

Heavy flavor physics (II)

Hadronic B Decays

Cai-Dian Lü

lucd@ihep.ac.cn CFHEP, IHEP, Beijing

Hadronic B decays

Background and motivation:

- Study CP violation especially direct CP violation
- CKM angle measurements
- Test of standard model
- Signal of new physics—rare decays

••• •••

$$\begin{bmatrix} d^{2} \\ s^{*} \\ b^{*} \end{bmatrix} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} d \\ s \\ b \end{bmatrix}$$
Unitarity $V_{ud} V_{ub}^{*} + V_{cd} V_{cb}^{*} + V_{td} V_{tb}^{*} = 0$
The triangles are measured mainly through non
-leptonic B (bd) decays
For example: $a \ by \ B \rightarrow \pi\pi, \pi\rho,$
 $\beta \ by \ B \rightarrow J/\psi K, K\phi$
 $V_{ud} V_{ub}^{*}$
 $V_{ud} V_{ub}^{*}$
 $V_{cd} V_{cb}^{*}$

New Physics in FCNC processes

• Mixing

Simple parameterization for each neutral meson: $M_{12} = M_{12}^{SM} (1 + he^{2i\sigma})$

Penguin decays

Many operators for $b \rightarrow s$ transitions — no simple parameterization of NP

- $V_{td, ts}$ only measurable in loops; likely also subleading couplings of new particles
- Isolating modest NP contributions requires many measurements
 Compare NP-independent (tree) with NP-dependent (loop) processes

 $H_{eff} = \frac{G_F}{\sqrt{2}} V_{CKM} \sum_{i} C_i O_i$ $O_2 = \overline{d}\gamma^{\mu}Lu \cdot \overline{u}\gamma_{\mu}Lb$ $O_4 = \overline{d}_{\alpha} \gamma^{\mu} L b_{\beta} \cdot \sum_{\alpha} \overline{q}_{\beta} \gamma_{\mu} L q_{\alpha}$ $O_6 = \overline{d}_{\alpha} \gamma^{\mu} L b_{\beta} \cdot \sum_{\alpha} \overline{q}_{\beta} \gamma_{\mu} R q_{\alpha}$ $O_8 = \frac{3}{2} \overline{d}_{\alpha} \gamma^{\mu} L b_{\beta} \cdot \sum_{\alpha} e_q \overline{q}_{\beta} \gamma_{\mu} R q_{\alpha}$ $O_{10} = \frac{3}{2} \overline{d}_{\alpha} \gamma^{\mu} L b_{\beta} \cdot \sum_{\alpha} e_{q} \overline{q}_{\beta} \gamma_{\mu} L q_{\alpha}$

CD Lu

Tree operators

$$\begin{split} \bar{[c\gamma^{\mu}(1-\gamma^{5})b][d\gamma_{\mu}(1-\gamma^{5})u]} & \frac{(ig_{2})^{2}/8}{p^{2}-M_{W}^{2}} V_{cb}V_{ud}^{*} \\ = \frac{G_{F}}{\sqrt{2}} \quad \bar{c\gamma^{\mu}(1-\gamma^{5})b} \begin{bmatrix} 1+\frac{p^{2}}{M_{W}^{2}} & b \\ 1+\frac{p^{4}}{M_{W}^{2}} & b \\ +\frac{p^{4}}{M_{W}^{4}}+\dots \end{bmatrix} \quad \bar{d\gamma^{\mu}(1-\gamma^{5})u} & c \\ O_{2} = \bar{c\gamma_{\mu}}Lb \cdot \bar{d\gamma^{\mu}}Lu \quad \propto 1 \\ O_{1} = \bar{c\gamma^{\mu}}Lu \cdot \bar{d\gamma_{\mu}}Lb \quad \propto \alpha_{s} \end{split}$$

CD Lu

QCD Penguin operators

• Wilson coefficients $\propto \alpha_s$

$$O_{3} = \overline{d}\gamma^{\mu}Lb \cdot \sum_{q} \overline{q}\gamma_{\mu}Lq$$

$$O_{4} = \overline{d}_{\alpha}\gamma^{\mu}Lb_{\beta} \cdot \sum_{q} \overline{q}_{\beta}\gamma_{\mu}Lq_{\alpha}$$

$$O_{5} = \overline{d}\gamma^{\mu}Lb \cdot \sum_{q} \overline{q}\gamma_{\mu}Rq$$

$$O_{6} = \overline{d}_{\alpha}\gamma^{\mu}Lb_{\beta} \cdot \sum_{q} \overline{q}_{\beta}\gamma_{\mu}Rq_{\alpha}$$

$$R = 1 + \epsilon$$

Electroweak penguin operators

• Wilson coefficients $\propto \alpha = 1/137$

$$O_{7} = \frac{3}{2} \overline{d} \gamma^{\mu} Lb \cdot \sum_{q} e_{q} \overline{q} \gamma_{\mu} Rq$$

$$O_{8} = \frac{3}{2} \overline{d}_{\alpha} \gamma^{\mu} Lb_{\beta} \cdot \sum_{q} e_{q} \overline{q}_{\beta} \gamma_{\mu} Rq_{\alpha}$$

$$O_{9} = \frac{3}{2} \overline{d} \gamma^{\mu} Lb \cdot \sum_{q} e_{q} \overline{q} \gamma_{\mu} Lq$$

$$O_{10} = \frac{3}{2} \overline{d}_{\alpha} \gamma^{\mu} Lb_{\beta} \cdot \sum_{q} e_{q} \overline{q}_{\beta} \gamma_{\mu} Lq_{\alpha}$$

- Bauer, Stech, Wirbel, Z. Phys. C29, 637 (1985); ibid 34, 103
 - (1987) : Semi-leptonic and non-leptonic $B \rightarrow D, J/\Psi, D \rightarrow K, \pi$
- Chau, Cheng, Sze, Yao, Tseng, Phys. Rev. D43, 2176, (1991);
 D58, 019902, (1998) (E)
- Ali, Kramer, Lu, Phys. Rev. D58, 094009 (1998) : Charmless
 B decays

Two of the 4-quark operators contribute to the $B \rightarrow \pi^+ D^-$ decay

$$O_2 = \bar{u}\gamma^{\mu}Ld \cdot \bar{b}\gamma_{\mu}Lc$$

$$O_1 = \bar{u}\gamma^{\mu}Lc \cdot \bar{b}\gamma_{\mu}Ld$$

Color favored Color suppressed $C_2 \sim 1 > C_1(1/3+S_8) \equiv C_1/N_c \sim -0.2/3$

Naïve factorization

Two body non-leptonic B decay matrix element factorize to two parts:

- 4-quark operators with Wilson coefficients: short distance, perturbative calculable
- Hadronic parameters: Form factor and decay constant

 $<\pi^{+}D^{-}|H_{eff}|B> = a_{1} \langle \pi | \overline{u} \gamma^{\mu} Ld | 0 \rangle \langle D | \overline{b} \gamma_{\mu} Lc | B \rangle$ $= (C_{2} + C_{1} / N_{c}) f_{\pi} F_{0}^{B \to D}$

Class I decay: $\propto a_1 \sim 1$, color favored decays

Class II decays: $B \rightarrow \pi^{\theta} \overline{D^{\theta}}$

 \sim

$$O_1 = \bar{u}\gamma^{\mu}Lc \cdot \bar{b}\gamma_{\mu}Ld$$

$$O_2 = \bar{u}\gamma^{\mu}Ld \cdot \bar{b}\gamma_{\mu}Lc$$

Color favored
$$C_1 \sim -0.2$$

Color suppressed $C_2(1/3 + s_8) \equiv C_2/N_c \sim +1/3$

Two body non-leptonic B decay matrix element factorize to two parts:

$$\left\langle \pi^0 \overline{D}^0 \left| H_{eff} \right| B^0 \right\rangle = a_2 \left\langle D \left| \overline{u} \gamma^\mu Lc \right| 0 \right\rangle \left\langle \pi \left| \overline{b} \gamma_\mu Ld \right| B \right\rangle$$
$$= \left(C_1 + C_2 / N_c \right) f_D F_0^{B \to \pi}$$

Class II decay: $\propto a_2 = C_1 + C_2 / N_c$ small,

Experimental branching ratios large,

Non-factorizable contribution should be larger than expected

Class III decays: $B \rightarrow \pi^+ \overline{D^{\theta}}$

CD Lu

Charged B^{\pm} decay, Both a_1 and a_2 contribute

$$\left\langle \pi^{+}\overline{D}^{0} \middle| H_{eff} \middle| B^{+} \right\rangle = a_{2} \left\langle D \middle| \overline{u} \gamma^{\mu} Lc \middle| 0 \right\rangle \left\langle \pi \middle| \overline{b} \gamma_{\mu} Ld \middle| B \right\rangle$$

$$+ a_{1} \left\langle \pi \middle| \overline{u} \gamma^{\mu} Ld \middle| 0 \right\rangle \left\langle D \middle| \overline{b} \gamma_{\mu} Lc \middle| B \right\rangle$$

$$= a_{2} f_{D} F_{0}^{B \to \pi} + a_{1} f_{\pi} F_{0}^{B \to D}$$

Class III decay amplitude: $\propto a_1 + r a_2$

It is similar to class I decays

Generalized factorization

- class I decays:
 - $M (B^0 \rightarrow \pi^+ D^-) \propto C_2 + C_1 / N_c^{eff} = a_1$
- class II decays:
 - $M (B^0 \rightarrow \pi^0 \overline{D^0}) \propto C_1 + C_2 / N_c^{eff} = a_2$
- class III decays:
 - M (B⁺→π⁺D⁰) ∝ (C₂+C₁) (1+/N_c^{eff}) = a₁ + r a₂

- $N_c^{eff} \neq 3$ to include non-factorization contributions
- $N_c^{eff} = 2$ can explain many B decay branching ratios, such as $B^0 \rightarrow \pi^+ D^-$, $B^+ \rightarrow \pi^+ D^0$
- i.e. for class I, III and IV decays FA work well, where the dominant contributions are from FA
- While for other decays, it does not work well, for example Brs of B⁰ → π⁰D⁰ decay is much smaller than experimental value

Ali, Kramer, CDL, PRD58, 094009 (1998)

Brs. of $B \rightarrow D\pi$ decays calculated in Factorization approach (x10⁻⁴)

Modes	Fac. A	Exp.
$D^{*+}\pi^-$	29	27.6 \pm 2.1
D^+ π^-	30	30 ± 4
$D^{*0}\pi^0$	1.0	1.7 \pm 0.5
$D^0 \ \pi^0$	0.7	2.9 \pm 0.5
$D^{*0}\pi^+$	48	46 ± 4
$D^0 \pi^+$	48	53 ± 5

a₁=1.08

 $a_2 = 0.21$

M. Neubert, B.Stech, hepph/9705292

Isospin triangle

Later experiments found much larger B⁰→D⁰ pi⁰ branching ratios

$$D^{+}\pi^{-}(a_{l}) \qquad D^{0}\pi^{0}(a_{2}) \\ D^{0}\pi^{+}(a_{l}+a_{2})$$

Isospin triangle

Later experiments found much larger $B^{\theta} \rightarrow D^{\theta} \pi^{\theta}$ branching ratios.

We need a large a_2 and large relative strong phase between a_1 and a_2

 $D^0 \pi^+ (a_1 + a_2)$

CD Lu

Charmless B decays

• $B \rightarrow pi pi, pi K etc.$

$B \rightarrow \pi^+ \pi^-$ decay, also belong to class I decays

$$O_2 = \bar{u}\gamma^{\mu}Ld \cdot \bar{b}\gamma_{\mu}Lc$$

 $O_1 = u\gamma^{\mu}Lc \cdot b\gamma_{\mu}Ld$

color suppressed C₁/3 ~ - 0.2/3

B $\rightarrow \pi\pi, \pi\rho, \pi\omega$ decays with penguin contributions (origin of CP violation)

$$O_{1}, O_{2}$$

tree $\propto V_{ub}V_{ud}*$

Isospin triangle

Later experiments found much larger $B^0 \rightarrow \pi^0 \pi^0$ branching ratios than expected

Here We need also a large a_2 and large relative strong phase between a_1 and a_2

 $\pi^0\pi^+$

^{*} Pure penguin decay $B^+ \rightarrow \pi^+ K^0$

$$M(B^{+} \to \pi^{+}K^{0}) = -i\frac{G_{F}}{\sqrt{2}}f_{K}F_{0}^{B\to\pi}(m_{B}^{2}-m_{\pi}^{2})$$

$$\times V_{tb}^{*}V_{ts}\left[a_{4}-\frac{1}{2}a_{10}+\left(a_{6}-\frac{1}{2}a_{8}\right)R_{5}\right]$$
Class IV

There are $4 \text{ B} \rightarrow \pi \text{K}$ channels, proportional to $\text{B} \rightarrow \pi$ or $\text{B} \rightarrow \text{K}$ form factor:

 $B^{+} \to \pi^{+} K^{0} \quad B^{+} \to \pi^{0} K^{+} \quad B^{0} \to K^{+} \pi^{-} \quad B^{0} \to K^{0} \pi^{0}$

Some decays with tree contribution, to give direct **CP asymmetry by interference**

CD Lu

Other penguin decays $B \rightarrow \phi \pi$, ϕK

$$M(B^{+} \rightarrow \pi^{+}\phi) = -\sqrt{2}G_{F}f_{\phi}F_{1}^{B\rightarrow\pi}m_{\phi}(\varepsilon \cdot p_{\pi})$$
$$\times V_{tb}^{*}V_{td}\left[a_{3} + a_{5} - \frac{1}{2}(a_{7} + a_{9})\right]$$
a3,a5 < a4

$$M(B^{+} \to K^{+}\phi) = -\sqrt{2}G_{F}f_{\phi}F_{1}^{B\to K}m_{\phi}(\varepsilon \cdot p_{K})$$
$$\times V_{tb}^{*}V_{ts}\left[a_{3} + a_{4} + a_{5} - \frac{1}{2}(a_{7} + a_{9} + a_{10})\right]$$

CD Lu

Shortcomings of Naive FA

- Non-predictable of the non-factorizable contributions
- Form factors need input from experiments or theoretical calculations

-most important theoretical uncertainty

- Annihilation type diagram not calculable
- Strong phase too small, and not quantitatively calculable

— Direct CP asymmetry not predictable

Final state interaction not predictable

Rich physics in hadronic B decays

CP violation, FCNC, sensitive to new physics contribution...

The standard model describes interactions amongst quarks and leptons

In experiments, we can only observe hadrons

How can we test the standard model without solving QCD?

Perturbative calculations

- In principle, all hadronic physics should be calculated by QCD
- In fact, you can always use QCD to calculate any process,
- provided you can renormalize the infinities and do all order calculations.
- Perturbation calculation means order by order
- Involving loop diagrams
- Therefore divergences unavoidable

Divergences

- Ultraviolet divergences \rightarrow renormalization
- Infrared divergences ? Infrared divergence in virtual corrections should be canceled by real emission
- In exclusive QCD processes \rightarrow factorization

Factorization can only be proved in power expansion by operator product expansion. To achieve that, we need a hard scale Q

- In the certain order of 1/Q expansion, the hard dynamics characterized by Q factorize from the soft dynamics
- Hard dynamics is process-dependent, but calculable
- Soft dynamics are universal (process-independent)
 predictive power of factorization theorem
- Factorization theorem holds up to all orders in α_s , but to certain power in 1/Q
- In B decays the hard scale Q is just the b quark mass

OCD-methods based on factorization work well for the leading power of 1/*m_b* expansion

- collinear QCD Factorization approach [Beneke, Buchalla, Neubert, Sachrajda, 99']
- Perturbative QCD approach based on *k*_T factorization [Keum, Li, Sanda, 00'; Lu, Ukai, Yang, 00']
- Soft-Collinear Effective Theory [Bauer, Pirjol, Stewart, 01']
- **Unavailable for 1**/*m*^b **power corrections**
- * Work well for most of charmless B decays, except for $\pi\pi$, πK puzzle etc.

QCD factorization by BBNS: PRL 83 (1999) 1914; NPB591 (2000) 313

α_s corrections to the hard part T

The missing diagrams, which contribute to the renormalization of decay constant or form factors

Endpoint divergence appears in these calculations

All strong phases are from perturbative QCD calculations, similar to the FA, which is too small and even wrong sign to the experiments of CP Violation in $B \rightarrow \pi \pi (K)$ decays

CP(%)	FA	BBNS	Exp
$\pi^{ +}\!K^{-}$	+9±3 <	+5±9	-9.7±1.2
$\pi^{0}\!K^{+}$	+8 ± 2	7 ±9	4.7 ± 2.6
$\pi^{+}\!K^{0}$	1.7 ± 0.1	1 ±1	0.9 ±2.5
$\pi^{+}\pi^{-}$	-5±3 <	- <u>6</u> ±12	+38±7

The strong phase of Both QCD factorization and generalized factorization come fromperturbative QCD charm quark loop diagram

It is small, since it is at α_s order Therefore the CP asymmetry is small

The annihilation type diagrams are important to the source of strong phases

- However, these diagrams are similar to the form factor diagrams, which have endpoint singularity, not perturbatively calculable.
- These divergences are not physical, can only be treated in QCDF as free parameters, which makes CP asymmetry not predictable:

$$\int_{0}^{1} \frac{dy}{y} \to X_{A}^{M_{1}}, \qquad \int_{0}^{1} dy \, \frac{\ln y}{y} \to -\frac{1}{2} \, (X_{A}^{M_{1}})^{2}$$

38

Shortcomings of Naive FA

- Non-predictable of the non-factorizable
 contributions
- Form factors need input from experiments or X theoretical calculations

-most important theoretical uncertainty

- Annihilation type diagram not calculable
- Strong phase too small, and not quantitatively calculable

— Direct CP asymmetry not predictable

Final state interaction not predictable

Х

Х

Х

Picture of PQCD Approach

hard interaction inside the dotted line

Picture of PQCD Approach

Inside the dotted square, is the 6-quark interaction, which is perturbative calculable

The leading order emission Feynman diagram in PQCD approach

 $B \xrightarrow{\overline{b}}_{(c)}^{\pi} (c)$

Hard scattering diagram

CD Lu

The leading order Annihilation type Feynman diagram in PQCD approach

- x,y Integrate from $0 \rightarrow 1$, that is endpoint singularity
- The reason is that, one neglects the transverse momentum of quarks, which is not applicable at endpoint.
- If we pick back the transverse momentum, the divergence disappears
 i

$$\frac{(k_1 - k_2)^2}{(k_1 - k_2)^2} = \frac{1}{-2xym_B^2 - (k_1^T - k_2^T)^2}$$

Endpoint singularity

 It is similar for the quark propagator

 $\int \frac{1}{2} dx - \ln \frac{1}{2}$

$$\int_{0}^{1} \frac{1}{x+k} dx dk = \int dk \Big[\ln(x+k) \Big]_{0}^{1} = \int dk \Big[\ln(1+k) - \ln k \Big]$$

The logarithm divergence disappear if one has an extra dimension

However, with transverse momentum, means one extra scale

The overlap of Soft and collinear divergence will give double logarithm ln^2Pb , which is too big to spoil the perturbative expansion. We have to use renormalization group equation to produce the so called Sudakov Form factor

Sudakov Form factor exp{-S(x,b)}

This factor exponentially suppresses the contribution at the endpoint (small k_T), makes our perturbative calculation reliable

Branching ratios of $B \rightarrow D^{(*)}\pi$ (x 10⁻⁴)

modes	Fac. A	PQCD	EXP.	$a_1 = 1.08$
$D^{*+} \pi^-$	29	25	27.6 \pm 2.1	$a_{2}=0.21$
D+ π ⁻	30	27	30 ± 4	a2-0.21
D *0 π ⁰	1.0	2.8	1.7 \pm 0.5	for Fact.
D^0 π^0 <	0.7	2.5	2.9±0.5	Approach
$D^{*0}\pi^+$	48	53	46 ± 4	
$D^0 \pi^+$	48	54	53 ± 5	

PQCD: Keum et al, PRD69:094018,2004

CD Lu

Inclusive Decay and B meson annihilation decay

Cut quark diagram ~ Sum over final-state hadrons

CP Violation in $B \rightarrow \pi \pi (K)$ (real prediction before exp.)

CP(%)	FA	BBNS	PQCD (2001)	Exp (2004)
$\pi^{+}\!K^{-}$	+9±3	+5±9	-17±5	-11.5±).8
$\pi^{0}K^{+}$	$+8 \pm 2$	7 ±9	-13 ±4	$+4 \pm 4$
$\pi^{+}K^{0}$	1.7 \pm 0.1	1 ±1	-1.0 ± 0.5	-2 ±4
$\pi^+\pi^-$	-5±3	<u>6±12</u>	+ 30 ±10	+37±10

Including large annihilation fixed from exp.

CP(%)	FA	Cheng,HY	PQCD (2001)	Exp
$\pi^{+}\!K^{-}$	+9±3	-7.4 ± 5.0	-17±5	<u>-9.7</u> <u>→</u> 1.2
$\pi^{0}K^{+}$	+8 ± 2	0.28 ± 0.10	-13 ±4	4.7 ± 2.6
$\pi^{+}\!K^{0}$	1.7 ± 0.1	4.9 ± 5.9	-1.0 ± 0.5	0.9 ±2.5
$\pi^{+}\pi^{-}$	-5 ±3	17 ± 1.3	+30±10	+38±7

Summary

- Hadronic B Decays are important in the test of standard model and search for signals of new physics.
- PQCD is useful in calculation of B decays to charmed mesons as well as for light mesons
- The annihilation type diagrams are very important in explaining the K pi puzzle and large direct CP asymmetry found in B decays
- Next-to-leading order perturbative calculations is needed to explain the more and more precise experimental data

Thanks