The Collider-Cosmology Interface I

M.J. Ramsey-Musolf U Mass Amherst

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers

University of Massachusetts Amherst

http://www.physics.umass.edu/acfi/

HEP School, Lanzhou 8/1-8/18

"Big Questions"

The Origin of Matter

Explaining the origin, identity, and relative fractions of the cosmic energy budget is one of the most compelling motivations for physics beyond the Standard Model

Elementary Fermion Masses

EWSB: The Scalar Potential

How did this potential evolve with temperature ?

Collider Physics & the Early Universe

- Why does the universe contain more matter than antimatter ?
- What is the dark matter and what are its interactions ?
- What is the thermal history of electroweak symmetry-breaking ?
- What additional particles & interactions were active in the early universe and at what epoch in cosmic history ?

Collider Physics & the Early Universe

Lecture I

- Give an overview of particle physics in cosmic history
- Explain the time-temperature-mass connection
- Introduce the context of baryogenesis & finite-T symmetry breaking

Lecture II

- Explain how leptogenesis works
- Explain how collider searches and other experiments can probe leptogenesis scenarios

Collider Physics & the Early Universe

Lecture III

- Explain how electroweak baryogenesis works
- Discuss dynamics of the electroweak phase transition
- Discuss EWPT-dark matter connection
- Discuss LHC & future collider probes of EWPT & related dark matter scenarios

Lecture I Goals

- Introduce key concepts & framework for describing particle interactions in the early universe
- Set the context for the discussion of baryogenesis scenarios & their connection to BSM physics
- Introduce the key ideas for analyzing spontaneous symmetry-breaking at non-zero temperature: finite-T effective potential
- Invite questions !

Lecture I Outline

- I. Cosmic Thermal History and Particle Physics
- *II. General Relativity & Thermodynamics: Relating time, temperature, & mass*
- *III. Matter-Antimatter Asymmetry*
- IV. Symmetry-Breaking at Non-zero T

References

- *"Modern Cosmology", S. Dodelson*
- *"The Early Universe", E. Kolb & M. Turner*
- *"Finite Temperature Field Theory", A. Das*

I. Cosmic Thermal History & Particle Physics: Overview

• Non-zero vacuum expectation value of neutral Higgs breaks electroweak sym and gives mass:

$$m_e = \lambda_e \langle H^0 \rangle$$

- Is it the Standard Model Higgs?
- Is there more than one?

Puzzles the St'd Model may or may not solve:

 $SU(3)_c \times SU(2)_L \times U(1)_Y$

→ U(1)_{EM}

How is electroweak symmetry broken? How do elementary particles get mass ?

Puzzles the Standard Model can't solve

- 1. Origin of matter
- 2. Unification & gravity
- 3. Weak scale stability
- 4. Neutrinos

Puzzles the Standard Model can't solve

- 1. Origin of matter
- 2. Unification & gravity
- 3. Weak scale stability
- 4. Neutrinos

Back up slides

Puzzles the Standard Model can't sol

- 1. Origin of matter
- 2. Unification & gravity
- 3. Weak scale stability
- 4. Neutrinos

Neutrinos & the Flavor Problem

Origin of matter
 Unification & gravity
 Weak scale stability
 Neutrinos

What are the symmetries & particles of the early universe beyond those of the SM?

What is the associated mass scale?

Relating Time, Temperature, & Mass

Boltzmann Eqs:

$$1) N \sim N_{EQ}$$

3) N "freezes out" at x_f

Freeze Out

Boltzmann Eqs:

1) $N \sim N_{EQ}$

2) N starts to depart from N_{EQ}

3) N "freezes out" at x_f

 $x_f \sim O(10) \rightarrow$ T ~ m / 10 II. General Relativity & Thermodynamics

How do we relate time & temperature in the early universe ?

Einstein

Friedman-Robertson-Walker

$$g_{\mu\nu} = \text{diag}\left(1, -a^2, -a^2, -a^2\right)$$

- Isotropic
- Expanding: a = a(t)
- Flat

Friedman-Robertson-Walker

$$g_{\mu\nu} = \text{diag}\left(1, -a^2, -a^2, -a^2\right)$$

Einstein & Friedman-Robertson-Walker

$$G_{00} = 8\pi G T_{00} = 8\pi G \rho$$
 $G_{00} = 3\left(\frac{\dot{a}}{a}\right)^2$

"Friedman Equation" (flat universe)

Hubble Rate

$$H(t) \equiv \frac{\dot{a}}{a}$$

Hubble Rate Today

$$H_0 = h \left[0.98 \times 10^{10} \,\mathrm{yr} \right]^{-1}$$

Relativistic particles

$$\rho = \begin{cases} \left(\frac{\pi^2}{30}\right)gT^4 & \text{bosons} \\ \\ \left(\frac{7}{8}\right)\left(\frac{\pi^2}{30}\right)gT^4 & \text{fermions} \end{cases}$$

Relating Time & Temperature

Friedman equation

Time evolution of a

Reduced Planck Mass

$$a \propto \begin{cases} t^{1/2} , & \text{radiation} \\ t^{2/3} , & \text{matter} \\ \exp(H_0 t) , & \text{vacuum} \end{cases}$$

$$G = rac{1}{8\pi M_P^2}$$

 $M_P = 2.435 imes 10^{18} \, {
m GeV}$

Relating Time & Temperature

Radiation era

$$a \propto t^{1/2} \longrightarrow \frac{\dot{a}}{a} = \frac{1}{2t}$$

$$H(t) = \left[\left(\frac{\pi^2}{90} \right) g_* \right]^{1/2} \frac{T^2}{M_P}$$

Relating Time & Temperature

Radiation era

Radiation, Matter, & Vacuum Epochs

Dependence of ρ on a

Vacuum epoch: ρ independent of a
Radiation, Matter, & Vacuum Epochs

	Time	Temperature	Dynamics
Radiation era	10 ⁻³⁵ s	10 ²⁷ K	Inflation ends
	10 ⁻¹¹ s	10 ¹⁵ K	EWSB
	10 ⁻⁵ s	10 ¹² K	Confinement
	10 s	10 ⁹ K	BBN
latter era	380k Yr	2.7 K	Recomb

Thermal History

Particle Decoupling & Freeze Out

Number Density & Entropy

Comoving (a-independent) :

$$Y = \frac{n}{s}$$

Relativistic species in equilibrium

$$Y_{\rm rel}^{\rm EQ} = \frac{45\zeta(3)g}{2\pi^4 g_{*s}}$$

Non-relativistic species in equilibrium $Y_{\text{non-rel}}^{\text{EQ}} = \frac{45g}{4\sqrt{2}\pi^5 g_{*s}} \left(\frac{M}{T}\right)^{3/2} \exp\left[\frac{-M+\mu}{T}\right]$

Boltzmann Equations (Classical)

$$z \equiv \frac{M}{T}$$

Particle Abundances: t, T, & m

Boltzmann Eqs:

1)
$$N \sim N_{EQ}$$

3) N "freezes out" at x_f

Freeze Out

Boltzmann Eqs:

1) $N \sim N_{EQ}$

2) N starts to depart from N_{EQ}

3) N "freezes out" at x_f

 $x_f \sim O(10) \rightarrow$ T ~ m / 10

III. Matter-Antimatter Asymmetry

Cosmic Baryon Asymmetry

$$Y_B = \frac{n_B}{s} = (8.59 \pm 0.11) \times 10^{-11}$$

Cosmic Microwave Bcknd: Shape of anisotropies depends on Y_B

Big Bang Nucleosynthesis: Light element abundances depend on Y_B

Cosmic Baryon Asymmetry

Cosmic Baryon Asymmetry

Segregated Matter & Antimatter ?

- Absence of γ -rays \rightarrow Must separate on scales of > 10¹⁵ M_{\odot} (See, e.g., Steigman '08)
- $N \overline{N}$ annihilation in equilibrium down to ~ 22 MeV $\rightarrow n_B / s \sim n_{\overline{B}} / s \sim 7 \times 10^{-20}$
- At T ~ 38 MeV $n_B / s ~ n_{\overline{B}} / s ~ 8 \times 10^{-11} \rightarrow$ New mechanism to separate N & N needed
- At T ~ 38 MeV, horizon contains ~ $10^{-7} M_{\odot} \rightarrow$ Far too little to satisfy absence of X-rays

Observed Y_B must result from early univ particle physics

Ingredients for Baryogenesis

- B violation
- C & CP violation
- Out-of-equilibrium or CPT violation

Ingredients for Baryogenesis

- B violation (sphalerons)
- C & CP violation
- Out-of-equilibrium or CPT violation

Ingredients for Baryogenesis

- B violation (sphalerons)
- C & CP violation
- Out-of-equilibrium or
 CPT violation

Scenarios: leptogenesis, EW baryogenesis, Afflek-Dine, asymmetric DM, cold baryogenesis, postsphaleron baryogenesis...

Baryogenesis Scenarios

Fermion Masses & Baryon Asymmetry

IV. Symmetry Breaking at Finite T

EWSB: The Scalar Potential

What was the thermal history of EWSB ?

Temperature Dependence of V(φ)

Effective Potential:

$$V_1(\phi_c, T) = \int \frac{d^3k}{(2\pi)^3} \tilde{I}[m(\phi_c)] \qquad \qquad \beta \equiv \frac{1}{T}$$

$$\tilde{I}[m(\phi_c)] = \frac{\omega}{2} + \frac{1}{\beta} \ln \left(1 - e^{-\beta\omega}\right) \qquad \omega^2 = \vec{k}^2 + m^2(\phi_c)$$

T=0 part: Coleman-Weinberg

T-dependent part

EW Phase Transition: St'd Model

Increasing m_h

Lattice	Authors	$M_{\rm h}^C~({ m GeV})$
4D Isotropic	[76]	80 ± 7
4D Anisotropic	[74]	72.4 ± 1.7
3D Isotropic	[72]	72.3 ± 0.7
3D Isotropic	[70]	72.4 ± 0.9

SM EW: Cross over transition

EW Phase Diagram

How does this picture change in presence of new TeV scale physics ? What is the phase diagram ?

Key Concepts

- *Einstein* + *FRW*: *linking time* & *temperature*
- Thermal history: inflation, radiation era, matter era, & vacuum era
- Particle abundances & Boltzmann equations: linking interaction rates, masses, & T
- Baryon asymmetry & Sakharov conditions
- Thermal history of spontaneous symmetry breaking

Back Up Slides

BBN and Y_B

Expanding, Isotropic, Flat Universe

Einstein

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}$$

$$G_{\mu\nu} \equiv R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}\mathcal{R}$$

$$\mathcal{R} \equiv g^{\mu\nu}R_{\mu\nu}$$

$$R_{\mu\nu} = \Gamma^{\alpha}_{\mu\nu,\,\alpha} - \Gamma^{\alpha}_{\mu\alpha,\,\nu} + \Gamma^{\alpha}_{\beta\alpha}\Gamma^{\beta}_{\mu\nu} - \Gamma^{\alpha}_{\beta\nu}\Gamma^{\beta}_{\mu\alpha}$$

Densities

$$\rho = \frac{g}{(2\pi)^3} \int d^3 p \, E(\vec{p}) f(\vec{p})$$
$$n = \frac{g}{(2\pi)^3} \int d^3 p \, f(\vec{p})$$

Distribution functions

$$f(\vec{p}) = \{\exp\left[\beta(E-\mu)\right] \pm 1\}^{-1}$$

Energy Momentum Conservation

$$T^{\mu\nu}_{;\nu} = 0 \qquad \qquad d\left(\rho a^3\right) = -Pda^3$$

Equation of State

 $P = \omega \rho$

$$ho \propto a^{-3(1+\omega)}$$
 $a \propto t^{2/[3(1+\omega)]}$

$$ho \propto a^{-3(1+\omega)}$$
 $a \propto t^{2/[3(1+\omega)]}$

$$\omega = \begin{cases} \frac{1}{3} , & \text{radiation (relativistic)} \\ 0 , & \text{matter} \\ -1 , & \text{vacuum (cos. constant)} \end{cases}$$

Time evolution of a

$$a \propto \begin{cases} t^{1/2} , & \text{radiation} \\ t^{2/3} , & \text{matter} \\ \exp(H_0 t) , & \text{vacuum} \end{cases}$$

Dimensional analysis

Number Density & Entropy

Quantities that depend on a:

$$n = \frac{g}{(2\pi)^3} \int d^3p f(\vec{p}) = \text{N/V}$$

$$s \equiv \frac{S}{V} = \frac{\rho + P}{T}$$

Relativistic D.O.F:

$$s = \left(\frac{2\pi^2}{45}\right)g_{*s}T^3$$

$$g_{*s} = \sum_{i=\text{bosons}} g_i \left(\frac{T_i}{T}\right)^3 + \left(\frac{7}{8}\right) \sum_{i=\text{fermions}} g_i \left(\frac{T_i}{T}\right)^3$$

Boltzmann Equations (Classical)

$$\dot{n} + 3Hn = s\dot{Y}$$
Boltzmann Equations (Classical)

$$H(M) = 1.67 \sqrt{g_*} \frac{M^2}{M_{\rm Pl}}$$

$$dt = zH(M)^{-1}dz$$

$$\dot{n} + 3Hn = s\dot{Y} = \frac{sH(M)}{z} \frac{dY}{dz}$$