
NLO calculations 
l  NLO calculation requires 

consideration of all diagrams 
that have an extra factor of αs 
◆  real radiation, as we have 

just discussed 
◆  virtual diagrams (with 

loops) 
l  For virtual diagram, have to 

integrate over loop momentum  
◆  but result contains IR 

singularities (soft and 
collinear), just as found for 
tree-level diagrams 

O(αs) virtual corrections in NLO  
cross section arise from 
interference between tree level and 
one-loop virtual amplitudes 

vertex  
correction 

self-energy 
corrections 

If we add the real+virtual contributions, we find that the singularities will cancel, 
for inclusive cross sections. This is shown explicitly for W production in the extra slides.  
We have to be more clever for differential distributions. See extra slides for more detail.    
 



Observables and orders 

suppose I want to know 
dσ/dφjj to NLO; then I  
would need the 1 loop 
correction to the  
diagram on the left, and  
the W+3 jets real  
correction; both of order 
αs

3 



Power series 

 
 
 
 
For perturbation theory to work, need  αs ≡ gs

2/4π <<1 
 
Each vertex has gs in amplitude->gs

2 is proportional to  αs in cross 
section 
 
Higher orders->more vertices->more diagrams (n!)->fn becomes 
more difficult to calculate 
 
But if αs<<1, can truncate series (LO, NLO, NNLO,…) 
 
For W production, NNLO corrections are reasonably small; not true 
for Higgs production, for example 

Cross section is a power series in αs 
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Brief interlude: jet definitions and algorithms 

l  At (fixed) LO, 1 parton = 1 jet 
◆  why not more than 1? I have 

to put a ΔR cut on the 
separation between two 
partons; otherwise, there’s a 
collinear divergence. LO 
parton shower programs 
effectively put in such a cutoff 

l  But at NLO, I have to deal with 
more than 1 parton in a jet, and 
so now I have to talk about how 
to cluster those partons 
◆  i.e. jet algorithms 
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Jet algorithms at NLO 
l  At NLO (NNLO), there can be 

two(three)  partons in a jet, life 
becomes more interesting and 
we have to start talking about 
jet algorithms to define jets 
◆  we will see that the 

addition of the extra 
parton(s) and virtual terms 
will cancel the divergence 
mentioned on the previous 
slide  

l  A jet algorithm is based on some 
measure of localization of the 
expected collinear spray of 
particles 

l  Start with an inclusive list of 
partons (fixed order), particles 
(PS shower Monte Carlos, and 
data)  

l  End with lists of same for each jet 
l  …and a list of particles… not in 

any jet; for example, remnants of 
the initial hadrons 

l  Two broad classes of jet 
algorithms 
◆  cluster according to proximity 

in space: cone algorithms 
◆  cluster according to proximity 

in momenta: kT algorithms 

used almost exclusively 
at the Tevatron 
used almost exclusively 
at the LHC 
 



What do I want out of a jet algorithm?  

l  It should be fully specified, 
including defining in detail any 
pre-clustering, merging and 
splitting issues 

l  It should be simple to implement 
in an experimental analysis, and 
should be independent of the 
structure of the detector 

l  It should be boost-invariant 
l  It should be simple to implement 

in a theoretical calculation 
◆  it should be defined at any order 

in perturbation theory 
◆  it should yield a finite cross 

section at any order in 
perturbation theory 

◆  it should yield a cross section that 
is relatively insensitive to 
hadronization effects 

l  It should be IR safe, i.e. adding a 
soft gluon should not change the 
results of the jet clustering 

l  It should be collinear safe, i.e. 
splitting one parton into two 
collinear partons should not 
change the results of the jet 
clustering 



Jet algorithms 
l  The algorithm should behave in a similar manner (as much as 

possible) at the parton, particle and detector levels. Note that 
differences between levels can unavoidably creep in.  



The kT family of jet algorithms 
l  p=1 

◆  the regular kT jet algorithm 
l  p=0 

◆  Cambridge-Aachen algorithm 
l  p=-1 

◆  anti-kT jet algorithm 
◆  Cacciari, Salam, Soyez ’08 
◆  also P-A Delsart ’07 (reverse 

kT) 
◆  soft particles will first cluster 

with hard particles before 
clustering among themselves 

◆  no split/merge 
◆  leads mostly to constant area 

hard jets 

l #1 algorithm for 
ATLAS, CMS 

l Cambridge-Aachen 
used in some 
circumstances, e.g. 
large R jets 
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ATLAS W + 2 jet event 

.with the W 
boson  
decaying into 
an electron  
and a neutrino 
 
...and the 2 jets 
defined with the 
antikT algorithm 
with R=0.4 



Scale choices 
l  We know that we have two 

scales, µR and µF 

l  We know that they should be 
associated with the relevant 
scale in the hard scattering 
process 
◆  sometime this scale is 

evident, like mW for W 
production, pT

jet for 
inclusive jet production 

◆  but what if I have a 
process like W+jet(s) 

▲  there I have both mW and 
pT

jet, and these scales can be 
very different->very different 
answers 

▲  for some cases, general 
scales like HT may work best 

l  Often µR and µF are taken 
equal to each other, but the 
physics associated with each 
is a bit different, so they can 
be varied separately…as long 
as the ratio between the two 
scales is not too large (>2) 

l  For then, we would introduce 
a new log into the calculation, 
the log of the ratio of the two 
scales 

l  These logarithms would then 
have to be re-summed to 
restore precision to the 
measurement 

l  We don’t want to have to do 
that 
sum of transverse momenta of all objects in event 



Scale uncertainties 

l  We try to estimate the uncertainty due to uncalculated 
higher order terms by varying µR,µF over some range, 
typically a factor of 2 

l  This is normally the best we can do, but we have to 
keep in mind that  higher order corrections can arise 
from a number of other sources such as Sudakov 
effects, large color factors, large π2 terms, the opening 
of new channels 

l  These  contributions are not estimated by the variation 
of the scale logarithms and can be larger than the 
variation 



What does the scale dependence for a cross section look like?  

l  Here, we’re specifically looking at 
inclusive jet production, but this holds 
for other collider processes 

l  Write cross section indicating explicit 
scale-dependent terms for NLO 

l  First term (lowest order) in (3) leads to 
monotonically decreasing behavior as 
scale increases (the LO piece) 

l  Second term is negative for µ<pT, 
positive for µ>pT 

l  Third term is negative for factorization 
scale M < pT 

l  Fourth term has same dependence as 
lowest order term 

l  Thus, lines one and four give 
contributions which decrease 
monotonically with increasing scale 
while lines two and three start out 
negative, reach zero when the scales 
are equal to pT, and are positive for 
larger scales 

l  At NLO, result is a roughly parabolic 
behavior 

(1) 
(2) 

(3) 
(4) 



Why does the scale dependence have the shape it does?  

l  Write cross section indicating explicit 
scale-dependent terms 

l  First term (lowest order) in (3) leads to 
monotonically decreasing behavior as 
scale increases (the LO piece) 

l  Second term is negative for µ<pT, 
positive for µ>pT 

l  Third term is negative for factorization 
scale M < pT 

l  Fourth term has same dependence as 
lowest order term 

l  Thus, lines one and four give 
contributions which decrease 
monotonically with increasing scale 
while lines two and three start out 
negative, reach zero when the scales 
are equal to pT, and are positive for 
larger scales 

l  At NLO, result is a roughly parabolic 
behavior 

(1) 
(2) 

(3) 
(4) 

Note that  
NLO=LO  
for a scale 
of about pT/2;  
for other scales 
NLO>LO, or 
NLO<LO 



Look at scale dependence in 2-D 

Jet production at the LHC 



It’s also useful to use a log-log scale 
l  …since 

perturbative 
QCD is 
logarithmic 

l  Note that 
there’s a saddle 
region, and a 
saddle point, 
where locally 
there is little 
slope for the 
cross section 
with respect to 
the two scales 

l  This is kind of 
the ‘golden 
point’ and 
typically around 
the expected 
scale (pT

jet in 
this case) 



It’s also useful to use a log-log scale 
l  Choose pTjet as the 

central scale 
l  The scale variation 

represents an 
estimate of the 
uncalculated higher 
orders 

l  Typically vary both 
µR and µF up and 
down from their 
central values to 
estimate the scale 
uncertainty 

l  ...sometimes 
making sure that 
the ratio of the two 
scales is never 
larger than two, 
creating the 
diamond 



Advantages of higher orders 
l  Less sensitivity to unphysical input 

scales, i.e. renormalization and 
factorization scales 

l  NLO is first level of prediction 
where normalization (and 
sometimes shape) can be taken 
seriously 

l  At NNLO can take uncertainties 
more seriously 

l  More physics 
◆  parton merging  gives structure 

in jets 
◆  more species of incoming 

partons 

consider inclusive jet prod 
at LO, NLO, NNLO 

uncertainty at 
NNLO<NLO<LO 



More scale terms in NNLO expression 





State of the art for NLO/NNLO 

l  LO: well under control, even for multiparticle final states 
l  NLO: well understood for 2->1, 2->2, 2->3, 2->4 (W/Z+3 jets, 

ttbb,WWbb,tttt,…); 2->5 (W+4 jets) and even 2->6 (W+5 jets) 
l  NNLO: we’re in the middle of a NNLO revolution, with 2->2 processes 

having been calculated (W/Z/γ/Higgs+1 jet, dijet) with the frontier being    
2->3 (W/Z/γ/Higgs+1 jets, 3 jets,etc) at NNLO 

Relative 
order 

2->1 2->2 2->3 2->4 2->5 2->6 

1 LO 
αs NLO LO 
αs

2 NNLO NLO LO 
αs

3 NNLO NLO LO 
αs

4 NNLO NLO LO 
αs

5 NLO LO 
αs

6 NLO 



Gudrun figure 
from Gudrun Heinrich (2017) 

different subtraction 
schemes 



Size of higher order corrections 
l  Some rules-of-thumb 
l  NLO and (NNLO) 

corrections are larger for 
processes in which there 
is a great deal of color 
annihilation 
◆  gg->Higgs 
◆  gg->γγ
◆  these gg initial states 

want to radiate like 
crazy Ci1 + Ci2 – Cf,max 

Simplistic rule 

Casimir color factors for initial state 

Casimir for biggest color 
representation final state can  
be in  

L. Dixon 

l  NLO corrections decrease as 
more final-state legs are 
added (K=NLO/LO) 
◆  K(gg->Higgs + 2 jets)                  

<  K(gg->Higgs + 1 jet)                
< K(gg->Higgs) 

◆  unless can access new 
initial state gluon channel  

l  Can we generalize for 
uncalculated HO processes? 



All-orders approaches 
l  Rather than systematically 

calculating to higher and 
higher orders in the 
perturbative expansion, can 
also use a number of all-
orders approaches 

l  In resummation, dominant 
contributions from each order 
in perturbation theory are 
singled out and resummed by 
use of an evolution equation 

l  Near boundaries of phase 
space, fixed order calculations 
break down due to large 
logarithmic corrections, and 
these contributions can 
become important. 
Resummation takes them into 
account. 
 

l  Consider W production 
◆  one large logarithm 

associated with production of 
vector boson close to 
threshold  

◆  takes form of  

◆  where 

◆  other large logarithm is 
associated with recoil of 
vector boson at very small pT 

◆  logarithms appear as       
αs

nlog2n-1(Q2/pT
2) 

In both cases there is a restriction of  
phase space for gluon emission and  
thus the logs become large and are 
crucial for an accurate prediction 
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All-orders approaches 
l  Size of L depends on kinematic 

distribution/cuts being considered 
l  Coefficients cij depend on color 

factors 
l  Thus, addition of each gluon 

results in additional factor of αs 
times logarithms 

l  In many (typically exclusive) 
cases, the logs can be large, 
leading to an enhanced 
probability for gluon emission to 
occur 

l  For most inclusive cases, logs are 
small and αs counting may be 
valid estimator for production of 
additional jets 

l  For completely inclusive cross 
sections, the logs vanish 

•  See discussion in extra slides re: 
adding gluons on to the W + 1 jet 
process 

•  each gluon added yields an 
additional factor of αs and two 
new logarithms 

•  qT resummation is resumming the 
effects of logs of Q2/pT

2 

•  note that qT resummation does 
not change the size of the cross 
section; it just modifies the pT 
distribution of the W 



All-orders approaches 
l  These are the leading logs (LL) 

(highest power of log for each  
power of αs) 

l  These are the next-to-leading 
logs (NLL) (next highest power of 
log…) 
◆  …and so on 

l  We know the structure of the 
LL’s, NLL’s, NNLL’s 

l  But we don’t know the cij factors 
until we do the finite order 
calculation 

l  LO gives us the LL 
l  NLO gives us the NLL 

◆  …and so on 
l  The accuracy of the resummation 

improves with the addition for 
further higher order information  

l  A resummation program like 
ResBos has NNLL accuracy 

•  See discussion in extra slides re: 
adding gluons on to the W + 1 jet 
process 

•  each gluon added yields an 
additional factor of αs and two 
new logarithms 

•  qT resummation is resumming the 
effects of logs of Q2/pT

2 

•  note that qT resummation does 
not change the size of the cross 
section; it just modifies the pT 
distribution of the W 



All-orders approaches 
l  Expression for W boson 

transverse momentum in 
which leading logarithms have 
been resummed to all orders 
is given by 

Note that distribution 
goes to zero as pT->0;  
no divergence 

•  Remember the expression we 
had after adding gluons on to the 
W + 1 jet process 

•  each gluon added yields an 
additional factor of αs and two 
new logarithms 

•  qT resummation is resumming the 
effects of logs of Q2/pT

2 

•  note that qT resummation does 
not change the size of the cross 
section; it just modifies the pT 
distribution of the W 

You could get the same predictions by 
using PDFs in which the transverse 
momentum (kT) has not been integrated out 



pT distributions 
l  If we look at average transverse 

momentum of Drell-Yan pairs as 
a function of mass, we see that 
there is an increase that is 
roughly logarithmic with the mass 
◆  as expected from the logs 

that we saw accompanying 
soft gluon emission 

l  If we look at the average 
transverse momentum of Drell-
Yan pairs as a function of center-
of-mass energy, there is an 
increase that is roughly 
logarithmic with the center of 
mass energy 
◆  as we expect from the logs 

resulting from the increase in 
phase space for gluon 
emission as the center of 
mass energy grows 



Parton showers 
l  A different, but related 

approach for re-summing 
logarithms, is provided by 
parton showering 

l  By the use of the parton 
showering process, a few 
partons produced in a hard 
interaction at a high-energy 
scale can be related to 
partons at an energy scale 
close to ΛQCD.  

l  At this lower energy scale, a 
universal non-perturbative 
model can then be used to 
provide the transition to 
hadrons 

l  Parton showering allows for 
evolution, using DGLAP 
formalism, of parton 
fragmentation function 

l  Successive values of an 
evolution variable t, a 
momentum fraction z and an 
azimuthal angle φ are 
generated, along with the 
flavors of the partons emitted 
during the parton shower 

…plus 
similar for 
initial state 



...from our t-shirt 

Note that gluon radiation 
is coming from both 
the final state 
and the initial state 

....but what’s this? 
We’ll have to wait.  



...from our t-shirt 

.  

Consider QCD final state radiation, 
from q->qg as an example 
 
Radiation pattern is given by 
 
 



...from our t-shirt 
l  There are two perturbative 

regimes 
◆  a regime of jet production, 

where kT~ω>>kTmin 
▲  emission probabilities scale 

like αs(kT)<<1 
▲  standard fixed-order QCD 

applies 
◆  a region of jet evolution 

where kTmin<kT<ω
▲  emission probablities scale 

like αs(kT)log2(kT
2)~1 

▲  perturbative parameter is not 
αs anymore, but αs * towers 
of logarithms 

▲  LL, NLL, etc 
▲  parton showers apply 

.  

. 
 

perturbation theory breaks down on  
scales of about 1 GeV (t~1/GeV) 
It’s at this point that the partons form 
hadrons through non-perturbative physics 

perturbation 
theory valid 
for these 
scales 
(~100 GeV) 
t~1/100 GeV 



...from our t-shirt 

.  

. 
 

perturbation theory breaks down on  
scales of about 1 GeV (time~1/GeV) 
It’s at this point that the partons form 
hadrons through non-perturbative physics 

perturbation 
theory valid 
for these 
scales 
(~100 GeV) 
time~1/100 GeV 



Parton shower evolution 

l  On average, emitted gluons 
have decreasing angles with 
respect to parent parton 
directions 
◆  angular ordering, an 

aspect of color coherence 
l  The evolution variable t can 

be directly related to θ, the 
opening angle between the 
two partons [Herwig], or the 
square of the transverse 
momentum between the two 
partons [Pythia,Sherpa] 



Note 
l  We can only observe emissions 

above a certain resolution scale 
l  Below this resolution scale, 

singularities cancel, leaving a 
finite remnant 

l  (some of) the virtual corrections 
encountered in a full NLO 
calculation are included by the 
use of Sudakov suppression 
between vertices 

l  So a parton shower Monte Carlo 
is not purely a fixed order 
calculation, but has a higher order 
component as well 

l  This is a statement that you’ll 
often hear 



Sudakov form factors 
l  Sudakov form factors form the basis 

for both resummation and parton 
showering 

l  We can write an expression for the 
Sudakov form factor of an initial state 
parton in the form below, where t is 
the hard scale, to is the cutoff scale 
and P(z) is the splitting function 

l  Similar form for the final state but 
without the pdf weighting 

l  Sudakov form factor resums all 
effects of soft and collinear gluon 
emission (so again the double logs), 
but does not include non-singular 
regions that are due to large energy, 
wide angle gluon emission 

l  Gives the probability not to radiate a 
gluon greater than some energy 

l  We can draw explicit (approximate) 
curves for the Sudakov form factors 

l  The Sudakov form factor 
decreases (the probability of 
radiating increases) as the pT of 
the radiated gluon decreases, as 
the hardness of the interaction 
increases, or as the x value of the 
incoming parton decreases (more 
phase space for gluon radiation) 

l  The Sudakov form factor is 
smaller (the probability or 
radiating is higher) for gluons 
than for jets, due to the larger 
color factor of the gluons 



Logs, again... 

These are the “towers” of logarithms 



Jet shapes 
l  The gluon radiation from the 

parton shower produces the 
jet shape 

l  Gluon jets are broader than 
quark jets, due to the color 
factors, and thus larger 
emission probabilities  

l  Both gluon and quark jets get 
narrower as the transverse 
momentum of the jet 
increases 

l  Look, for example,  at the 
fraction of jet energy in cone 
of radius 0.7 that is outside 
the “core” (0.3) from a 
Tevatron measurement 

at small pT, jet 
production dominated 
by gg and gq 
scattering due to  
large gluon distribution 
at low x 



Merging ME and PS approaches 
l  Parton showers provide an excellent 

description in regions which are 
dominated by soft and collinear gluon 
emission 

l  Matrix element calculations provide a 
good description of processes where 
the partons are energetic and widely 
separated and also take into account 
interference effects between 
amplitudes 
◆  but do not take into account 

interference effects in soft and 
collinear emissions which cannot 
be resolved, and thus lead to 
Sudakov suppression of such 
emissions 

l  Hey, I know, let’s put them 
together, but we have to be 
careful not to double-count 
◆  parton shower producing same 

event configurations already 
described by matrix element 

◆  Les Houches Accord (the first 
one) allows the ME program to 
talk to the PS program 

state of the art: add up to 3 matrix elements 
at NLO, i.e. H+1,H+2,H+3 jets 
 
See Sherpa, Powheg, Madgraph5, etc 



Now is later 
confinement confinement freedom 

we’ll discuss 
later 



Hadronization 
l  Parton showers in the initial 

and final state produce a large 
multiplicity of gluons 

l  The parton shower evolution 
variable t decreases (for the 
final state) from a scale similar 
to the scale of the hard scatter 
to a scale at which pQCD is 
no longer applicable (near 
ΛQCD) 

l  At this point, we must 
construct models as to how 
the colored quarks and gluons 
recombine to form the 
(colorless) final state hadrons 

l  The two most popular models 
are the cluster and string 
models 



Hadronization 
l  Parton showers in the initial 

and final state produce a large 
multiplicity of gluons 

l  The parton shower evolution 
variable t decreases (for the 
final state) from a scale similar 
to the scale of the hard scatter 
to a scale at which pQCD is 
no longer applicable (near 
ΛQCD) 

l  At this point, we must 
construct models as to how 
the colored quarks and gluons 
recombine to form the 
(colorless) final state hadrons 

l  The two most popular models 
are the cluster and string 
models 

• In cluster model, there is a non-perturbative 
splitting of gluons into q-qbar pairs; color- 
singlet combinations of q-qbar pairs form 
clusters which isotropically decay into 
pairs of hadrons 
• In string model, relativistic string represents 
color flux; string breaks up into hadrons via 
q-qbar production in its intense color field 

Herwig Pythia 



Fragmentation functions 
l  On a more inclusive note, can 

define a fragmentation function   
D(z,Q2) that describes the 
probability to find a hadron of 
momentum fraction z (of the 
parent parton) at a scale Q 

l  The parton shower dynamically 
generates the fragmentation 
function, but the evolution of the 
fragmentation function with Q2 
can be calculated in pQCD (just 
as the evolution of the parton 
distribution functions can be 
calculated) 

l  But, like the PDFs, the value of 
D(z,Qo) is not known and must be 
determined by fits to data 

l  The data from LEP are the most 
useful for their determination 

NB: the gluon fragmentation function 
is much softer; Herwig does not describe  
the high z gluon fragmentation function well 



Jets faking photons 

l  As we discussed yesterday, jets 
can fake photons 

l  But we impose isolation cuts on 
photon candidates, so only jets in 
which most of the momentum is 
concentrated in one high pT πo (so 
z->1) can successfully fake 
photons 

l  This becomes increasingly 
difficult as the pT of the ‘photon’ 
increases (z gets closer to 1), so 
the true photon fraction increases 
with the transverse momentum of 
the photon candidate 

l  To make matters even more 
difficult, the fragmentation 
function at high z decreases with 
pT (it evolves) 



Some more details 
l  For outgoing quarks and gluons, 

have collinear singularities just as 
for the parton distribution 
functions 

l  Fragmentation functions acquire 
µ dependence just as PDFs did 

l  …just like DGLAP 
l  Can write the single particle cross 

section as 
 
l  Lowest order splitting functions 

are identical to those discussed 
for PDFs 
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Calculate single particle cross 
section by convoluting over  
fragmentation function 
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Sum over all fragmentation 
functions, apply a jet algorithm 
and voila you have a jet cross 
section 



Multiple parton interactions 

Finally, we come to this 



l  In addition to the partons participating in the hard scatter event we are interested in, 
the other partons are interacting as well, typically at much smaller scales 

l  Note that they can produce parton showers (which hadronize) as well 
l  The end result is additional energy  in the event that is basically unrelated to the 

physics we are interested in->the underlying event 
l  This additional energy has to be accounted for when comparisons to predictions are 

made 
◆  included in parton shower Monte Carlos; fixed order predictions can be corrected 



What’s next?  

Next season my book will be on the shelves 
on the Big Bang Theory set. I’m hoping it  
will be on the coffee table. 



If it is, I will make another trip to the set of BBT (and sit again in Sheldon’s spot.) 



Thanks for listening 

l If you have additional questions, I’ll be 
happy to stay in contact 

l My email is huston@pa.msu.edu 



Extra slides 



Consider gq->Vg 
l  First write process in terms of all outgoing states, and helicities of 

particles are indicated by the superscripts. Having only 1 
independent helicity configuration simplifies matters for this process 

 
l  Can write the LO amplitude as 

l  Where a2,i1 and i3 are the color indices 
of the gluon, quark and anti-quark and 
 
 
 
l  Can write kinematic terms in matrix element as spinor products  



Back to  W production to NLO 

l  In 4-dimensions, the contribution 
of the real diagrams can be 
written (ignoring diagrams with 
incoming gluons for simplicity) 

◆  where 

l  Note that the real diagrams 
contain collinear singularities,     
u->0, t->0, and soft singularities, 
z->1 
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and don’t sweat the details; I just 
want you to see in general terms 
how a NLO calculation is 
carried out 

^ ^ 



Aside: dimensional regularization 
l  Suppose we have an integral of the form, typical of the integrals in a NLO 

calculation 

l  We get infinity if we integrate this in 4  dimensions, so go to 4-2ε 
dimensions 

l  Using 
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inserted to get the right dimensionality 



Dimensional regularization, continued 
l  Find 

◆  singular bits, plus finite bits as ε->0, plus log singularity as m->0 
 
l  Define MS scheme: subtract (absorb) 1/ε pole, γE, and ln(4π) bits 
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Now do the dimension trick for the real part  

l  Problem: if I work in 4 
dimensions, I get divergences 

l  Solution: working in 4-2ε 
dimensions, to control the 
divergences (dimensional 
reduction) 

 
l  with 

l  Note that the divergences are 
explicit, as we integrated over all 
of phase space 
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We get 1/ε terms from individual soft and collinear singularities 
We get 1/ε2 terms for overlapping IR singularities. 
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“+ distribution” 

They are not explicit if we make 
cuts, i.e. on jets. Then we have 
to use subtraction techniques. 



Ditto for the virtual part 

l  where 
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We also get UV divergences when the loop momenta 
go off to infinity. The summation of these singularities 
leads to the running of the strong couplings, i.e. we 
define the sum of all such contributions (scales >µUV) 
as the physical renormalized coupling, αs.  

from soft and  
collinear bits 



Now add real and virtual 
 
l  Notice that the ε2 terms cancel 
l  The divergences that are proportional to the branching probabilities are universal 
l  We can factorize them into the parton distributions, performing mass factorization by 

subtracting the counter-term (MSbar scheme) 

l  To get 

l  Plus a similar correction for incoming gluons 
l  That works for the total cross section, but we need differential distributions for comparisons to 

data, so we need a general subtraction procedure at NLO, using Monte Carlo techniques  
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Logarithms 
l  You can keep applying this 

argument at higher orders of 
perturbation theory 

l  Each gluon that is added 
yields an additional power of 
αs, and via the eikonal 
factorization outlined, can 
produce an additional two 
logarithms (soft and collinear) 

l  So can write the W + jets 
cross section as  

◆  where L represents the 
logarithm controlling the 
divergence, either soft or 
collinear (Sudakov logs) 

◆  note that αs and L appear 
together as αsL 

l  Size of L depends on criteria 
used to define the jets (min pT, 
cone size) 

l  Coefficients cij depend on 
color factors 

l  Thus, addition of each gluon 
results in additional factor of 
αs times logarithms 

l  In many (typically exclusive) 
cases, the logs can be large, 
leading to an enhanced 
probability for gluon emission 
to occur 

l  For most inclusive cases, logs 
are small and αs counting may 
be valid estimator for 
production of additional jets 

l  For completely inclusive cross 
sections, the logs vanish 



Specific example 

l  Remember we encounter 
logs whenever an emitted 
gluon becomes  soft and/
or collinear 

l  We said the cij were color 
factors 

l  So for emission of parton 5 
from parton 1, color factor is 
CF 

l  For emission of parton 4 from 
parton 3, CA 

l  If parton 5 is soft, and 
collinear with parton 1, and 
parton 4 is soft, and is 
collinear with parton 3, have 4 
powers of logs 

l  If one of the partons is not soft or 
collinear, then only 3 powers of 
logs 

l  …and so on 
l  Factors of 2, π, etc ignored 

parton 5 

parton 1 

 

parton 2 

 

not present since have 2 extra gluons, 
not 1 



Re-shuffling 

l  re-write the term in brackets 
as 

l  Where the infinite series has 
been resummed into an 
exponential form 
◆  first term in expansion is 

called leading logarithm 
term, 2nd next-to-leading 
logarithm, etc 

l  Now can write out each 
contribution as a combination 
of terms in powers of αs and 
logarithms 

as jet definitions change, size of the logs 
shuffle the contributions from one jet 
cross section to another, keeping the sum 
over all contributions the same; for example, 
as R decreases, L increases, contributions shift 
towards higher jet multiplicities 

each gluon added has an additional 
factor of αs and two additional logs 
(soft and collinear) 
cij depend on color factors 

for W  + jets 



Re-shuffling 

• Configuration shown to the right 
can be reconstructed as an event 
containing up to 2 jets (0,1,2),  
depending on jet definition and  
momenta of the partons. 
• For a large value of Rcone, this is 
one jet; for a smaller value, it may 
be two jets  
• The matrix elements for this process 
contain terms proportional to 
αs log(pT3/pT4) and as log(1/ΔR34), 
so min values for transverse  
momentum and separation must be 
imposed 
• Suppose that I consider completely  
inclusive cross sections (σW+>=0 jets) 
• Then the logs vanish 



Reviewing 



Consider matrix element counter-event for W production 

l  In soft limit (p5->0), we have  

l  The eikonal factor can be associated with radiation from a given leg by 
partial fractioning 

l  Including the collinear contributions, singular as p1
.p5->0, the matrix 

element for the counter-event has the structure 

l  where 
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real corrections to W production 
at NLO 

eikonal factor; an approximation to 
the full matrix element valid when 
the gluon is soft (we saw this before) 



Making an counter-event 
l  For event 

◆  with  
l  Generate a counter-event 

◆  with  
l  Perform a Lorentz transformation on all j final state momenta 

◆  such that  
◆  for p5 collinear or soft 

l  The longitudinal momentum of p5 is absorbed by re-scaling with x 
l  The other components of the momentum p5 are absorbed by the Lorentz 

transformation 
l  A lot of transformations done to get the momenta to work out right 
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Example: Final-final CS dipole 
l  The branching shown can be characterized by Lorentz invariant variables 

l  The factorized form of the fully differential (m+1) parton cross              
section that exactly reproduces the corresponding soft and                
collinear emissions of the real-emission process is 

l  The spin-averaged splitting kernels <Vij,k> for the branchings q->qg,g->gg,     
g->qqbar are 
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Note that these  
terms look a 
lot like parton 
shower branchings 

1,2 depending on 
# possible spectators 



Merging ME and PS approaches 
l  A number of techniques to combine, 

with most popular/correct being 
CKKW 

◆  matrix element description used to 
describe parton branchings at large 
angle and/or energy 

◆  parton shower description is used for 
smaller angle, lower energy emissions 

l  Division into two regions of phase 
space provided by a resolution 
parameter dini 

l  Argument of αs at all of the vertices is 
taken to be equal to the resolution 
parameter di (showering variable) at 
which the branching has taken place 

l  Sudakov form factors are inserted on 
all of the quark and gluon lines to 
represent the lack of any emissions 
with a scale larger than dini between 
vertices 

◆  parton showering is used to produce  
additional emissions at scales less 
than di 

l  For typical matching scale, ~10% of 
the n-jet cross section is produced by 
parton showering from n-1 parton ME 



...but wait, there’s more (pileup) 
l  In order to produce 

events with low cross 
sections (such as Higgs 
boson production), the 
LHC has to run at high 
luminosity, i.e. there are 
many proton-proton 
collisions in the same 
beam-crossing as the 
one which produces the 
Higgs boson (or other 
interesting bit of physics) 

l  The pileup energy is 
unrelated to the 
interesting physics and 
is typically subtracted 

high pT Z boson decaying into muons 

25 additional 
pp collisions 



Onto the LHC  
45 m 

24 m 





LHC luminosity 
times hadronic 
cross section 
equals # events 
(modulo  
acceptance  
factors) 


