710 a_{s}^{3}-106.8798 a_{s}^{4}
$$

or with kinematical (trivial!) $\pi^{2}$ terms separated

$$
r_{4}=49.0757-\underline{155.956}
$$

$$
\begin{aligned}
& d_{4}=n_{f}^{3}\left[-\frac{6131}{5832}+\frac{203}{324} \zeta_{3}+\frac{5}{18} \zeta_{5}\right] \quad \text { ("renormalon" chain /M. Beneke 1993/) } \\
& +n_{f}^{2}\left[\frac{1045381}{15552}-\frac{40655}{864} \zeta_{3}+\frac{5}{6} \zeta_{3}^{2}-\frac{260}{27} \zeta_{5}\right] \text { /Baikov, Kühn, K.Ch. (2002)/ } \\
& \quad+\boldsymbol{n}_{\boldsymbol{f}}\left[-\frac{\mathbf{1 3 0 4 4 0 0 7}}{\mathbf{1 0 3 6 8}}+\frac{\mathbf{1 2 2 0 5}}{\mathbf{1 2}} \zeta_{\mathbf{3}}-\mathbf{5 5} \boldsymbol{\zeta}_{\mathbf{3}}^{\mathbf{2}}+\frac{\mathbf{2 9 6 7 5}}{\mathbf{4 3 2}} \zeta_{5}+\frac{\mathbf{6 6 5}}{\mathbf{7 2}} \zeta_{\mathbf{7}}\right]
\end{aligned}
$$

$$
+\left[\frac{144939499}{20736}-\frac{5693495}{864} \zeta_{3}+\frac{5445}{8} \zeta_{3}^{2}+\frac{65945}{288} \zeta_{5}-\frac{7315}{48} \zeta_{7}\right]
$$

Results for the very $\mathbf{R}(\mathbf{s})$ in $\mathcal{O}\left(\alpha_{s}^{4}\right)$

$$
\begin{gathered}
R=1+a_{s}+\left(1.9857-0.1152 n_{f}\right) a_{s}^{2}+\left(-6.63694-1.20013 n_{f}-0.00518 n_{f}^{2}\right) a_{s}^{3}+ \\
\\
\left.+\mathbf{+ ( - 1 5 6 . 6 1}+\mathbf{1 8 . 7 7} \boldsymbol{n}_{\boldsymbol{f}}-\mathbf{0 . 7 9 7 4} \boldsymbol{n}_{\boldsymbol{f}}^{\mathbf{2}}+\mathbf{0 . 0 2 1 5 2} \boldsymbol{n}_{\boldsymbol{f}}^{\mathbf{3}}\right) \boldsymbol{a}_{\boldsymbol{s}}^{4}
\end{gathered}
$$

## World Summary of $\alpha_{s}$ 2009:



## Missing Singlet terms in $\mathrm{R}(\mathrm{s})$ and $Z \rightarrow$ hadrons decays


$+\ldots$

## How reliable are our results?

History of $R(s)$ teaches us to be cautious:
$\sim 20$ years ago A. Kataev (with S. Gorishny and S. Larin) first produced a severly wrong result for the $\mathcal{O}\left(\alpha_{s}^{3}\right)$ term (corrected only by three years later!) in $R(s)$ and now he himself (rightfully!) rises an important question ${ }^{\star}$ of correctness of the first $\mathcal{O}\left(\alpha_{s}^{4}\right)$ result and calls for an urgent check of it

* A. L. Kataev,

Is it possible to check urgently the 5-loop analytical results for the $e^{+} e^{-}$-annihilation Adler function?
arXiv:0808.312v1
we do understand the problem since long:
> "A golden rule well-known among multi-loop people says that a result of a multi-loop calculation can be trusted and considered as the result only if it is confirmed by an independent calculation preferably made by a different group and with the use of the general covariant gauge."

(cited from K. Ch., Corrections of order $a_{s}^{3}$ to $R_{\text {had }}$ in $p Q C D$ with light gluinos, Phys. Lett. B391, p. 403 (1997) )
Unfortunately, at the moment we are not aware about any independent team which would be planning to check our results in full...

In addition: we can not not compute in general gauge as it enormously (by an order of magnitude!) increases overall comlexity of calculations...

## BUT, in spite of all these sad circumstances,

very recently two powerfull checks of our results have been done !!!:
A. all non-trivial master integrals

have been successfully reproduced (with at least 3-digit accuracy) by numerical integration (with the use of quite sophisticated sector technique) by V. Smirnov, A. Smirnov and M. Tentyukov (to be published)
B. By computing $\mathcal{O}\left(\boldsymbol{\alpha}_{s}{ }^{4}\right)$ corrections to the polarized Bjorken sum rule and the Adler function for the general gauge group we have checked that the generalized Crewther relation
-which in order $\alpha_{s}^{4}$ provide as as many as SIX!-
-HIGHLY NON-TRIVIAL constraintsis indeed identically fulfilled by our result.

## DIS Sum Rules

- the polarized Bjorken sum rule $\left(a_{s} \equiv \frac{\alpha_{s}}{\pi}\right)$

$$
\boldsymbol{B} j p\left(Q^{2}\right)=\int_{0}^{1}\left[g_{1}^{e p}\left(x, Q^{2}\right)-g_{1}^{e n}\left(x, Q^{2}\right)\right] d x=\frac{1}{6}\left|\frac{g_{A}}{g_{V}}\right| C^{B j p}\left(a_{s}\right)
$$

Coefficient function $C^{B j p}\left(a_{s}\right)$ is fixed by OPE of two non-singlet vector currents (up to power suppressed corrections)

$$
\begin{equation*}
\left.i \int T V_{\alpha}^{a}(x) V_{\beta}^{b}(0) e^{i q x} d x\right|_{q^{2} \rightarrow \infty} \approx C_{\alpha \beta \rho}^{Q, a b c} A_{\rho}^{c}(0)+\ldots \tag{1}
\end{equation*}
$$

where

$$
C_{\alpha \beta \rho}^{Q, a b c} \sim i d^{a b c} \epsilon_{\alpha \beta \rho \sigma} \frac{q^{\sigma}}{Q^{2}} C^{B j p}\left(a_{s}\right)
$$

and $Q^{2}=-q^{2}$

- the Gross-Llewellyn Smith sum rule

$$
G L S\left(Q^{2}\right)=\frac{1}{2} \int_{0}^{1} F_{3}^{\nu p+\bar{\nu} p}\left(x, Q^{2}\right) d x=3 C_{G L S}\left(a_{s}\right)
$$

the function $C_{G L S}\left(a_{s}\right)$ comes from operator-product expansion of the axial and vector non-singlet currents

$$
\left.i \int T A_{\mu}^{a}(x) V_{\nu}^{b}(0) e^{i q x} d x\right|_{q^{2} \rightarrow \infty} \approx C_{\mu \nu \alpha}^{V, a b} V_{\alpha}(0)+\ldots
$$

where $C_{\mu \nu \alpha}^{V, a b} \sim i \delta^{a b} \epsilon_{\mu \nu \alpha \beta} q^{q^{2}} C_{G L S}\left(a_{s}\right)$
Note that both sum rules are unambiguous /modulo higher twists!/ predictions of QCD which in principle could be confronted with experimental data

As is well-known, the evaluation of L-loop corrections to a CF of OPE could be done in terms of massless L-loop propagators (S. Gorisny, S. Larin and F. Tkachov (1982)) $\Longrightarrow$ one could use techniques developed for $R(s)$

$B j p(Q)$


At order $\alpha_{s}^{3}$ both CF's were computed in early nineties. The next order is contributed by about 54 thousand of 4-loop diagrams... (cmp. to $\approx 20$ thousand of 5-loop diagrams contributing to $R(s)$ at the same order)

The Crewther relation states that in the conformal invariant limit $(\beta \equiv 0) C_{B j p}\left(a_{s}\right)$ is related to the (nonsinglet) Adler function via the following beautiful equality

$$
\left.C_{B j p}\left(a_{s}\left(Q^{2}\right)\right) C_{D}^{N S}\left(a_{s}\left(Q^{2}\right)\right)\right|_{c-i}=1
$$

its generalization for real QCD reads:

$$
C^{B j p}\left(a_{s}\right) C_{D}^{N S}\left(a_{s}\right)=1+\frac{\beta\left(a_{s}\right)}{a_{s}}\left[K_{1} a_{s}+K_{2} a_{s}^{2}+K_{3} a_{s}^{3}+\ldots\right]
$$

Note that similar relation connects also the CF of the Gross-Llewellyn Smith sum rule to the full Adler function;

Main ingredients of the derivation: the AVV 3-point function and constraints on it from (approximate) conformal invariance + Adler-Bardeen anomaly theorem

## Crewther Relation: (short) bibliography

discovered: R.J. Crewther, Phys. Rev. Lett. 28, 1421 (1972).
S.L. Adler, C.G. Callan, D.J. Gross and R. Jackiw, Phys. Rev. D 6, 2982 (1972).
generalized for "real" QCD:
D.J. Broadhurst and A.L. Kataev, Phys. Lett. B 315, 179 (1993).
further developed:
G.T. Gabadadze and A.L. Kataev, JETP Lett. 61, 448 (1995).)
S.J. Brodsky, G.T. Gabadadze, A.L. Kataev and H.J. Lu, Phys. Lett. B 372, 133 (1996).
proven:
R.J. Crewther, Phys. Lett. B 397, 137 (1997).
V. M. Braun, G. P. Korchemsky and D. Müller, Prog. Part. Nucl. Phys. 51, 311 (2003)
discovered: R.J. Crewther, Phys. Rev. Lett. 28, 1421 (1972).
S.L. Adler, C.G. Callan, D.J. Gross and R. Jackiw, Phys. Rev. D 6, 2982 (1972).
> "downgraded" from ideal, conformal-invariant paradise to the dirty world of real QCD by David Broadhurst and Andrey Kataev:
> D.J. Broadhurst and A.L. Kataev, Phys. Lett. B 315, 179 (1993).

further developed: . . .
proven: ...
Note that
the generalization would not be possible without analytical $\mathcal{O}\left(\alpha_{s}^{3}\right)$ calculations of $D(q)$ and $C^{B j p}$; the latter would not be possible without dedicated people:
(S. Gorishny, A. Kataev, S. Larin; M. Samuel, L. Surguladze; J. Vermaseren, S. Larin, F. Tkachov)
and without dedicated tools:
SCHOONSCHIP / M. Veltman/ and FORM 2 / J. Vermaseren/

## Last but not the least:

21 century $\mathcal{O}\left(\alpha_{s}^{4}\right)$ calculations like we are doing would hardly be feasible without excellent possibilities for dealing with gigantic data streams offered by FORM 3 and, especially, such its versions as

## ParFORM and T-FORM

M. Tentyukov et al. "ParFORM: Parallel Version of the Symbolic Manipulation Program", cs/0407066.
M. Tentyukov, H. M. Staudenmaier, and J. A. M. Vermaseren. "ParFORM: Recent development". Nucl. Instrum. Meth., A559:224228, 2006.
M. Tentyukov and J. A. M. Vermaseren. "The multithreaded version of FORM", hep-ph/0702279"

## Which exactly constraints come from the Crewther relation?

$C^{B j p}\left(a_{s}\right) C_{D}^{N S}\left(a_{s}\right)=1+\frac{\beta\left(a_{s}\right)}{a_{s}}\left[K_{1} a_{s}+K_{2} a_{s}^{2}+K_{3} a_{s}^{3}+\ldots\right]$
If it is valid at order $a_{s}^{n}$, then at the next order $a_{s}^{n+1}$, we have

$$
\begin{gathered}
\left(d_{n+1}-C_{n+1}^{B j p}+\text { interference terms }\right) a_{s}^{n+1}=\beta_{0} a_{s}\left[K_{n} a_{s}^{n}\right] \\
\alpha_{s}^{1}:\left(d_{1}-C_{1}\right): C_{F} \Longleftrightarrow K_{0} \equiv 0 \leftarrow \text { one constraint } \\
\alpha_{s}^{2}:\left(d_{2}-C_{2}\right): C_{F}^{2}, T C_{F}, C_{F} C_{A} \Longleftrightarrow K_{1}: C_{F} \leftarrow \text { two constraints } \\
\alpha_{s}^{3}:\left(d_{3}-C_{3}\right): C_{F}^{3}, C_{F}^{2} C_{A}, C_{F} C_{A}^{2}, C_{F}^{2} T, C_{F} C_{A} T, C_{F} T^{2} \\
\hat{\mathbb{1}}
\end{gathered}
$$

$K_{2}: C_{F}^{2}, C_{F} C_{A}, C_{F} T \leftarrow$ three constraints

At last, at $\mathcal{O}\left(\alpha_{s}^{4}\right)$ there exist exactly 12 color strtuctures:

$$
C_{F}^{4}, C_{F}^{3} C_{A}, C_{F}^{2} C_{A}^{2}, C_{F} C_{A}^{3}, C_{F}^{3} T_{F} n_{f}, C_{F}^{2} C_{A} T_{F} n_{f},
$$

$C_{F} C_{A}^{2} T_{F} n_{f}, C_{F}^{2} T_{F}^{2} n_{f}^{2}, C_{F} C_{A} T_{F}^{2} n_{f}^{2}, C_{F} T_{F}^{3} n_{f}^{3}, d_{F}^{a b c d} d_{A}^{a b c d}, n_{f} d_{F}^{a b c d} d_{F}^{a b c d}$
while the coefficient $K_{3}$ is contributed by only 6 color structures:

$$
C_{F} T^{2}, C_{F} C_{A}^{2}, C_{F}^{2} T, C_{F} C_{A} T, C_{F}^{2} C_{A}, C_{F}^{3}
$$

Thus, we have $12-6=6$ constraints on the difference

$$
d_{4}-\left(C^{B j p}\right)_{4}
$$

3 of them are very simple: the above difference cannot contain

$$
C_{F}^{4}, d_{F}^{a b c d} d_{A}^{a b c d} \quad n_{f} d_{F}^{a b c d} d_{F}^{a b c d}
$$

remaining three are a bit more complicated

Calculations of the Adler $D^{N S}\left(a_{s}\right)$-function and the CF $C^{B j p}\left(a_{s}\right)$ of the Bjorken sum rule for the polarized DIS have been just finished for a generic gauge group at $\mathcal{O}\left(\boldsymbol{\alpha}_{s}{ }^{4}\right)$

$$
\begin{aligned}
C^{B j p}=1 & -a_{s}+a_{s}^{2}\left[-4.583+0.3333 n_{f}\right]+a_{s}^{3}\left[-41.44+7.607 n_{f}-0.1775 n_{f}^{2}\right] \\
& +a_{s}^{4}\left[-479.4+123.4 n_{f}-7.697 n_{f}^{2}+0.1037 n_{f}^{3}\right] \\
& C^{B j p}\left(n_{f}=3\right)=1-1 . a_{s}-3.583 a_{s}^{2}-20.22 a_{s}^{3} \square-175.7 a_{s}^{4}
\end{aligned}
$$

FAC/PMS prediction due to Kataev ans Starshenko (almost 15 years old!) for the $\mathcal{O}\left(\alpha_{s}^{4}\right)$ term at $n_{f}=3$ is $-130 a_{s}^{4}$

$$
\begin{gathered}
C^{B j p}\left(n_{f}=4\right)=1-a_{s}-3.25 a_{s}^{2}-13.85 a_{s}^{3}-102.4 a_{s}^{4} \\
C^{B j p}\left(n_{f}=5\right)=1-a_{s}-2.917 a_{s}^{2}-7.84 a_{s}^{3}-41.96 a_{s}^{4} \\
C^{B j p}\left(n_{f}=6\right)=1-a_{s}-2.583 a_{s}^{2}-2.185 a_{s}^{3}+6.2 a_{s}^{4}, \\
\text { K\&S for } n_{f}=6:+22 a_{s}^{4}
\end{gathered}
$$

|  | $d_{4}$ | $\left(1 / C^{B j p}\right)_{4}$ |
| :--- | :--- | :--- |
| $C_{F}^{4}$ | $\frac{4157}{2048}+\frac{3}{8} \zeta_{3}$ | $\frac{4157}{2048}+\frac{3}{8} \zeta_{3}$ |
| $\frac{d_{F}^{a b c d} d_{F}^{a b c d}}{\left(d_{R} / n_{f}\right)}$ | $-\frac{13}{16}-\zeta_{3}+\frac{5}{2} \zeta_{5}$ | $-\frac{13}{16}-\zeta_{3}+\frac{5}{2} \zeta_{5}$ |
| $\frac{d_{F}^{a b c d} d_{A}^{a b c d}}{d_{R}}$ | $\frac{3}{16}-\frac{1}{4} \zeta_{3}-\frac{5}{4} \zeta_{5}$ | $\frac{3}{16}-\frac{1}{4} \zeta_{3}-\frac{5}{4} \zeta_{5}$ |
| $T_{n}^{3} C_{F}$ | $-\frac{6131}{972}+\frac{203}{54} \zeta_{3}+\frac{5}{3} \zeta_{5}$ | $-\frac{605}{972}$ |
| $T_{n}^{2} C_{F}^{2}$ | $\frac{5713}{1728}-\frac{581}{24} \zeta_{3}+\frac{125}{6} \zeta_{5}+3 \zeta_{3}^{2}$ | $\frac{869}{576}-\frac{29}{24} \zeta_{3}$ |
| $T_{n}^{2} C_{F} C_{A}$ | $\frac{340843}{5184}-\frac{10453}{288} \zeta_{3}-\frac{170}{9} \zeta_{5}-\frac{1}{2} \zeta_{3}^{2}$ | $\frac{165283}{20736}+\frac{43}{144} \zeta_{3}-\frac{5}{12} \zeta_{5}+\frac{1}{6} \zeta_{3}^{2}$ |
| $T_{n} C_{F}^{3}$ | $\frac{1001}{384}+\frac{99}{32} \zeta_{3}-\frac{125}{4} \zeta_{5}+\frac{105}{4} \zeta_{7}$ | $-\frac{473}{2304}-\frac{391}{96} \zeta_{3}+\frac{145}{24} \zeta_{5}$ |
| $T_{n} C_{F}^{2} C_{A}$ | $\frac{32357}{13824}+\frac{10661}{96} \zeta_{3}-\frac{5155}{48} \zeta_{5}-\frac{33}{4} \zeta_{3}^{2}-\frac{105}{8} \zeta_{7}$ | $-\frac{17309}{13824}+\frac{1127}{144} \zeta_{3}-\frac{95}{144} \zeta_{5}-\frac{35}{4} \zeta_{7}$ |
| $T_{n} C_{F} C_{A}^{2}$ | $-\frac{(\cdots)}{(\cdots)}+\frac{8609}{72} \zeta_{3}+\frac{18805}{288} \zeta_{5}-\frac{11}{2} \zeta_{3}^{2}+\frac{35}{16} \zeta_{7}$ | $-\frac{(\cdots)}{(\cdots)}-\frac{59}{64} \zeta_{3}+\frac{1855}{288} \zeta_{5}-\frac{11}{12} \zeta_{3}^{2}+\frac{35}{16} \zeta_{7}$ |
| $C_{F}^{3} C_{A}$ | $-\frac{253}{32}-\frac{139}{128} \zeta_{3}+\frac{2255}{32} \zeta_{5}-\frac{1155}{16} \zeta_{7}$ | $-\frac{8701}{4608}+\frac{1103}{96} \zeta_{3}-\frac{1045}{48} \zeta_{5}$ |
| $C_{F}^{2} C_{A}^{2}$ | $-\frac{592141}{18432}-\frac{43925}{384} \zeta_{3}+\frac{6505}{48} \zeta_{5}+\frac{1155}{32} \zeta_{7}$ | $-\frac{435425}{55296}-\frac{1591}{144} \zeta_{3}+\frac{55}{9} \zeta_{5}+\frac{385}{16} \zeta_{7}$ |
| $C_{F} C_{A}^{3}$ | $\frac{(\cdots)}{(\cdots)}-\frac{(\cdots)}{(\cdots)} \zeta_{3}-\frac{77995}{1152} \zeta_{5}+\frac{605}{32} \zeta_{3}^{2}-\frac{385}{64} \zeta_{7}$ | $\frac{(\cdots)}{(\cdots)}-\frac{(\cdots)}{(\cdots)} \zeta_{3}-\frac{12545}{1152} \zeta_{5}+\frac{121}{96} \zeta_{3}^{2}-\frac{385}{64}$ |

$$
\begin{gathered}
C^{B j p}\left(\alpha_{s}\right) C_{D}^{N S}\left(\alpha_{s}\right)=1+\frac{\beta\left(\alpha_{s}\right)}{\alpha_{s}} C_{F}\left[K_{1} \alpha_{s}+K_{2} \alpha_{s}^{2}+K_{3} \alpha_{s}^{3}+\ldots\right] \\
K_{1}=-\frac{21}{8}+3 \zeta_{3} \\
K_{2}=\quad n_{f} T \quad\left(\frac{163}{24}-\frac{19}{3} \zeta_{3}\right) \\
+C_{A} \quad\left(-\frac{629}{32}+\frac{221}{12} \zeta_{3}\right) \\
+C_{F} \quad\left(\frac{397}{96}+\frac{17}{2} \zeta_{3}-15 \zeta_{5}\right)
\end{gathered}
$$

$$
\begin{aligned}
K_{3}= & n_{f}^{2} T^{2} \\
+C_{A}^{2} & \left(-\frac{307}{18}+\frac{203}{18} \zeta_{3}+5 \zeta_{5}\right) \\
+C_{F} n_{f} T & \left(-\frac{7729}{1152}-\frac{917}{16} \zeta_{3}+\frac{125)}{2} \zeta_{5}+9 \zeta_{3}^{2}\right) \\
+C_{A} n_{f} T & \left(\frac{1055}{9}-\frac{(2521)}{36} \zeta_{3}-\frac{125)}{3} \zeta_{5}-2 \zeta_{3}^{2}\right) \\
+C_{A} C_{F} & \left(\frac{99757}{2304}+\frac{8285)}{96} \zeta_{3}-\frac{(1555}{12} \zeta_{5}-\frac{105}{8} \zeta_{7}\right) \\
+C_{F}^{2} & \left(\frac{2471}{768}+\frac{61}{8} \zeta_{3}-\frac{715}{8} \zeta_{5}+\frac{315}{4} \zeta_{7}\right)
\end{aligned}
$$

## Comments:

## The Crewther test is highly non-trivial:

- four-loop box-type diagrams (in propagator kinematics) versus five loop propagators
- No IR-trickery is neccessary in calculation of $C_{B j p}\left(a_{s}\right)$
- As a result we he have been able to check that $C_{B j p}\left(a_{s}\right)$ is indeed gauge-independent (the Adler finction was computed in the simplest, Feynman gauge only!)
- in the course of our calculations we have had to extend the Larin treatment of Hooft-Veltman $\gamma_{5}$ at 4-loop level (a natural object for the dim. reg., which really appears in the course of calculations, is $\gamma^{[\mu \nu \alpha]}$ instead of $\gamma_{5} \gamma^{\mu}$ with anticommuting $\gamma_{5}$; the mismatch should be corrected by the Larin factor)


## CONCLUSION

- The Adler $D^{N S}\left(a_{s}\right)$-function and the CF $C^{B j p}\left(a_{s}\right)$ of the Bjorken sum rule for the polarized DIS have been both analytically evaluated for a generic gauge group at $\mathcal{O}\left(\alpha_{s}{ }^{4}\right)$
- The generalized Crewther relation puts as many as 6 highly non-tivial constraints on the difference

$$
d_{4}-\left(C^{B j p}\right)_{4}
$$

which are all fulfilled!

- all our master integrals have been independently checked by numerical integration

Thus, our results for $D^{N S}\left(a_{s}\right)$ (and, thus, for the very ratio $R(s)$ ) should be considered as correct beyond any (reasonable) doubt

## Perspectives

- Calculation of the Gross-Llewellyn Smith sum rule have been just finished and its results are now under analysis
- Once calculations for $D^{S I}$ are completed (presumably within a year) we will have another strong test of all the machinery
- Calculations of the Bjorken sum rule for the unpolarized DIS as well as the Ellis-Jaffe sum rule (most complicated due to the appearance of the flavour-singlet axial-vector current/non-abelian anomaly!/) are in reach of our methods

