The Collider-Cosmology Interface II

M.J. Ramsey-Musolf U Mass Amherst

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers

University of Massachusetts Amherst

http://www.physics.umass.edu/acfi/

HEP School, Lanzhou 8/1-8/18

Lecture II Goals

- Explain how standard thermal leptogenesis works and its connection with the see saw mechanism for neutrino masses
- Illustrate the implementation of the Sakharov criteria
- Introduce the concept of sphalerons (anomalous symmetry breaking)
- Discuss how BSM searches at colliders may preclude standard thermal leptogenesis & provide clues about alternatives
- Invite questions !

Lecture II Outline

- I. Leptogenesis & the Seesaw Mechanism
- II. Leptogenesis Overview
- III. Leptogenesis & Colliders

Selected References

- *Mu-Chun Chen: 0703087*
- Fukugita & Yanagida: Phys. Lett. B 174 (1986) 45
- Buchmuller, Di Bari, Plumacher: 0401240
- Buchmuller, Peccei, Yanagida: 0502169
- Luty: Phys. Rev. D45 (1992) 455
- Dev et al: 1711.02861

I. Leptogenesis & the See Saw Mechanism

Neutrino Masses & Baryon Asymmetry

This lecture

Baryogenesis Scenarios

Energy Scale (GeV)

7

Seesaw Mechanism

- Is the neutrino its own antiparticle ?
- Why is there more matter than antimatter ?
- Why are neutrino masses so small?

Seesaw Mechanism

- Is the neutrino its own antiparticle ?
- Why is there more matter than antimatter ?
- Why are neutrino masses so small?

Are Neutrinos = Antineutrinos ?

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac
$$Majorana$$

One generation: $SM + one N_R$

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} N_R + \text{h.c.} + M_N \bar{N}_R^C N_R$$

$$\mathcal{L}_{\text{mass}} = \left(\bar{\nu}_L \ \bar{N}_R^C \right) \begin{pmatrix} 0 & m_D \\ m_D \ M_N \end{pmatrix} \begin{pmatrix} \nu_L \\ N_R \end{pmatrix}$$

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac Majorana

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac
$$Majorana$$

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac
$$Majorana$$

Seesaw scale:

Standard thermal leptogenesis

• For
$$m_{D}$$
 ~ m_{t} $ightarrow$ M_{N} ~ 10¹⁶ GeV

• For
$$m_{D}$$
 ~ $m_{ au}$ $ightarrow$ M_{N} ~ 10¹² GeV

• For
$$m_D \sim 0.1~m_e
ightarrow M_N \sim 10^3~GeV$$

Take $m_1 \sim 10^{-3} \, eV$

 $m_1 = m_D \times \left(\frac{m_D}{M_N}\right)$

II. Leptogenesis Overview

- Heavy neutrinos decay out of equilibrium in early universe
- Majorana neutrinos can decay to particles and antiparticles
- Rates can be slightly different (CP violation) $\Gamma(N \to \ell H) \neq \Gamma(N \to \overline{\ell} H^*)$
- Resulting excess of leptons over anti-leptons partially converted into excess of quarks over anti-quarks by Standard Model sphalerons

- Heavy neutrinos decay out of equilibrium in early universe
- Majorana neutrinos can decay to particles and antiparticles
- Rates can be slightly different (CP violation) $\Gamma(N \to \ell H) \neq \Gamma(N \to \overline{\ell} H^*)$
- Resulting excess of leptons over anti-leptons partially converted into excess of quarks over anti-quarks by Standard Model sphalerons

• Heavy neutrinos decay out of equilibrium in early universe

Hubble rate

$$H(T) ~\sim~ 1.66~g_*~\frac{T^2}{M_P}$$

• Heavy neutrinos decay out of equilibrium in early universe

Simple estimation

 $\Gamma_N \leq H(T=M_N)$

• Heavy neutrinos decay out of equilibrium in early universe

Simple estimation
$$\Gamma_N \leq H(T=M_N)$$

$$m_1 \approx m_*$$

$$m_1 \approx \frac{m_D^2}{M_N}$$

$$m_* = 8\pi * (1.66g_*) \frac{v^2}{M_P}$$

- Heavy neutrinos decay out of equilibrium in early universe
- Majorana neutrinos can decay to particles and antiparticles
- Rates can be slightly different (CP violation) $\Gamma(N \to \ell H) \neq \Gamma(N \to \overline{\ell} H^*)$
- Resulting excess of leptons over anti-leptons partially converted into excess of quarks over anti-quarks by Standard Model sphalerons

- Heavy neutrinos decay out of equilibrium in early universe
- Majorana neutrinos can decay to particles and antiparticles
- Rates can be slightly different (CP violation) $\Gamma(N \to \ell H) \neq \Gamma(N \to \overline{\ell} H^*)$
- Resulting excess of leptons over anti-leptons partially converted into excess of quarks over anti-quarks by Standard Model sphalerons

CPV Asymmetry

$$\varepsilon = \frac{\Gamma(N \to \ell H) - \Gamma(N \to \bar{\ell} H^*)}{\Gamma(N \to \ell H) + \Gamma(N \to \bar{\ell} H^*)}$$

CPV Asymmetry: Quantum Interference

• Heavy neutrinos decay out of equilibrium in early universe

 $\Delta L = 2$

Converts leptons into anti-leptons

Boltzmann Equations: Heavy N_R

B-L Asymmetry

Lepton number

$$Y_L \equiv \frac{n_\ell - n_{\bar{\ell}}}{s}$$

 $Y_L \approx -Y_{B-L}$

Boltzmann: N_R & B-L

Basic equations: decays & inverse decays

$$\frac{dY_{N}}{dz} = -(D+S)\left(Y_{N}-Y_{N}^{EQ}\right)$$

$$\frac{dY_{B-L}}{dz} = -\epsilon D\left(Y_{N}-Y_{N}^{EQ}\right) - WY_{B-L}$$
CPV Decay
Asymmetry: source
Wash out: Inverse decays, $\Delta L = 1, 2$
processes...

Putting pieces together: B-L asymmetry

- Heavy neutrinos decay out of equilibrium in early universe
- Majorana neutrinos can decay to particles and antiparticles
- Rates can be slightly different (CP violation) $\Gamma(N \to \ell H) \neq \Gamma(N \to \overline{\ell} H^*)$
- Resulting excess of leptons over anti-leptons partially converted into excess of quarks over anti-quarks by Standard Model sphalerons

Electroweak Sphalerons

Electroweak Sphalerons

Electroweak Sphalerons

EW sphalerons convert B-L asymmetry to Y_B

Baryon Asymmetry

Convert Y_{B-L} to Y_B :

$$Y_B = C_S Y_{B-L}$$

$$C_S = \frac{8N_F + 4N_H}{22N_F + 13N_H} = \frac{28}{79}$$

Davidson-Ibarra Bound

Davidson, Ibarra '02
Thermal History

III. Leptogenesis & Colliders

Leptogenesis & Colliders

- Discovery of TeV-scale LNV could rule out high scale leptogenesis
- Discovery of heavy neutral leptons (HNL) could point to low scale leptogenesis

TeV LNV & Leptogenesis

Energy Scale (GeV)

Boltzmann: N_R & B-L

Basic equations: decays & inverse decays

TeV LNV & Leptogenesis

Energy Scale (GeV)

Boltzmann: N_R & B-L

Basic equations: decays & inverse decays

TeV LNV & Leptogenesis

- Discovery of TeV-scale LNV could rule out high scale leptogenesis
- Discovery of heavy neutral leptons (HNL) could point to low scale leptogenesis

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac
$$Majorana$$

General Classification: Helo et al, PRD 88.011901, 88.073011

vSM: Type I See-Saw

Mass: standard see-saw but TeV scale

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac Majorana

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac
$$Majorana$$

General Classification: Helo et al, PRD 88.011901, 88.073011

$$W_{\Delta L=1} = \frac{1}{2} \lambda_{ijk} L_i L_j \bar{e}_k + \lambda'_{ijk} L_i Q_j \bar{d}_k + \mu'_i L_i H_u,$$

TeV Scale LNV: Experimental Probes

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac Majorana

0νββ-Decay

Low energy deep underground

Ton Scale Experiments: Worldwide Quest

0vββ decay Experiments - Efforts Underway

CUORE	Collaboration	Isotope	Technique	mass (0vββ isotope)	Status
the state of the	CANDLES	Ca-48	305 kg CaF2 crystals - liq. scint	0.3 kg	Construction
	CARVEL	Ca-48	⁴⁸ CaWO ₄ crystal scint.	~ ton	R&D
	GERDAI	Ge-76	Ge diodes in LAr	15 kg	Complete
	GERDA II	Ge-76	Point contact Ge in LAr	31	Operating
	MAJORANA DEMONSTRATOR	Ge-76	Point contact Ge	25 kg	Operating
	LEGEND	Ge-76	Point contact	~ ton	R&D
	NEMO3	Mo-100 Se-82	Foils with tracking	6.9 kg 0.9 kg	Complete
EXO200	SuperNEMO Demonstrator	Se-82	Foils with tracking	7 kg	Construction
	SuperNEMO	Se-82	Foils with tracking	100 kg	R&D
	LUCIFER (CUPID)	Se-82	ZnSe scint. bolometer	18 kg	R&D
	AMoRE	Mo-100	CaMoO ₄ scint. bolometer	1.5 - 200 kg	R&D
	LUMINEU (CUPID)	Mo-100	ZnMoO ₄ / Li ₂ MoO ₄ scint. bolometer	1.5 - 5 kg	R&D
	COBRA	Cd-114,116	CdZnTe detectors	10 kg	R&D
	CUORICINO, CUORE-0	Te-130	TeO ₂ Bolometer	10 kg, 11 kg	Complete
	CUORE	Te-130	TeO ₂ Bolometer	206 kg	Operating
	CUPID	Te-130	TeO ₂ Bolometer & scint.	~ ton	R&D
	SNO+	Te-130	0.3% IMTe suspended in Scint	160 kg	Construction
KamLAND Zen	EXO200	Xe-136	Xe liquid TPC	79 kg	Operating
	nEXO	Xe-136	Xe liquid TPC	~ ton	R&D
	KamLAND-Zen (I, II)	Xe-136	2.7% in liquid scint.	380 kg	Complete
	KamLAND2-Zen	Xe-136	2.7% in liquid scint.	750 kg	Upgrade
	NEXT-NEW	Xe-136	High pressure Xe TPC	5 kg	Operating
	NEXT	Xe-136	High pressure Xe TPC	100 kg - ton	R&D
	PandaX - 1k	Xe-136	High pressure Xe TPC	~ ton	R&D
	DCBA	Nd-150	Nd foils & tracking chambers	20 kg	R&D

J. Wilkerson INT DBD Program June 2017

The Chinese Context

PandaX III

TeV Scale LNV: Experimental Probes

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac Majorana

0νββ-Decay

pp Collisions

High energy

52

Low energy deep underground

Low energy deep underground

High energy

TeV Scale LNV: Experimental Probes

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

LHC: $pp \rightarrow jj e^-e^-$

Dirac

 $\partial \nu \beta \beta$ - decay

TeV Scale LNV: "Simplified Models"

$$g_{\rm eff} = \sqrt{g_1 g_2}$$

54

TeV Scale LNV: Experimental Probes

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac Majorana

T. Peng, MRM, P. Winslow 1508.04444

Leptogenesis & Colliders

- Discovery of TeV-scale LNV could rule out high scale leptogenesis
- Discovery of heavy neutral leptons (HNL) could point to low scale leptogenesis

Low Scale Leptogenesis

Low Scale "ARS" Leptogenesis

Leptogenesis from heavy neutrino oscillations

- Right handed N_A , N_B , N_C oscillate
- Oscillations have a CPV component
- Each heavy flavor has non-zero L but L_{TOT} = 0

Low Scale "ARS" Leptogenesis

Akhmedov, Rubakov, Smirnov '98

Low Scale "ARS" Leptogenesis

Akhmedov, Rubakov, Smirnov '98

RH Sterile Neutrinos

$$\mathcal{L}_{\text{mass}} = \left(\begin{array}{cc} \bar{\nu}_L & \bar{N}_R^C \end{array} \right) \left(\begin{array}{cc} 0 & m_D \\ m_D & M_N \end{array} \right) \left(\begin{array}{c} \nu_L \\ N_R \end{array} \right)$$

$$\begin{pmatrix} |\nu_{\ell}\rangle \\ |N_R\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_{\ell N} & \sin\theta_{\ell N} \\ -\sin\theta_{\ell N} & \cos\theta_{\ell N} \end{pmatrix} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \end{pmatrix}$$

RH Sterile Neutrinos: Many Signatures

Systematic assessment of heavy neutrino signatures at colliders

E. Cazzato

Long Lived Heavy Neutral Leptons

Lessons from au_{μ} :

 $Y \rightarrow X^* \rightarrow SM$

Phase space (192 $\pi^3 \sim 6000$)

$$c\tau \approx \frac{1.2 \,\mathrm{fm}}{g_X^4} \left(\frac{M_X}{M_Y}\right)^4 \left(\frac{1 \,\mathrm{TeV}}{M_Y}\right)$$

Muon decay:

- M_{χ} ~ 80 GeV, M_{γ} ~ 0.1 GeV & g_{χ}^{4} ~ 0.004 \rightarrow $c\tau$ ~ 660 m *
- * Additional 1/2 for half-life

Long Lived Heavy Neutral Leptons

Lessons from au_{μ} :

 $Y \rightarrow X^* \rightarrow SM$

Phase space (192 $\pi^3 \sim 6000$)

$$c\tau \approx \frac{1.2 \,\mathrm{fm}}{g_X^4} \,\left(\frac{M_X}{M_Y}\right)^4 \,\left(\frac{1 \,\mathrm{TeV}}{M_Y}\right)$$

BSM Examples:

• $M_X \sim 100~{
m GeV}, M_Y \sim 10~{
m GeV}$, $g_X{}^4 \sim 10{}^{-7}
ightarrow \ c au \sim 1~{
m cm}$ N_R decay

Displaced Lepton Jets

ATLAS JHEP11 (2014) 88

Solutions w/ LLP's: vSM

$$\Gamma(N \rightarrow \ell_a^- \ell_\beta^+ \nu_\beta) = \frac{G_{\rm F}^2 M_N^5 |V_{aN}|^2}{192 \pi^3}$$

- Displaced LJ + μ
- 3 resolved prompt leptons

"ARS" Leptogenesis & Future Colliders

Global analysis and cosmology

plot to be updated in MaD/Garbrecht/Gueter/Klaric 1609.09069 [references to origin of sensitivity estimates given therein]

M. Drewes

RH Sterile Neutrinos: FCC & CEPC

Lecture II Key Ideas

- Seesaw mechanism to explain small m_{ν}
- Standard thermal leptogenesis: connecting seesaw mechanism to Y_B
- Anomalous symmetry breaking via EW sphalerons
- Low-scale leptogenesis alternatives: ARS leptogenesis (oscillations)
- Collider implications: observing TeV scale LNV & HNL's

Back Up Slides

Electroweak Sphalerons

B+L Anomaly

$$\partial^{\mu}J^{B+L}_{\mu} = \frac{2N_F}{32\pi^2} \times \left\{ g^2 W^a_{\mu\nu} \widetilde{W}^{\mu\nu\,a} - g'^2 B_{\mu\nu} \widetilde{B}^{\mu\nu} \right\}$$

Electroweak Sphalerons

Cherns Simons Number

$$\partial^{\mu}J^{B+L}_{\mu} = \frac{2N_F}{32\pi^2} \times \left\{ g^2 W^a_{\mu\nu} \widetilde{W}^{\mu\nu\,a} - g'^2 B_{\mu\nu} \widetilde{B}^{\mu\nu} \right\}$$

$$N_{CS}(t) = \frac{g^3}{96\pi^2} \int d^3x \,\epsilon_{ijk} \,\epsilon_{abc} \,W_i^a W_j^b W_k^c$$

$$\Delta(B+L) = 2N_F \times \Delta N_{CS}$$
TeV Scale LNV ?

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac Majorana

TeV LNV Mechanism

$$\frac{A_H}{A_L} \sim \frac{M_W^4 \bar{k}^2}{\Lambda^5 m_{\beta\beta}}$$

O(1) for $\Lambda \sim 1 \text{ TeV}$

Implications

TeV Scale LNV: Experimental Probes

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac Majorana

TeV Scale LNV

Effective operators:

$$\begin{split} \mathcal{L}_{\mathrm{LNV}}^{\mathrm{eff}} &= \frac{C_1}{\Lambda^5} \mathcal{O}_1 + \mathrm{h.c.} \\ \mathcal{O}_1 &= \bar{Q} \tau^+ d \bar{Q} \tau^+ d \bar{L} L^C \end{split}$$

$$g_{\mathrm{eff}} = \sqrt{g_1 g_2}$$

 $\partial \nu \beta \beta$ - decay

LHC:
$$pp \rightarrow jj e^-e^-$$

74

TeV Scale LNV: Experimental Probes

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac Majorana

T. Peng, MRM, P. Winslow 1508.04444

TeV Scale LNV: Experimental Probes

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac Majorana

T. Peng, MRM, P. Winslow 1508.04444

Ονββ-Decay: TeV Scale LNV

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac
$$Majorana$$

General Classification: Helo et al, PRD 88.011901, 88.073011

Ονββ-Decay: TeV Scale LNV

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac
$$Majorana$$

General Classification: Helo et al, PRD 88.011901, 88.073011

Low Scale "ARS" Leptogenesis

- 1. 3 Singlet RH neutrinos: N_A , N_B , N_C
- 2. $L^{TOT} = L^{SM} + L_A + L_B + L_C$
- 3. N_k oscillations + $CPV \rightarrow L_A \neq 0$, $L_B \neq 0$, $L_C \neq 0$ but $L^{TOT} = 0$
- 4. Yukawa interactions: $L_k \Leftrightarrow H + \ell_k$ in equilibrium above T_{EW} for k=B,C but not for k=A
- 5. Lepton number for $\mathcal{L}_{B,C}$ converted to n_B by EW sphalerons
- 6. Conditions $4 \rightarrow M_{Nk}$ can be ~ O(GeV)

Displaced Lepton Jets

ATLAS JHEP11 (2014) 88

RH Sterile Neutrinos

Summary: FCC-ee sensitivities

- ▶ Displaced vertex searches test $|\theta|^2 \sim 10^{-11}$ for $M \leq m_W$.
- EWPOs test |θ|² ~ 10⁻⁵ up to M ~ 60 TeV with O(1) Yukawa couplings.

O. Fischer, ACFI '17 Workshop