The Collider-Cosmology Interface III

M.J. Ramsey-Musolf U Mass Amherst

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers

University of Massachusetts Amherst

http://www.physics.umass.edu/acfi/

HEP School, Lanzhou 8/1-8/18

Lecture III Goals

- Introduce the key ideas for relating the electroweak phase transition and WIMP dark matter in the context of electroweak baryogenesis
- Provide general considerations regarding dark matter model building
- Explain how electroweak baryogenesis works
- Discuss simple EWPT-DM scenarios and their collider probes
- Invite questions !

Lecture III Outline

- I. Electroweak Phase Transition & Dark Matter: Overview
- II. WIMP Dark Matter: Context & Properties
- III. Electroweak Baryogenesis: How It Works
- IV. EWPT & DM: Scenarios & Collider Probes

Selected References

- *M. Quiros, hep-ph/9901312*
- S. Profumo, MJRM, G. Shaugnessy, 0705.2425 [hep-ph]
- H. Patel & MJRM, 1101.4665 [hep-ph]
- D. Morrissey & MJRM, 1206.2941 [hep-ph]
- K. Asamagan et al, 1604.05324 [hep-ph]

I. EWPT & Dark Matter: Overview

Fermion Masses & Baryon Asymmetry

This lecture

Baryogenesis Scenarios

Thermal History

Ingredients for Baryogenesis

• B violation (sphalerons)

C & CP violation

Out-of-equilibrium or
CPT violation

-Scenarios:-leptogonesis, EW baryogenesis, Afflek-Dine, asymmetric DM, cold baryogenesis, postsphaleron baryogenesis...

Standard Model

*

*

BSM

First order EWPT

EWSB: The Scalar Potential

What was the thermal history of EWSB ?

EW Phase Transition: St'd Model

SM EW: Cross over transition

First Order EWPT from BSM Physics

- Thermal loops involving new bosons
- T=0 loops (CW Potential)

Change tree-level vacuum structure

EWPT & Dark Matter

• Can the BSM particles that catalyze a first order EWPT also be viable dark matter candidates ?

II. WIMP Dark Matter: Context & Properties

Dark Matter Properties

- Electrically neutral & colorless
- Stable on cosmological time scales
- "Cold"
- Thermal or Non-Thermal

Thermal Dark Matter

Boltzmann Eqs:

1) $N \sim N_{EQ}$

2) N starts to depart from N_{EQ}

3) N "freezes out" at x_f

 $x_f \sim O(10) \rightarrow T \sim m/10$

Dark Matter Interactions

- Gravitational
- Non-grav interactions w/ St'd Model ?
- Non-grav interactions w/ itself ?

Particle Dark Matter Scenarios

Dark Matter Portals

Dark Matter Portals

- Gauge sector (SUSY neutralinos)
- Higgs portal (BSM scalars)
- QCD portal (Axion)
- Yukawa portal (neutrinos)

WIMP Dark Matter Probes

Thermal Abundance & Indirect Detection

WIMP DM: Ω_{DM} & Indirect Det

Real singlet exension: "xSM"

Barger, Langacker, McCaskey, MJRM, Shaugnessy 0706.4311 [hep-ph]

WIMP Dark Matter Probes

Direct Detection: WIMP-Nucleus scattering

WIMP Dark Matter: Direct Detection

WIMP Dark Matter Probes

DM Production at Colliders

WIMP Dark Matter: Colliders

III. Electroweak Baryogenesis: How It Works

Increasing m_h

Increasing m_h

31

Increasing m_h

New scalars

- Loop effects
- Tree-level barrier

"Strong" 1st order EWPT

Increasing m_h

— New scalars

Baryogenesis Gravity Waves Scalar DM LHC Searches

1st order EWPT **Bubble** nucleation

Е

EW Phase Transition: New Scalars & CPV

37

EW Phase Transition: New Scalars & CPV

38

IV. EWPT & DM: Scenarios & Collider Probes

Higgs Portal DM & EWPT

EW Phase Transition: Higgs Portal

. . .

$$\mathcal{O}_4 = \lambda_{\phi H} \ \phi^\dagger \phi \ H^\dagger H$$
 +

EW Phase Transition: Higgs Portal

- Renormalizable
- φ : singlet or charged under SU(2)_L x U(1)_Y
- Generic features of full theory (NMSSM, GUTS...)
- More robust vacuum stability
- Novel patterns of SSB

Extension	DOF	EWPT	DM
Real singlet: Z_2	1	~	*
Real singlet: Z_2	1	~	~
Complex Singlet	2	~	~
EW Multiplets	3+	~	~

May be low-energy remnants of UV complete theory & illustrative of generic features

May be low-energy remnants of UV complete theory & illustrative of generic features

Extension	DOF	EWPT	DM
Real singlet: Z_2	1	 	*
Real singlet: Z ₂	1	~	~
Complex Singlet	2	~	~
EW Multiplets	3+	~	~

May be low-energy remnants of UV complete theory & illustrative of generic features

EW Phase Transition: New Scalars

Increasing m_h

New scalars

Real Singlet: $\phi \rightarrow S$

Simplest Extension: two states $h_1 \& h_2$

Simplest Extension

Standard Model + real singlet scalar

$$V_{\rm HS} = \frac{a_1}{2} \left(H^{\dagger} H \right) S + \frac{a_2}{2} \left(H^{\dagger} H \right) S^2$$

- Strong first order EWPT
- Two mixed singlet-doublet states

Simplest Extension

Standard Model + real singlet scalar

Profumo, R-M, Shaugnessy JHEP 0708 (2007) 010

48

 T_{C} , Γ_{N} , Γ_{sph} , ...

EW Phase Transition: New Scalars

Profumo, R-M, Shaugnessy JHEP 0708 (2007) 010

EW Phase Transition: Singlet Scalars

Increasing m_h

Lattice	Authors	$M_{\rm h}^C$ (GeV)
4D Isotropic	[76]	80 ± 7
4D Anisotropic	[74]	72.4 ± 1.7
3D Isotropic	[72]	72.3 ± 0.7
3D Isotropic	[70]	72.4 ± 0.9

SM EW: Cross over transition

How does this picture change in presence of new TeV scale physics ? What is the phase diagram ?

EW Phase Transition: Singlet Scalars

EW Phase Transition: New Scalars

fb⁻¹

EW Phase Transition: Singlet Scalars

SFOEWPT Benchmarks: Resonant di-Higgs & precision Higgs studies

Kotwal, No, R-M, Winslow 1605.06123

See also: Huang et al, 1701.04442

EW Phase Transition: New Scalars

Modified Higgs Self-Coupling

EW Phase Transition: Singlet Scalars

see also Noble & Perelstein 0711.3018

EW Phase Transition: Singlet Scalars

Singlet-like pair production

Chen, Kozaczuk, Lewis 2017

Extension	DOF	EWPT	DM
Real singlet: Z_2	1	>	*
Real singlet: Z ₂	1	~	~
Complex Singlet	2	~	~
EW Multiplets	3+	~	r

May be low-energy remnants of UV complete theory & illustrative of generic features

The Simplest Extension

DM Scenario

Dark Matter Stability:

The Simplest Extension

DM Scenario

EW Phase Transition: Two-Step

Profumo, R-M, Shaugnessy 2007 Curtain, Meade, Yu: arXiv: 1409.0005 Jiang, Bian, Huang, Shu 1502.07574

EW Phase Transition: Singlet Scalars

Curtain, Meade, Yu: arXiv: 1409.0005

Z₂ symmetric real singlet extension

- Loop-induced 1-step transition
- 2-step transition for $\mu_{s}^{2} < 0$

* Singlet two step: see also Profumo, R-M, Shaugnessy 2007

EW Phase Transition: Singlet Scalars

Curtain, Meade, Yu: arXiv: 1409.0005

Z₂ symmetric real singlet extension

- Loop-induced 1-step transition
- 2-step transition for $\mu_{\rm S}^2 < 0$

VBF @ 100 TeV pp:

 $pp
ightarrow h \, jj$, h
ightarrow invis

* Singlet two step: see also Profumo, R-M, Shaugnessy 2007

EW Phase Transition: DM Direct Detection

Curtain, Meade, Yu: arXiv: 1409.0005

Z₂ symmetric real singlet extension

- Loop-induced 1-step transition
- 2-step transition for $\mu_{\rm S}^2 < 0$

Scalar singlet DM: direct detection

Extension	DOF	EWPT	DM
Real singlet: Z_2	1	~	*
Real singlet: Z_2	1	~	~
Complex Singlet	2	~	V
EW Multiplets	3+	~	~

May be low-energy remnants of UV complete theory & illustrative of generic features

EWPT: Complex Singlet Scalars

SFOEWPT-viable parameters

- DM: Spontaneously & softlybroken global U(1)
- Possibility of SFOEWPT & DM candidate

Chiang, MJRM, Senaha '17 65

Extension	DOF	EWPT	DM
Real singlet: Z_2	1	~	*
Real singlet: Z_2	1	~	~
Complex Singlet	2	~	~
EVV Multiplets	3+	~	~

May be low-energy remnants of UV complete theory & illustrative of generic features

Real Triplet

3,0)

$$\Sigma^0, \Sigma^+, \Sigma^-$$
 ~ (1,

Fileviez-Perez, Patel, Wang, R-M: PRD 79: 055024 (2009); 0811.3957 [hep-ph]

$$V_{H\Sigma} = \frac{a_1}{2} H^{\dagger} \Sigma H + \frac{a_2}{2} H^{\dagger} H \operatorname{Tr} \Sigma^2$$

EWPT:
$$a_{1,2} \neq 0$$
 & $<\Sigma^0 > \neq 0$
DM & *EWPT:* $a_1 = 0$ & $<\Sigma^0 > = 0$

Small: *ρ*-param

Real Triplet

$$\Sigma^{0}, \Sigma^{+}, \Sigma^{-} \sim (1, 3, 0)$$

Fileviez-Perez, Patel, Wang, R-M: PRD 79: 055024 (2009); 0811.3957 [hep-ph]

$$V_{H\Sigma} = + \frac{a_2}{2} H^{\dagger} H \operatorname{Tr} \Sigma^2$$

EWPT: $a_{1,2} \neq 0 \& <\Sigma^0 > \neq 0$

DM Stability

EW Multiplets: Two-Step EWPT

New scalars

- Step 1: thermal loops
- Step 2: tree-level
 barrier

EW Multiplets: Two-Step EWPT

Patel, R-M: arXiv 1212.5652 ; Blinov et al: 1504.05195

EW Multiplets: Real Triplet

Patel, R-M: arXiv 1212.5652 ; Blinov et al: 1504.05195

EW Multiplets: Real Triplet

Patel, R-M: arXiv 1212.5652 ; Blinov et al: 1504.05195
EW Multiplets: Two-Step EWPT

Using BR(H \rightarrow ZZ^{*}) from FCC-ee (known at ~0.3% from δg_{HZZ} ~0.15%), production ratios $\sigma(H\rightarrow$ XY)/ $\sigma(H\rightarrow$ ZZ^{*}) for p_T>100 GeV return the following stat precision on the **absolute value** of rare BRs

Patel, R-M: arXiv 1212.5652 ; Blinov et al: 1504.05195

Lecture III Key Ideas

- Role of 1st order EWPT in electroweak baryogenesis
- Thermal WIMP dark matter: relic density, indirect & direct detection signatures, collider probes
- Higgs portal EWPT & dark matter: simplest singlet & electroweak multiplet scalar sector extensions; Z₂ symmetry; multi-step EW symmetry breaking
- Collider implications: resonant di-Higgs production; modified Higgs self-coupling, Higgs signal strengths (mixing), Higgs di-photon decay

Research Opportunities

- Finite T, out-of-equilibrium quantum field theory
- Model building
- Collider phenomenology
- Inter-frontier connections: high-energy, cosmic, & high sensitivity

Back Up Slides

EW Multiplets: 2HDM

SFOEWPT

testable w/

LHC

bb ll : 5 σ for 40 fb⁻¹

4I + MET: 5 σ for 60 fb⁻¹

Dorsch et al

See S. Su talk

EW Phase Transition: SUSY

MSSM: Light Stop Scenario

Lattice: Laine, Rummukainen

Decreasing RH stop mass ------

EW Phase Transition: SUSY

MSSM: Light Stop Scenario

Lattice: Laine, Rummukainen

Decreasing RH stop mass ------

EW Phase Transition: SUSY

Curtin, Jaiswal, Meade 1203.2932

 $MSSM + \delta \lambda_4 (H_u^{\dagger} H_u)^2$

Katz, Perelstein, R-M, Winslow 1509.02934

Vacuum Stability & Perturbativity

Preserving EW Min

"Funnel plot"

$$\beta_{\lambda} = \frac{1}{16\pi^2} \left(4\lambda^2 + 12a_2^2 - 36y_t^4 + 12\lambda y_t^2 - 9\lambda g^2 - 3\lambda {g'}^2 + \frac{9}{4}{g'}^4 + \frac{9}{2}g^2 {g'}^2 + \frac{27}{4}g^4 \right)$$

$$DM-H \ coupling \qquad top \ loops$$

Gonderinger, Li, Patel, R-M

Temperature Dependence of V(φ)

Standard Model Effective Potential: High-T expansion

$$V_{\text{eff}}(\phi, T) = D(T^2 - T_0^2)\phi^2 - ET\phi^3 + \frac{\bar{\lambda}}{4}\phi^4 + \dots$$

- Potential is gauge-dependent
- *T_C* is gauge-independent: Nielsen identities
- Detailed discussion: H. Patel & MJRM: 1101.4665 [hep-ph]

EW Phase Transition: Singlet Scalars

SFOEWPT Benchmarks: Resonant di-Higgs

Kotwal, No, R-M, Winslow 1605.06123

See also: Huang et al, 1701.04442

