

Introduction of heavy flavor physics

Cai-Dian Lü(吕才典**)**

CFHEP, Institute of High Energy Physics, Beijing

Outline

- **I. Introduction of heavy flavor physics GIM, CKM, leptonic/semi-leptonic decays**
- **II. Theory of non-leptonic B/D decays effective Hamiltonian, factorization, QCD factorization, perturbative QCD**
- **III. Recent progress/Rare B decays Various anomalies, puzzles**

A quantum number is needed to identify each particle state

n For fermions:

Two directions of particle physics experiments

ⁿ **Higher Energy:Tevatron, LHC, FCC** Need a big money

 –– Direct detection of new particle, new physics

- ⁿ **High Intensity:B factories,tau-charm factory, Higgs factory –– precision test,Indirect search of new physics, more economic**
- ⁿ **Many of the new discoveries are predicted by intensive precision experiments before their direct discovery**

The Duel of the B Factories

KEK (Japan)

BaBar

B factory

Mt. Tsukuba

KEKB ring (HER+LER) 3km circumference

Belle detector

Linac

KEK Tsukuba site

6

Super B factory Belle II

KEKB ring (HER+LER)

Mt. Tsukuba

The discovery of direct CP violation leads to 2008 Nobel Prize Belle detector

Linac

KEK Tsukuba site

7

Large Hadron Collider(LHC)

LHCb experiment

The mixing of quark flavor

ⁿ **In the SM, the lepton flavor eigenstates are the same as the weak eigenstates**

The weak coupling is universal for different generation of leptons

 \vert \int $\binom{V_e}{\rho}$ ⎝ $\sqrt{}$ *e* $\begin{pmatrix} V_e \\ 0 \end{pmatrix} \begin{pmatrix} V_{\mu} \\ 0 \end{pmatrix}$ \int $\begin{pmatrix} V_{\mu} \\ \mu \end{pmatrix}$ ⎝ $\sqrt{2}$ μ ${\nu}_{\mu}$

However, the story is different for quarks:

The weak decay of $\Sigma^- \to n e^- \overline{v}_e$ is suppressed 20 times **comparing with** $n \rightarrow pe^{-} \overline{v}_e$

d and s quark mix to a new state d' in weak interaction

Cabibbo angle(1963)

$$
\begin{pmatrix} u \\ d \cos \theta_c + s \sin \theta_c \end{pmatrix} = \begin{pmatrix} u \\ d' \end{pmatrix}
$$

- **u and d'quark make a weak isospin doublet**
- The Fermi weak couplings G_F should be universal for **quarks and leptons. The difference comes from the small Cabibbo angle θ^c The weak beta decay involves u and d quark, thus it is Cabibbo Favored,** the effective coupling is $G_F \cos\theta_c$ *W d u* $cos\theta_c$

For ΔS=1 process,

such as kaon decay, it involves u and s quark,**which is Cabbibo**

suppressed,

the effective coupling is $G_f \textrm{sin} \theta_c$ $\sin\theta_c \sim 0.22$, $\sin^2\theta_c \sim 0.05$, $\cos^2\theta_c \sim 0.95$

That is the reason why $\Sigma^- \to n e^- \overline{v}_e$ decay is suppressed 20 times comparing with $n \rightarrow pe^{-} \overline{\nu}_{e}$

Cabbibo suppressed and favored decays

Flavor changing neutral current

- ⁿ **Although Cabibbo's theory is successful in explaining the charged current**
- It is difficult for neutral current
- **s** Similar to Z⁰ coupling with e^+e^- , $\mu^+\mu^-$, V_eV_e , $V_\mu V_\mu$
- **•** We should also have \mathbb{Z}^0 coupling with $uu, d'd'$

Z⁰ coupling

 $uu + (d \cos \theta_c + s \sin \theta_c)(d \cos \theta_c + s \sin \theta_c)$ $= u\overline{u} + (d\overline{d}\cos^2\theta_c + s\overline{s}\sin^2\theta_c)$ **AS = 0** $f(xd + ds)\cos\theta_c \sin\theta_c$ **ΔS = 1 process**

n So there is flavor changing neutral current decay

Long time ago, we had only 3 flavors of quarks: u,d,s.

Experimentally we found that

$$
K^0 \not\to \mu^+\mu^-
$$

UD

But theoretically, we had

The GIM mechanism gives prediction of Charm quark

GIM mechanism

- ⁿ 1970,**Glashow, Iliopoulos and Maiani introduce a new quark, named** "**charm"**
- There will be a new weak doublet, c quark and

With the new flavor doublet, the flavor changing neutral current canceled

$$
\overline{uu} + (d\cos\theta_c + s\sin\theta_c)(\overline{d}\cos\theta_c + s\sin\theta_c)
$$

+ $c\overline{c} + (s\cos\theta_c - d\sin\theta_c)(\overline{s}\cos\theta_c - \overline{d}\sin\theta_c)$
= $u\overline{u} + (d\overline{d}\cos^2\theta_c + s\overline{s}\sin^2\theta_c)$
+ $c\overline{c} + (s\overline{s}\cos^2\theta_c + d\overline{d}\sin^2\theta_c)$ \sum $\boxed{\Delta s = 0}$

$$
+(s\overline{d} + d\overline{s} - s\overline{d} - d\overline{s})\cos\theta_c \sin\theta_c \qquad \boxed{\Delta s = 1}
$$

 $= u\overline{u} + d\overline{d} + s\overline{s} + c\overline{c}$

 $\boldsymbol{K^0}$

Long time ago, we had only 3 flavors of quarks: u,d,s.

Experimentally we found that

 $\overline{1}$

For a complete two generation of quarks, the weak Lagrangian is then

$$
J^{+} = W_{\mu} \left(\overline{u} - \overline{c} \right) \gamma^{\mu} (1 - \gamma^{5}) \left(\begin{array}{cc} \cos \theta_{c} & \sin \theta_{c} \\ -\sin \theta_{c} & \cos \theta_{c} \end{array} \right) \left(\begin{array}{c} d \\ s \end{array} \right)
$$

= $W_{\mu} \left(\begin{array}{cc} - & - \\ u & \overline{c} \end{array} \right) \gamma^{\mu} (1 - \gamma^{5}) \left(\begin{array}{c} d' \\ s' \end{array} \right)$ Charged current

Simlarly,

$$
J^{-} = W_{\mu} \left(\overline{d} \quad \overline{s} \right) \begin{pmatrix} \cos \theta_c & -\sin \theta_c \\ \sin \theta_c & \cos \theta_c \end{pmatrix} \gamma^{\mu} (1 - \gamma^5) \begin{pmatrix} u \\ c \end{pmatrix}
$$

Later, more precise experiments found that

$$
Br(K^0 \rightarrow \mu^+ \mu^-) \sim 10^{-9}
$$

 $Br(K^0\rightarrow \mu^+\mu^-)=F(m_c,\ldots)$ $\Delta m_{\rm K} = G(m_{\rm e},...)$

 $\rightarrow m_c \approx 1.5 \text{GeV}$

In 1964, CP violation is found in K decays, this is long before the fourth quark/charm is discovered

Nobel prize ('80) for the discovery of violations of fundamental symmetry principles in the decay of neutral K-mesons

A lot of models have been proposed to explain the CP violation phenomena

 In 1973, Kobayashi (b, 1944) & Maskawa (b, 1940) give a new explanition

Both received Ph.D. from Nagoya ('72 & '67) and both joined Kyoto as an assistant ('72 & '70).

Started collaboration in May of 1972, completed the work in August and submitted it to Progress of Theoretical Physics. Published in Feb, 1973 [Prog. Theor. Phys. 49, 652-657 (1973)]

<u>ا 14 نينت د م</u>ند

Progress of Theoretical Physics, Vol. 49, No. 2, February 1973

CP-Violation in the Renormalizable Theory of Weak Interaction

Makoto KOBAYASHI and Toshihide MASKAWA

Department of Physics, Kyoto University, Kyoto

(Received September 1, 1972)

In a framework of the renormalizable theory of weak interaction, problems of CP-violation are studied. It is concluded that no realistic models of CP-violation exist in the quartet scheme without introducing any other new fields. Some possible models of CP-violation are also discussed.

We accepted the Glashow-Weinberg-Salam theory of the weak interaction's extension to the hadron…, because the fourth quark already existed for us in a sense. Sometimes it is said that our *CP* paper was written before the discovery of charm. In this sense, however, our paper came after the charm.

-- Kobayashi (1992)

M. Kobayashi and K. Maskawa found that if we extend the 3 quark flavors to 6, we will need a 3x3 matrix, describing the mixing

$$
\begin{bmatrix}\n d' \\
s' \\
b'\n\end{bmatrix} =\n\begin{bmatrix}\n V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}\n\end{bmatrix}\n\begin{bmatrix}\n d \\
s \\
b\n\end{bmatrix}
$$
\n2008Nobel prize\n
$$
\begin{bmatrix}\n c_1 & -s_1c_3 & -s_1s_3 \\
s_1c_2 & c_1c_2c_3 - s_2s_3e^{i\delta} & c_1c_2s_3 + s_2d_3e^{i\delta} \\
s_1s_2 & c_1s_2c_3 + c_2s_3e^{i\delta} & c_1s_2s_3 - c_2c_3e^{i\delta}\n\end{bmatrix}
$$
\nProg. Theor. Phys. 49, 652 (1973)

The weak Lagrangian

n left handed current

$$
W_{\mu}^{\ \ \mu} \gamma^{\mu} (1 - \gamma^5) d^{\prime}
$$

• Mass term:
$$
m_u^2 \overline{u}u + m_d^2 \overline{d}d + ...
$$

- ⁿ **Mass eigenstate** ≠ **weak eigenstate**
- ⁿ **The mixing need a** 3**x3 matrix**(**CKM**)

$$
W_\mu \overline{u}_i \gamma^\mu (1 - \gamma^5) (V_{CKM})_{ij} d_j
$$

Wolfenstein parameterization1983

 $Q = +2/3$ $Q = -1/3$

Standard parameterization in PDG

$$
V = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_2 & s_2 \\ 0 & -s_2 & c_2 \end{pmatrix} \begin{pmatrix} c_1 & s_1 & 0 \\ -s_1 & c_1 & 0 \\ 0 & 0 & e^{i\delta} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_3 & s_3 \\ 0 & -s_3 & c_3 \end{pmatrix}
$$

$$
= \begin{pmatrix} c_1 & s_1c_3 & s_1s_3 \\ -s_1c_2 & c_1c_2c_3 - s_2s_3e^{i\delta} & c_1c_2s_3 + s_2c_3e^{i\delta} \\ s_1s_2 & -c_1s_2c_3 - c_2s_3e^{i\delta} & -c_1s_2s_3 + c_2c_3e^{i\delta} \end{pmatrix}
$$

n Unitary condition

$$
V^+V=VV^+=1
$$

 \mathbf{u}

Unitarity Triangle(s) of the CKM Matrix

• Unitarity of the CKM matrix:

$$
\hat{V}_{\rm CKM}^{\ \dagger} \cdot \hat{V}_{\rm CKM} = \hat{1} = \hat{V}_{\rm CKM} \cdot \hat{V}_{\rm CKM}^{\ \dagger} \Bigg| \quad \Rightarrow \quad
$$

- 6 normalization relations (columns and rows)
- 6 orthogonality relations (columns and rows):

$$
A+B+C=0
$$

The orthogonality relations can be represented as 6 triangles:

• These triangles have all the same area A_{Δ} :

$$
2A_{\Delta} \equiv |J_{\rm CP}| = \lambda^6 A^2 \eta = {\cal O}(10^{-5})
$$

 $\underbrace{V_{ud}V_{us}^*}_{\mathcal{O}(\lambda)} + \underbrace{V_{cd}V_{cs}^*}_{\mathcal{O}(\lambda)} + \underbrace{V_{td}V_{ts}^*}_{\mathcal{O}(\lambda^5)} = 0$ $\underbrace{V_{us}V_{ub}^*}_{\mathcal{O}(\lambda^4)} + \underbrace{V_{cs}V_{cb}^*}_{\mathcal{O}(\lambda^2)} + \underbrace{V_{ts}V_{tb}^*}_{\mathcal{O}(\lambda^2)} =$ $\overline{0}$ $\underbrace{V_{ud}V_{ub}^*}_{(\rho+i\eta)A\lambda^3} + \underbrace{V_{cd}V_{cb}^*}_{-A\lambda^3} + \underbrace{V_{td}V_{tb}^*}_{(1-\rho-i\eta)A\lambda^3} = 0$

Rows:

$$
\underbrace{V_{ud}^* V_{cd}}_{\mathcal{O}(\lambda)} + \underbrace{V_{us}^* V_{cs}}_{\mathcal{O}(\lambda)} + \underbrace{V_{ub}^* V_{cb}}_{\mathcal{O}(\lambda^5)} = 0
$$
\n
$$
\underbrace{V_{cd}^* V_{td}}_{\mathcal{O}(\lambda^4)} + \underbrace{V_{cs}^* V_{ts}}_{\mathcal{O}(\lambda^2)} + \underbrace{V_{cb}^* V_{tb}}_{\mathcal{O}(\lambda^2)} = 0
$$
\n
$$
\underbrace{V_{ud}^* V_{td}}_{\mathcal{O}(\lambda^4)} + \underbrace{V_{us}^* V_{ts}}_{\mathcal{A}\lambda^3} + \underbrace{V_{ub}^* V_{tb}}_{(\rho + i\eta)A\lambda^3} = 0
$$

• Only in two relations, all terms are of $\mathcal{O}(\lambda^3)$, and *agree* with one another

 (1)

PDG2006 & 2016 Unitarity Triangle Comparison

The CKM (Cabibbo-Kobayashi-Maskawa) matrix

Another possible parametrisations (Chau and Keung parametrisation, adopted by PDG):

rancis naukas co

34

Well motivated:

Baryon asymmetry of the Universe:

$$
\frac{n_{\rm B}}{n_{\gamma}}\bigg|_{\rm WMAP} = (5.1^{+0.3}_{-0.2}) \times 10^{-10}
$$

SM expectation (KM CPV phase):

$$
\frac{n_{\rm B}}{n_{\gamma}}\bigg|_{\rm SM}\approx 10^{-20}
$$

too small by 10 orders-of-mag.

Additional source of CPV is required: lepton-sector (v's)? 4th generation quarks)? (SUSY has ~40 CPV phases)

New Physics CPV searches are ~QCD-uncertainty-free!

The importance of CP violation

- ⁿ **IF we find aliens in the far universe**
- **Before we visit each us, it is essentials to make sure** that they are not made of **anti-matters "Important"**
- The definition of matter-anti-matter and left-right **is arbitrarily**
- They can be defined only through CP violation:

$$
\frac{\Gamma(K_L \to \pi^- \mu^+ \nu) - \Gamma(K_L \to \pi^+ \mu^- \nu)}{\Gamma(K_L \to \pi^- \mu^+ \nu) + \Gamma(K_L \to \pi^+ \mu^- \nu)} = (0.64 \pm 0.08)\%
$$

Flavor physics is important

Progress in flavour physics may help understand open questions in cosmology -SM CPV insufficient to explain matter/antimatter asymmetry

Flavour physics is a proven tool of discovery:

- BR(K^0 , \rightarrow µµ) & GIM \rightarrow prediction of charm
- CP violation \rightarrow need for a third generation
- \cdot B mixing \rightarrow mass of top is very heavy

Lesson from history: precise measurements of processes suppressed in existing theories have high sensitivity to new physics (NP) contributions. An excellent way to look for the NP expected at the TeV scale!

New physics probes

Search for deviations from SM predictions from virtual contributions of new heavy particles in loop processes

- \blacktriangleright Measure CP violating phases and study rare decays of heavy quarks
- \triangleright Compare to very precise predictions of the SM

 \triangleright Uncertainties from QCD is main problem

• Most interesting processes those where SM contribution is suppressed (e.g. FCNC)

 \triangleright Effects of New Physics (NP) are large

 \triangleright Discovery potential for NP extends to mass scales $\gt\gt$ centre-of-mass energy of collision

Prof. John Ellis @ SymmetryMagazine.org

B meson decays, similarly b baryon decays ν *b*

 $\boldsymbol{\mathcal{U}}$

- \blacksquare Pure leptonic decays
- Semileptonic decays
- \blacksquare Non-leptonic decays

Pure leptonic is the simplest:

The hadronic part of the calculation is just the definition of the meson decay constant, for example, a pseudo -scalar meson:

$$
\langle P(p)|\overline{q}\gamma^{\mu}Lq'|0\rangle = if_{P}p^{\mu}.
$$

l +

Pure leptonic decays

$\langle P(p)|\overline{q}\gamma^{\mu}Lq'|0\rangle = i f_{P}p^{\mu}$.

- \blacksquare The decay constant is the normalization of the meson wave function *i.e.* the zero point of wave function *l* + $\boldsymbol{\mathcal{U}}$
- n The experimental measurement of pure leptonic decay can provide the product of decay constant and CKM matrix element.

b

n Theoretically decay constant can be calculated by QCD sum rule or Lattice QCD

ν

Rare decays, which are sensitive to new physics signals

- **n** $B_{s,d} \rightarrow v \overline{v}$ is helicity forbidden decay mode, (only by Z boson)
- **B**_{s,d} → *l*⁺*l*⁻ is helicity suppressed, **similar to B⁺** \rightarrow *l***⁺ v**, $\Gamma \propto m_l^2$
- **n** But further suppressed by loop
- **Theory:**

 \overline{a} **Exp.**

$$
\mathcal{B}\left[B_s^0 \to \mu^+ \mu^- \right] = 2.8^{+0.7}_{-0.6} \times 10^8
$$
 LHCb, CMS, ATLAS

Radiative leptonic decays, which are also sensitive to new physics ν

u

b

- \blacksquare **B**⁺ \rightarrow *l* **v** γ **is not helicity** $suppressed$, but α_{ORD} **suppressed with Brs: 10–6**
- **Similarly, we have** $B_c \rightarrow l v \gamma$ **, also not helicity suppressed** (**10–5).**
- With one more photon in the final states, easier for **exp.**
- But more difficult for theoretical study with long **distance contribution**

l +

- \bullet **B**_{s,d} \rightarrow *v* γ can also decay, but α _{OED} suppressed **Theory: Br(B⁰** \rightarrow **v v** γ **)~10⁻⁹, Exp.:** $\langle 1.7 \times 10^{-5} \rangle$ **Theory** $\mathbf{Br}(\mathbf{B}_{\mathbf{s}} \to \mathbf{v} \mathbf{v} \mathbf{\gamma}){\sim}10^{-8}$ ⁿ **Similarly Bs,d→** *l* **+** *l* **– γ** (*l***=e,**µ)**also not helicity suppressed**
- **n** Theory: $Br(B_s \rightarrow l^+l^- \gamma) \sim 10^{-9}$ **Br**($B_d^0 \rightarrow l^+l^- \gamma$)~10⁻¹⁰ Exp. <10⁻⁻⁷

Pure leptonic decays with lepton number violation

- **n** Can only occur in new physics beyond SM
- We have only experimental upper limits:
- **n** $Br(B^0 \rightarrow e^+ \mu^-) < 2.8 \times 10^{-9}$
- **n Br**($B^0 \rightarrow e^+ \tau^-$) < 2.8 x 10⁻⁵
- **n Br**($B^0 \rightarrow \mu^+ \tau^-$) < 2.2 x 10⁻⁵
- **n** $Br(B_s^0 \rightarrow e^+ \mu^-) < 1.1 \times 10^{-8}$

We have two hadrons in semi-leptonic decays. It is described by form factors

If form factors known, the experimental measurement can give the size of CKM matrix element Vub

Form factors(B^{\rightarrow}Vector transition)

ⁿ **Vector Current**

$$
\langle \rho | u \gamma_{\mu} b | B \rangle = \varepsilon_{\mu\nu\alpha\beta} \varepsilon^{\nu} p_{B}^{\alpha} p_{\rho}^{\beta} \frac{2V(q^{2})}{m_{B} + m_{\rho}}
$$

- **Form factors can be calculated by lattice QCD, QCD sum rules, light cone sum rules etc.**
- **n** In the quark model, it is calculated by the overlap **of two meson wave functions.**

Form factors(B^{\rightarrow}Vector transition)

Axial Vector Current

$$
\langle \rho | \overline{u} \gamma^{\mu} \gamma^{5} b | B \rangle = i \left[\varepsilon^{\mu} - \frac{\varepsilon \cdot q}{q^2} q^{\mu} \right] (m_{B} + m_{\rho}) A_{1}(q^{2})
$$

$$
- i \left[(p_{B} + p_{\rho})^{\mu} - \frac{m_{B}^{2} - m_{\rho}^{2}}{q^2} q^{\mu} \right] (\varepsilon \cdot q) \frac{A_{2}(q^{2})}{m_{B} + m_{\rho}} \qquad \text{Vector}
$$

$$
+ i \frac{2m_{\rho}(\varepsilon \cdot q)}{q^2} q^{\mu} A_{0}(q^{2}) \qquad \text{Scalar}
$$

$$
2m_{\rho} A_{0}(0) = (m_{B} + m_{\rho}) A_{1}(0) - (m_{B} - m_{\rho}) A_{2}(0)
$$

Examples of leading electroweak diagrams for $B \to X_s \gamma$

$\sim +200\%$	$\sim -100\%$

In the amplitude, after including LO QCD effects.

QCD logarithms $\alpha_s \ln \frac{M_W^2}{m_t^2}$ enhance BR($B \to X_s \gamma$) more than twice

Many new physics models contribute to $\mathbf{b} \rightarrow \mathbf{s}$ *γ* decay

For example, the charged Higgs contribute to bà**s γ decay**

Recent bounds on $M_{H^{\pm}}$ **; [arXiv:1702.04571]**

in 2HDM II

 $M_{H^{\pm}} > 580$ GeV at 95%C.L. $M_{H^{\pm}} > 440 \text{ GeV at } 99\% \text{C.L.}$

Thanks!