

Cai-Dian Lü(吕才典)

CFHEP, Institute of High Energy Physics, Beijing

$\sim 3.5\sigma ~(g-2)_{\mu}$ anomaly

- $\sim 3.5\sigma$ non-standard like-sign dimuon charge asymmetry
- $\sim 3.5\sigma$ enhanced $B \rightarrow D^{(*)}\tau\nu$ rates
- $\sim 3.5\sigma$ suppressed branching ratio of $B_s o \phi \mu^+ \mu^-$
 - $\sim 3\sigma$ tension between inclusive and exclusive determination of $|V_{ub}|$
 - $\sim 3\sigma$ tension between inclusive and exclusive determination of $|V_{cb}|$
- $2-3\sigma$ anomaly in $B \rightarrow K^* \mu^+ \mu^-$ angular distributions
- 2 3 σ SM prediction for ϵ'/ϵ below experimental result
- ~ 2.5 σ lepton flavor non-universality in $B \rightarrow K \mu^+ \mu^-$ vs. $B \rightarrow K e^+ e^-$
- $\sim 2.5\sigma$ non-zero $h \rightarrow \tau \mu$

 $R_{D(*)}$

 P_5'

 R_K

Lepton universality

Lepton couplings to gauge bosons in the standard model are all the same

Very well tested, PDG averages:

 $\frac{B(Z \to \tau^+ \tau^-)}{B(Z \to e^+ e^-)} = 1.0019 \pm 0.0032$

 $\frac{B(Z \to \mu^+ \mu^-)}{B(Z \to e^+ e^-)} =$

$$\frac{B(W^+ \to \mu^+ \nu)}{B(W^+ \to e^+ \nu)} = 0.991 \pm 0.018$$
$$\frac{B(W^+ \to \tau^+ \nu)}{B(W^+ \to e^+ \nu)} = 1.043 \pm 0.024$$
$$\frac{B(W^+ \to \tau^+ \nu)}{B(W^+ \to \mu^+ \nu)} = 1.070 \pm 0.026$$

CD Lu

 1.0009 ± 0.0028

.9977 (SM)

$\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}$ Br ~ 0.7+1.3 % in the SM Not rare, but two or more missing neutrinos Data available since 2007 (Belle, BABAR, LHCb)

Theoretical motivation

W.S. Hou and B. Grzadkowski (1992)

SM: gauge coupling lepton universality

Type-II 2HDM (SUSY) Yukawa coupling $\propto m_b m_{\tau} \tan^2 \beta$

$$R(X) = \frac{\Gamma(B \to X\tau\bar{\nu})}{\Gamma(B \to X(e/\mu)\bar{\nu})}$$

Experiments

CD Lu

$R(D) = 0.421 \pm 0.058$ $R(D^*) = 0.337 \pm 0.025$ ~3.5 σ Y. Sakaki, MT, A. Tayduganov, R. Watanabe

$$R(D) = 0.391 \pm 0.041 \pm 0.028$$
$$R(D^*) = 0.322 \pm 0.018 \pm 0.012$$
$$\sim 3.9\sigma \qquad \text{HFAG}$$

Standard model predictions

Theoretical uncertainty: form factors data from $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu} \ (\ell = e, \mu)$ + HQET or pQCD + lattice QCD

$$\begin{split} R(D) &= 0.296 \pm 0.016 \text{ (Fajfer, Kamenik, Nisandzic)} \\ &\quad 0.302 \pm 0.015 \text{ (Sakaki, MT, Tayduganov, Watanabe)} \\ &\quad 0.299 \pm 0.011 \text{ (Bailey et al.)} \\ &\quad 0.337^{+0.038}_{-0.037} \text{ (Fan, Xiao, Wang, Li)} \\ &\quad 0.391 \pm 0.041 \pm 0.028 \text{ (Exp. HFAG)} \end{split}$$

$$\begin{split} R(D^*) &= 0.252 \pm 0.003 \text{ (Fajfer, Kamenik, Nisandzic)} \\ &= 0.252 \pm 0.004 \text{ (Sakaki, MT, Tayduganov, Watanabe)} \\ &= 0.269^{+0.021}_{-0.020} \quad \text{(Fan, Xiao, Wang, Li)} \\ &= 0.322 \pm 0.018 \pm 0.012 \text{ (Exp. HFAG)} \end{split}$$

CD Lu

- apparently the τ has a stronger coupling
- at tree level, several possible other couplings

- new W gauge boson with non-universal couplings (our model W_R)
- -leptoquark need very specific flavour structure
- charged Higgs, seems a natural explanation but the simple models do not work

Nothing seen in other meson decay

	Exp. (PDB)	SM
$\frac{B(K^+ \to \pi^0 \mu^+ \nu)}{B(K^+ \to \pi^0 e^+ \nu)}$	0.6608±0.0029	0.6631±0.0042 (Cirigliano et al)
$\frac{B(K^+ \to e^+ \nu)}{B(K^+ \to \mu^+ \nu)}$	2.488±0.009(10 ⁻⁵)	2.477±0.001 (10 ⁻⁵) (Cirigliano et al)
$\frac{B(\pi^+ \to e^+ \nu(\gamma))}{B(\pi^+ \to \mu^+ \nu(\gamma))}$	1.2327±0.0023(10 ⁻⁴)	1.2352±0.0005(10 ⁻⁴) (Marciano, Sirlin)

- no simple models
- \bullet need to arrange the flavour structure to single out this family: b, τ

S. 18.

W'and semileptonic B decay to tau

- two (sets) of parameters come into play
- mixing between W and W'
- right handed analog of CKM matrix

previously worked out constraints

*HFAG-2012

*From b \rightarrow s γ = (3.55±0.25) × 10⁻⁴ $-0.0013 \le \frac{g_R}{g_L} \xi_W \le 0.0027$

strongest constraints from meson mixing

FCNC constraints can be summarised by $V^d_{Rbi} \sim \delta_{bi}$

with $V_L^{u,d} = V_R^{u,d}$, $V_L^{u\dagger} V_L^d = V_{CKM}$ this allows us to predict $V_R = (V_{Rij}) = (V_{Rti}^{u*} V_{Rbj}^d)$ $V_R \sim \begin{pmatrix} 0 & 0 & A\lambda^3 \\ 0 & 0 & A\lambda^2 \\ 0 & \lambda^4 & 1 \end{pmatrix}$ $V_{Rtc}^u \sim V_{cb}, V_{Rtu}^u \sim V_{ub}$

W'and semileptonic B decay to tau

- •need the new right-handed neutrino to be light
- •it is possible to have a scalar sector that gives an acceptable neutrino mass spectrum and mixing

w, w' mo interference if neutrino mass << charged lepton mass

$$\sum_{i} |M_{lepton}|^2 \propto \begin{cases} 1 & \text{for } \ell_L \\ |V_{R3j}^{\ell}|^2 & \text{for } \ell_R. \ \sim 1 \text{ for } j = \tau \\ \ell_j & \text{rotates RH charged lepton to mass eigenstate} \end{cases}$$

Very recent measurement of LHCb

$$R(J/\psi) = \frac{Br(B_c \to J/\psi\tau\nu)}{Br(B_c \to J/\psi\mu\nu)} = 0.71 \pm 0.17 \pm 0.18.$$

It is 2σ away from the SM predictions

B → τ ν

CKMfitter

 $B(B^+ \to \tau^+ \nu) = \begin{cases} \text{with meas.} & 0.851^{+0.035}_{-0.038} \times 10^{-4} \\ \text{without} & 0.821^{+0.034}_{-0.028} \times 10^{-4} \end{cases}$

Heavy Flavor Averaging Group - October 2016 Compilation of B^+ and B^0 Leptonic Branching Fractions (×10⁻⁶) - UL at 90% CL In PDG2014 New since PDG2014 (preliminary) New since PDG2014 (published)

			Weath Sector and the
Mode	PDG2014 Avg.	BABAR	Belle
$e^+\nu$	< 0.98	< 1.9	< 0.98 †
$\mu^+ u$	< 1.0	< 1.0	< 1.7 †
$ au^+ u$	114 ± 27	179 ± 48 [‡]	$91\pm19\pm11$ \ddagger
$rac{\Gamma(B^- o au^- u)}{\Gamma(B^- o au^- u_ au)}$	${ m)}_{SM} ~~=~~ F^{u}_{W'} - 2 ~ F^{u}_{{ m Min}}$	~ 1.3	$\mathrm{with}rac{V_{Rub}}{V_{ub}}\sim rac{V_{Rcb}}{V_{cb}}$

Non-universal $B \rightarrow K \mu \mu$ / ee rates

LHCb observation of a violation of lepton universality in the rare decays $B \rightarrow K\mu\mu \text{ vs. } B \rightarrow \text{Kee} - \text{ if confirmed} - \text{ would be the most spectacular LHC}$ discovery after the Higgs boson:

Non-universal $B \rightarrow K \mu \mu$ / ee rates

- In SM this ratio equals 1 to high accuracy
- Leading deviations arise from QED corrections, giving rise to large logarithms involving the ratio m_B/m_{µ,e}
- The effects have been estimated and were found to be of O(1%) [Bordone, Isidori, Pattori: 1605.07633]
- SM prediction very clean!
- Eagerly awaiting an update from LHCb (electron reconstruction efficiency is rather different from that for muons)...
- **Teaser on** R_{K^*} People wait for that until two years later

The compatibility of the result in the low-q² with respect to the SM prediction(s) is of 2.2-2.4 standard deviations
 The compatibility of the result in the central-q² with respect to the SM prediction(s) is of 2.4-2.5 standard deviations

Second surprise in b \rightarrow s *l*+*l*-

³ apparently the μ has a weaker coupling than the electron at tree and loop level, many possible other NP couplings

Violation of lepton flavor universality

$$R(K) = \frac{BF(B \to K\mu^+\mu^-)}{BF(B \to Ke^+e^-)} \qquad R(K^*) = \frac{BF(B \to K^*\mu^+\mu^-)}{BF(B \to K^*e^+e^-)}$$

theoretically very clean!

19

19

Observable	Expt (LHCb)	SM	σ
R(K), q ² =[1, 6] GeV ²	0.745 ^{+0.090} -0.074 [±] 0.036	1.00±0.01	2.6
R(K ^{*0}), q ² =[0.045, 1.1]	0.66 ^{+0.11} -0.07±0.03	~ 0.920	2.1-2.3
R(K ^{*0}), q ² =[1.1, 6]	0.69 ^{+0.11} -0.07 [±] 0.05	~ 0.996	2.4-2.5
	arXiv:1705.05802		

For $q^2 < 6 \text{ GeV}^2$, SM predictions for $b \rightarrow s\mu^+\mu^-$ consistently overshoot the data (also for $B_s \rightarrow \phi\mu^+\mu^-$, $\Lambda_b \rightarrow \Lambda\mu^+\mu^-$; both involve unknown hadronic uncertainties)

Loop, GIM, CKM suppressed CD Lu

A lot of theoretical discussions

Capdevila et al [1704.05340] Altmannshofer, Steangl, Straub [1704.05435] D'Amico et al [1704.05438] Hiller, Nisandzic [1704.05444] Geng et al [1704.05446] Ciuchini et al [1704.05447] Celis et al [1704.05672] Becirevic, Sumensari [1704.05835] Cai et al [1704.05849] Kamenik, Soreq, Zupan [1704.06005] Sala, Straub [1704.06188] Di Chiara et al [1704.06200] Ghosh [1704.06240] Alok, D. Kumar, J. Kumar, Sharma [1704.07347] Alok et al [1704.07397] Wang, Zhao [1704.08168] Bonilla, Modak, Srivastava, Valle [1705.00915] Bishara, Haisch, Monni [1705.03465] Megias, Panico, Pujolas Quiros [1705.04822] Tang, Wu [1705.05643] Hurth, Mahmoudi, Santos, Neshatpour [1705.06274]

Poh, Raby [1705.07007] Datta, Kumar, Liao, Marfatia [1705.08423] Das, Hati, Kumar, Mahajan [1705.09188] Bardhan, Byakti, Ghosh [1705.09305] Matsuzaki, Nishiwaki, Watanabe [1706.01463] Luzio, Nardecchia [1706.01868] Chiang, He, Tandean, Yuan [1706.02696] Chauhan, Kindr, Narang [1706.04598] King [1706.06100] Chivukula, Isaacson, Mohan et al [1706.06575] Khalil [1706.07337] He, Valencia [1706.07570] Doršner, Fajfer, Faroughy, Košnik [1706.07779] Buttazzo, Greljo, Isidori, Marzocca [1706.07808] Choudhury, Kundu, Mandal, Sinha [1706.08437] Cline, Camalich [1706.08510] Crivellin, Mueller, Signer, Ulrich [1706.08511] Guo, Han, Li, Liao, Ma [1707.00522] Chen, Nomura [1707.03249] Baek [1707.04573] Bian, Choi, Kang, Lee [1707.04811]

$$H_{eff} \propto \frac{\alpha}{4\pi} V_{tb} V_{ts}^* (C_9 O_9 + C_{10} O_{10} + C'_9 O'_9 + C'_{10} O'_{10})$$

$$O_9 = (\bar{s} \gamma_{\mu} P_L b) (\bar{\ell} \gamma^{\mu} \ell) \qquad O'_9 = (\bar{s} \gamma_{\mu} P_R b) (\bar{\ell} \gamma^{\mu} \ell)$$

$$O_{10} = (\bar{s} \gamma_{\mu} P_L b) (\bar{\ell} \gamma^{\mu} \gamma_5 \ell) \qquad O'_{10} = (\bar{s} \gamma_{\mu} P_R b) (\bar{\ell} \gamma^{\mu} \gamma_5 \ell)$$

$$SM \Rightarrow C_9^{SM} \approx -C_{10}^{SM} \approx 4.2, \quad C'_9^{SM} = C'_{10}^{SM} = 0$$

Best fit to R(K) & R(K*) in one individual WC \Rightarrow NP in C_9^{μ} , C_9^{e} , C_{10}^{μ} , C_{10}^{e} . NP in primed operators do not play a role Altmannshofer et al.; Hiller et al. & many others

$$C_{9,\mu}^{NP} \approx -C_{10,\mu}^{NP} \approx -1.3, \quad C_{9,e}^{NP} \approx -C_{10,e}^{NP} \approx -1.3$$

Global fit to angular observables of B→ K*μ⁺ μ⁻ and BF of B_s→φμ⁺μ⁻ ⇒ NP in C₉^μ favored, in C₉^e not favored.

CD Lu

NP models capable of generating $C_{9,10}^{NP}$:

Tree level: $\int Z'$, SU(2)_L singlet or triplet

leptoquark, spin 0 or 1 SUSY with R-parity violating interactions

Loop level: Z' penguin new heavy scalars/vectors

Flavour anomalies and New Physics

If confirmed by future analyses, what does this point to?

$$R_{D^{(*)}} \quad \Leftrightarrow \quad au
eq e, \mu$$
 $R_K \quad \Leftrightarrow \quad \mu
eq e$

SM gauge interactions do not distinguish between different leptons, and Higgs exchange is irrelevant; hence need new particles beyond the SM with new types of interactions

- $U(1)\tau$ - μ \rightarrow new Z' boson coupling with opposite sign to μ/τ
- New particles with Yukawa-like interactions, leptoquarks (better: lepto-quark-bosons)

Angular analysis of $B \rightarrow K^* \mu \mu$ decays

Rare $B \rightarrow K^* \mu \mu$ decays offer a rich laboratory for new-physics searches via differential angular distributions as a functions of lepton invariant mass:

Angular analysis of $B \rightarrow K^* \mu \mu$ decays

Rare $B \rightarrow K^* \mu \mu$ decays offer a rich laboratory for new-physics searches via differential angular distributions as a functions of lepton invariant mass:

$$\frac{1}{d\Gamma/dq^{2}} \frac{d^{4}\Gamma}{dq^{2}d\cos\theta_{l}d\cos\theta_{K}d\phi}$$

S-wave and S&P-wave interference

$$= \frac{9}{8\pi} \left\{ \frac{2}{3} \left[\left(F_{S} + A_{S}\cos\theta_{K}\right) \left(1 - \cos^{2}\theta_{l}\right) + A_{S}^{5}\sqrt{1 - \cos^{2}\theta_{K}}\right] \right\}$$

$$\sqrt{1 - \cos^{2}\theta_{l}}\cos\phi \right] + (1 - F_{S}) \left[2F_{L}\cos^{2}\theta_{K} \left(1 - \cos^{2}\theta_{l}\right) + \frac{1}{2}\left(1 - F_{L}\right) \left(1 - \cos^{2}\theta_{K}\right) \left(1 + \cos^{2}\theta_{l}\right) + \frac{1}{2}\left(1 - F_{L}\right) \left(1 - \cos^{2}\theta_{K}\right) \left(1 + \cos^{2}\theta_{l}\right) + \frac{1}{2}\left(1 - F_{L}\right) \left(1 - \cos^{2}\theta_{K}\right) \left(1 - \cos^{2}\theta_{l}\right) \cos 2\phi + 2F_{5}^{\prime}\cos\theta_{K}\sqrt{F_{L}}\left(1 - F_{L}\right) \left(1 - \cos^{2}\theta_{K}\sqrt{1 - \cos^{2}\theta_{l}}\cos\phi \right] \right\}$$

P-wave

Angular analysis of $B \rightarrow K^* \mu \mu$ decays

It is useful to construct observables which are less sensitive for hadronic uncertainties related to form factors

[Descotes-Genon, Matias, Ramon, Virto: 1207.2753]

One particular such observable — called P'_5 — shows a large discrepancy with the SM prediction in a particular q² range:

2.8 σ deviation in q^2 bin between [4, 6] GeV² (3.0 σ in bin [6, 8] GeV²)

Global fits

• from J. Matias, Moriond EW 2017:

Global analysis of $b ightarrow s \mu \mu$ anomalies

[Descotes, Hofer, JM, Virto]

96 observables in total (LHCb for exclusive, no CP-violating obs)

- $B \rightarrow K^* \mu \mu$ ($P_{1,2}, P'_{4,5,6,8}, F_L$ in 5 large-recoil bins + 1 low-recoil bin)+available electronic observables.
- $B_s \rightarrow \phi \mu \mu$ ($P_1, P'_{4,6}, F_L$ in 3 large-recoil bins + 1 low-recoil bin)
- $B^+ \rightarrow K^+ \mu \mu$, $B^0 \rightarrow K^0 \ell \ell$ (BR) ($\ell = e, \mu$)
- $B \to X_s \gamma, B \to X_s \mu \mu, B_s \to \mu \mu$ (BR), $B \to K^* \gamma$ (A_I and $S_{K^* \gamma}$)

Beyond 1D several favoured scenarios

• BR and angular observables both favour $C_9^{\rm NP} \simeq -1$ in all 'good scenarios'.

Allowing for more than one Wilson coefficient to vary different scenarios with pull-SM beyond 4σ pop-up:

best 2 parameter fit

- looks like fits prefer left-handed structure
- previous model not favoured in this case?
- –tree-level FCNC are right-handed
- -one loop corrections of electroweak strength are left
 -handed also, could give the right size
- -full model is very complicated and would need a multi (>2) C_i fit
- another non-universal Z' that is left handed

K⁺π⁻ and K⁺π⁰ differ by subleading amplitudes P_{ew} and C.
 Their CP asymmetries are expected to be similar.

$$\begin{aligned} A(B_d^0 \to K^+ \pi^-) &= -P' \left(1 + \frac{T'}{P'} e^{i\phi_3} \right) \,, \\ \sqrt{2}A(B^+ \to K^+ \pi^0) &= -P' \left[1 + \frac{P'_{ew}}{P'} + \left(\frac{T'}{P'} + \frac{C'}{P'} \right) e^{i\phi_3} \right] \end{aligned}$$

The experimental data differ by 5σ! A puzzle!

Explanation 1

- Large K⁺ π CP implies large δ_{T}
- Large P_{EW} to cancel its effect (Buras, Yoshikawa et al.) in K⁺π⁰ new physics?

Explanation 2

Or large C (with large strong phase) to cancel its effect (Charng and Li; He and McKellar) in K⁺π⁰) mechanism missed in SM calculation?

Color suppressed tree diagram (a₂) is too small, without big strong phase in perturbative QCD calculations

 However, NLO diagrams related to nonfactorizable amplitudes contributing to Glauber divergence

H.-n. Li and S. Mishima, PRD 83, 034023 (2011).

- Collinear region (I⁺, I⁻, I_T) ~ (Q, m²/Q, m)
- Soft region ~ (m,m,m)
- Glauber region ~ (m²/Q, m²/Q, m)
- Resummation of the large logarithms give a jet function, which has a large strong phase

Search for new physics in hadronic B decays - 1 example

K. Huitu, C.D. Lü, P. Singer D.X. Zhang, Phys. Rev. Lett. 81, 4313 (1998), hep-ph/9809566.

 $b \rightarrow ssd$ transition (a) SM, (b) MSSM, (c) MSSM with R-parity violating coupling SM BRs: ~ 10⁻¹⁴, Some New physics can reach 10⁻⁶

Experimental search starting from OPAL @ LEP, phys. Lett. B 476 (2000) 233, later searched also by Belle/Babar

BABAR collaboration, Phys. Rev. D 78 (2008) 091102 [arXiv:0808.0900]

A search for the decay $B^- \rightarrow K^- K^- \pi^+$, Using a sample of $(467 \pm 5) \times 10^6 B\overline{B}$ pairs collected with the BABAR detector.

Result : No evidence for these decays was found and a upper limit was set as

$$\mathcal{B}(B^- \to K^- K^- \pi^+) < 1.6 \times 10^{-7}$$

Experimental search starting from OPAL @ LEP, phys. Lett. B 476 (2000) 233, later searched also by Belle/Babar

BABAR collaboration, Phys. Rev. D 78 (2008) 091102 [arXiv:0808.0900]

A search for the decay $B^- \rightarrow K^- K^- \pi^+$, Using a sample of $(467 \pm 5) \times 10^6 B\overline{B}$ pairs collected with the BABAR detector.

Result : No evidence for these decays was found and a upper limit was set as

$$\mathcal{B}(B^- \to K^- K^- \pi^+) < 1.6 \times 10^{-7}$$

Recent LHCb result:

Physics Letters B 765 (2017) 307-316

 $\mathcal{B}(B^+ \to K^+ K^+ \pi^-) < 1.1 \times 10^{-8}$ $\mathcal{B}(B^+ \to \pi^+ \pi^+ K^-) < 4.6 \times 10^{-8}.$

Recent theoretical results in Randall-Sundrum model: Chinese Physics C41 (2017) 053106

Br(b \rightarrow ss d-bar) can reach to 10⁻¹⁰

Pure annihilation type decay: PQCD Picture of $B^0 \rightarrow D_S^- K^+$

Six quark interaction inside the dashed line

W exchange process

Theoretical Results:

$$Br(B^{0} \to D_{S}^{-}K^{+}) = (4.6^{+0.8}_{-0.6}) \times 10^{-5}$$
$$Br(B^{0} \to D_{S}^{*-}K^{+}) = (2.7 \pm 0.6) \times 10^{-5}$$

Reported by Ukai in BCP4 (2001) before Exps: Lü, Ukai, hep-ph/0210206

$$Br(B^0 \to D_S^- K^+) = (4.6^{+1.2}_{-0.6} \pm 1.3) \times 10^{-5}, Belle$$

 $Br(B^0 \to D_S^- K^+) = (3.2 \pm 1.0 \pm 1.0) \times 10^{-5}, BaBar$

Helicity suppressed: pseudo-scalar decays to two massless quarks spin (this configuration is not allowed) P_2 p_1 fermion flow P_2 p_1 momentum Like $B \rightarrow e v_e$

pseudo-scalar B requires spins in opposite directions, namely, helicity conservation

Annihilation suppression $\sim 1/m_B \sim 10\%$

For (V-A)(V-A), lefthanded current

No suppression for O₆

- Space-like penguin
- Become (s-p)(s+p) operator after Fiertz transformation Chirally enhanced
- No suppression, contribution "big" (20-30%)

 Very rare decay predicted in PRD76, 074018 (2008)

- **BR=(5.7 \pm 1.7)x10⁻⁷**
- No one expected to be measured

CD Lu

Summary

- Some flavor anomalies have been discussed
- The tension between SM and experiments at the level of 3σ level
- Theoretical study of non-leptonic D/B meson decays making great improvement with helping from rich experimental data
- Flavor sector has only been tested at the 10% level and can be done much better
- We are still waiting for a clear New physics signal in the heavy flavor sector

Thanks !