Electroweak and Higgs physics

Shinya KANEMURA 兼村 晋哉 くう 大阪大学 OSAKA LINIVERSITY

Plan of the Lectures

- **1 EW Symmetry Breaking in the Standard Model (SM)**
- **2** Physics of non-Minimal Higgs sectors
- **3** Higgs as a Probe of New Physics

Plan of the Lectures

- **1 EW Symmetry Breaking in the Standard Model (SM)**
- **2** Physics of non-Minimal Higgs sectors
- **3** Higgs as a Probe of New Physics
 - **3-1: Higgs problem and new paradigms**
 - **3-2: BSM Phenomena and Higgs**
 - **3-4: EW Baryogenesis and Higgs self-coupling**
 - **3-5: Gravitational Waves as a probe of**

1st Order Phase Transition

3-6: Towards 2030s: Golden Age of Synergy

3 Higgs as a Probe of new physics

3-1 Higgs Problem and new paradigms

Nature of Higgs

Higgs Nature ⇔ **BSM Paradigm**

- Elementary Scalar
- Composite of fermions
- A vector field in extra D
- Pseudo NG Boson

....

SUSY

Dynamical Symmetry Breaking

Gauge Higgs Unification

Minimal Composite Models

Each new paradigm predicts a specific Higgs sector (eg. MSSM: two Higgs doublets, Gauge-Higgs Uni.: Higgs couplings are weaker)

Introduction

To understand these phenomena, we need to go beyond-SM

Neutrino mass and Higgs

Baryogenesis and Higgs

Baryogenesis What is the mechanism to generate the baryon asymmetric Universe from the symmetric one?

Sakharov's Condition Sakharov 1967 **1.** ΔB ≠ 0

- 2. C and CP violation
- 3. Departure from thermal equilibrium

Sphaleron process

Chiral gauge theory KM phase

Strongly first order phase transition

SM could satisfy these conditions but excluded by the data

Scenario of Baryogenesis

1. Electroweak Baryogenesis Ph

2. Leptogenesis

Physics of (extended) Higgs sector

New physics at very high scales

Higgs is a window to new physics

Higgs portal new physics scenarios

SUSY

...

Dynamical symmetry breaking Higgs as a pNGB Gauge Higgs Unification CW mechanism Higgs portal dark matter Inert scalar models Radiative neutrino mass models Electroweak baryogenesis

It is important to experimentally determine the Higgs sector to explore new physics beyond SM

3-2 BSM Phenomena and Higgs

First oscillation maximum

$$\frac{\Delta m^2 L}{4E} = 1.27 \ \frac{\Delta m^2 (\text{eV}^2) \ L(\text{m})}{E(\text{MeV})}$$

Neutrinos have masses

This is a clear signature of BSM

Neutrino mass and Higgs

Scenario of radiative vv \$\phi\$ generation

- Tiny v-Masses come from loop effects
 - Zee (1980, 1985)
 - Zee, Babu (1988)
 - Krauss-Nasri-Trodden (2002)
 - Ma (2006),
- Merit
 - Super heavy particles are not necessary

Size of tiny m_v can naturally be deduced from TeV scale by higher order perturbation

Physics at TeV: Testable at collider experiments

Radiative seesaw with Z₂

- 1-loop (Ma)
 - Simplest model
 - SM + NR + Inert doublet (H')
 - DM candidate [H' or NR]
 - H' case
 - NR (LFV and MN not compatible)
- 3-loop (Aoki-Kanemura-Seto)
 - Neutrino mass from O(1) coupling.
 - Electroweak Baryogenesis
 - $2HDM + \eta^{0} + S^{+} + NR$
 - DM candidate [η^0 (or NR)]

Higher Order Effect

- Majorana mass of LH neutrinos may be generated from dim > 5 operators
- For dim-(5+n) operators, additional suppression $LL\varphi\varphi/\Lambda \times (\varphi\varphi/\Lambda^2)^n$
- Discrete symmetries forbid lower order operators

Zee; Babu

3-3 EW Phase Transition and Higgs self-coupling

Higgs potential

Most important part for the EW symmetry breaking (Yet to be tested by experiment) $V(\Phi) = +\mu^2 |\Phi|^2 + \lambda |\Phi|^4$

- Physics behind EWSB
 - Where come from $\mu^2 < 0$
 - What is the origin of $\boldsymbol{\lambda}$
 - Dynamics
- Electroweak Phase Transition
 - Aspect of Transition, 1st order or not?
 - Relation to EW baryogenesis
 - Mechanism of Phase Transition

Electroweak Baryogenesis

1st Order Phase Transition

Strongly 1st OPT

Strongly 1st OPT

Extended Higgs (2HDM): 1st OPT possible

Quantum non-decoupling effect of Φ (= *H*, *A*, *H*⁺, ...)

$$\frac{\varphi_C}{T_C} \simeq \frac{1}{3\pi v m_h^2} \left\{ 6m_W^3 + 3m_Z^3 + \sum_{\Phi} m_{\Phi}^3 \left(1 - \frac{M^2}{m_{\Phi}^2} \right)^3 \left(1 + \frac{3M^2}{2m_{\Phi}^2} \right) \right\} > \mathbf{1}$$

Strongly 1st OPT

Extended Higgs (2HDM): 1st OPT possible

Quantum non-decoupling effect of Φ (= *H*, *A*, *H*⁺, ...)

$$\frac{\varphi_C}{T_C} \simeq \frac{1}{3\pi v m_h^2} \left\{ 6m_W^3 + 3m_Z^3 + \sum_{\Phi} m_{\Phi}^3 \left(1 - \frac{M^2}{m_{\Phi}^2} \right)^3 \left(1 + \frac{3M^2}{2m_{\Phi}^2} \right) \right\} > \mathbf{1}$$

Prediction! Large deviation in the *hhh* couping as well

$$\lambda_{hhh} \simeq \frac{3m_h^2}{v^2} \left\{ 1 - \frac{m_t^4}{\pi^2 v^2 m_h^2} + \sum_{\Phi} \frac{m_{\Phi}^4}{12\pi^2 v^2 m_h^2} \left(1 - \frac{M^2}{m_{\Phi}^2} \right)^3 \right\} > \lambda_{hhh}^{SM}$$

1st OPT and the hhh coupling

Strong 1^{st} OPT \Leftrightarrow Deviation in the *hhh* coupling

EW Baryogenesis can be tested by detecting a large deviation in the *hhh* coupling

Which collider?

LHC cannot do it Only ILC (1 TeV) can measure it by O(10) %

K.Fujii et al., arXiv:1506.05992 [hep-ex]

Connection between Cosmological problem and Collider

Higgs Self-Coupling

Slide by Keisuke Fujii

Challenging measurement because of:

- Small cross section (Zhh 0.2 fb at 500 GeV)
- Many jets in the final state
- Presence of irreducible BG diagrams

arXiv:1310.0763	ILC500	ILC500-up	ILC1000	ILC1000-up
$\sqrt{s} \; (\text{GeV})$	500	500	500/1000	500/1000
$\int \mathcal{L} dt \ (\mathrm{fb}^{-1})$	500	1600^{\ddagger}	500 + 1000	$1600 + 2500^{\ddagger}$
$P(e^-,e^+)$	(-0.8, 0.3)	(-0.8, 0.3)	(-0.8, 0.3/0.2)	(-0.8, 0.3/0.2)
$\sigma\left(ZHH ight)$	42.7%		42.7%	23.7%
$\sigma\left(u ar{ u} H H ight)$	-	_	26.3%	16.7%
λ	83%	46%	21%	13%

See J.Tian's Poster

Ongoing analysis improvements towards O(10)% measurement

3-4 Gravitational Waves: New tool to access Higgs potential

Higgs potential via GWs

In 2016, aLIGO reported the first direct observation of GWs from merge of a BH Binary (~100 Hz) → Era of GW astronomy started Ground based experimetns aLIGO, KAGRA, aVirgo...

Higgs potential via GWs

In 2016, aLIGO reported the first direct observation of GWs from merge of a BH Binary (~100 Hz) → Era of GW astronomy started Ground based experimetns aLIGO, KAGRA, aVirgo...

GW Physics?

GW from 1st OPT: homogeneous, isotropic, stationary, unpolarized Relic GWs are characterized only by frequency

Transition temperature gives typical frequencies

 $T = 100 \text{GeV} \rightarrow f = 10^{-1} - 10^{-3} \text{ Hz}$

Out of sensitivity at LIGO/KAGRA (10-10³Hz)

Red-shifted frequency

$$f_0 = \frac{a_t}{a_0} f_t$$

 a_t : scale factor f_t : frequency at the transition

Conservation of the entropy per comoving volume

$$sa^3 = \frac{2\pi^2}{45}g_sT^3a^3 = \text{const}$$

$$\frac{a_t}{a_0} = \left(\frac{g_{s0}}{g_s^t}\right)^{1/3} \frac{T_0}{T_t}$$

Radiation dominant Universe

$$H = \sqrt{\frac{4\pi^3}{45}} g_*^{1/2} \frac{T^2}{M_{\rm Pl}}$$

We obtain

$$f_0 \simeq 1.7 \times 10^{-5} \left(\frac{g_*^t}{100}\right)^{1/6} \left(\frac{T_t}{100 \text{ GeV}}\right) \frac{f_t}{H_t} \text{ Hz}$$

 f_t/H_t must be > 1, typically 10² (10²-10⁴)

 $1/f_t$ Wavelength of GWs at the PT $1/H_t$ Size of the universe (horizon) at the PT

$$f_0 = 10^{-3} - 10^{-1} \,\mathrm{Hz}$$

Higgs potential via GWs

In 2016, aLIGO reported the first direct observation of GWs from merge of a BH Binary (~100 Hz) → Era of GW astronomy started Ground based experimetns aLIGO, KAGRA, aVirgo...

GW Physics?

GW from 1st OPT: homogeneous, isotropic, stationary, unpolarized Relic GWs are characterized only by frequency

Transition temperature gives typical frequencies

 $T = 100 \text{GeV} \rightarrow f = 10^{-1} - 10^{-3} \text{Hz}$

Out of sensitivity at LIGO/KAGRA (10-10³Hz)

Future space based GW experiments

LISA (USA/Europe) Sensitivity around mili Hz (2034–) DECIGO (Japan) Sensitivity around deci Hz We can explore GWs from the early Universe!

川村静児氏のスライド

Properties of the representative LISA configurations

C.Caprini *et al.*, arXiv:1512.06239

Name	C1	C2	C3	C4
Full name	N2A5M5L6	N2A1M5L6	N2A2M5L4	N1A1M2L4
# links	6	6	4	4
Arm length [km]	$5\mathrm{M}$	1M	2M	1M
Duration [years]	5	5	5	2
Noise level	N2	N2	N2	N1

LISA has been approved in 2016 It will start from 2034

FP (Fabry-Perot)-DECIGO

1 cluster (arm length 1000km) Correlation between 2 cluster

S. Kawamura et al, Class. Quant. Grav. 28, 094011 (2011)

Origin of GWs from 1st OPT

GWs from 1st OPT

From bubble dynamics to GW spectrum

Bubble nucleation rate per unit volume and time

$$\Gamma(T) = \Gamma_0 \exp(-S_3/T) \qquad S_3 = \int d^3r \left[\frac{1}{2}(\vec{\nabla}\varphi_b)^2 + V_{\text{eff}}(\varphi_b, T)\right] \quad \text{false}$$

*T*_{*t*} Transition temperature

$$\frac{\Gamma}{H^4}\Big|_{T=T_t} \simeq 1 \implies \frac{S_3(T_t)}{T_t} = 4\ln(T_t/H_t) \simeq 140$$

 $\begin{array}{ll} \pmb{\alpha} \quad \text{Latent heat (released energy of false vacuum) Depth of the potential} \\ & \alpha = \frac{\epsilon(T_t)}{\rho_{\mathrm{rad}}(T_t)} \quad \epsilon(T) = -V_{\mathrm{eff}}(\varphi_B(T),T) + T \frac{\partial V_{\mathrm{eff}}(\varphi_B(T),T)}{\partial T} \\ \pmb{\beta} \quad \text{Inverse of duration of phase transition} & \text{Speed of transition} \\ & \beta = -\frac{dS_E}{dt} \Big|_{t=t_t} \simeq \frac{1}{\Gamma} \frac{d\Gamma}{dt} \Big|_{t=t_t} \quad \tilde{\beta} = \frac{\beta}{H_t} \\ \hline \mathbf{GW \text{ spectrum is given as a function of } T_{t'} \ \pmb{\alpha}, \ \pmb{\beta} \text{ (and } \mathbf{v_b} \text{)} \quad \mathbf{v_b} \text{: wall velocity} \\ \hline \mathbf{Ex} \text{) Strength and peak frequency of GW (Fitting function)} \\ & \widetilde{\Omega}_{\mathrm{sw}}h^2 \simeq 2.65 \times 10^{-6} \frac{v_b}{\tilde{\beta}} \left(\frac{\kappa(v_b, \alpha)\alpha}{1+\alpha} \right)^2 \qquad \tilde{f}_{\mathrm{sw}} \simeq 1.9 \times 10^{-5} \mathrm{Hz} \frac{\tilde{\beta}}{v_b} \\ \hline \end{array}$

Characteristic GW Abundance from the strong EW 1st OPT

$$\Omega_{\rm GW}(f) \equiv \frac{1}{\rho_{\rm c}} \frac{d\rho_{\rm GW}}{d\ln f}$$

$$\rho_{\rm GW} = \frac{1}{32\pi G} \langle \dot{h}_{ij} \dot{h}_{ij} \rangle$$

$$\rho_c = \frac{3H_0^2}{8\pi G} \qquad h_{\mu\nu}^{\rm TT} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_+ & h_\times & 0 \\ 0 & h_\times & -h_+ & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Red shifted abundance

Scaling
$$ho_{\rm GW} = \left(\frac{a_t}{a_0}\right)^4
ho_{\rm GW}^t \quad
ho_c = \left(\frac{H_0}{H_t}\right)^2
ho_c^t$$

Transverse-Traceless gauge

0

$$\Omega_{\rm GW} h^2 \simeq 1.7 \times 10^{-5} \left(\frac{100}{g_*^t}\right)^{1/3} \Omega_{\rm GW}^t$$

Characteristic GW Abundance from the strong EW 1st OPT

 $\Box h_{ij} \sim GT_{ij}$

At the phase transition, we have

Einstein Equation

Typical duration of the phase transition: $1/\beta$

 $\dot{h}_{ij} \sim \beta h_{ij} \sim \frac{GT_{ij}}{\beta}$

 $\beta^2 h_{ij} \sim GT_{ij}$

 $\rho_{\rm GW}^t \sim \frac{h_{ij}^2}{G} \quad \rho_c^t \sim \frac{H_t^2}{C}$

Eenergy density at PT

$$\Omega_{\rm GW}^{t} = \frac{\rho_{\rm GW}^{t}}{\rho_{c}^{t}} \sim \frac{H_{t}^{2}}{\beta^{2}} \frac{T_{ij}^{2}}{(\rho_{c}^{t})^{2}} \sim \frac{H_{t}^{2}}{\beta^{2}} \frac{\rho_{\rm kin}^{2}}{(\rho_{\rm vac} + \rho_{\rm rad}^{t})^{2}}$$
$$\Omega_{\rm GW}^{t} \sim \frac{H_{t}^{2}}{\beta^{2}} \frac{\kappa^{2} \alpha^{2}}{(1+\alpha)^{2}} \qquad \qquad \alpha = \rho_{\rm vac} / \rho_{\rm rad}^{t}$$
$$\kappa = \rho_{\rm kin} / \rho_{\rm vac}$$

Characteristic GW Abundance from the strong EW 1st OPT

Abundance of GWs

$$\Omega_{\rm GW} h^2 \simeq 1.7 \times 10^{-5} \frac{H_t^2}{\beta^2} \frac{\kappa^2 \alpha^2}{(1+\alpha)^2}$$

$$\alpha = \rho_{\rm vac} / \rho_{\rm rad}^t$$

Energy density of false vacuum released by PT

$$\kappa =
ho_{
m kin} /
ho_{
m vac}$$

Efficiency of kinetic energy of walls in the release energy.

The spectrum is determined by

 α (latent heat), β (duration of PT), κ (Efficiency)

They can be basically calculated if a model is given.

This rough estimation is applicable to GWs from the wall collision. However, Ωh^2 is enhanced by β/H_t for GWs from the motion of thermal plasma fluid (sound waves and turbulence).

Spectra of GWs from Bubble collision

Complicated numerical simulations are necessary

Approximate fitting formulae given by C.Caprini et al., arXiv:1512.06239

1. Sound waves (Compressional waves of thermal plasma)

$$\widetilde{\Omega}_{\rm sw}h^2 \simeq 2.65 \times 10^{-6} v_b \widetilde{\beta}^{-1} \left(\frac{\kappa_v \alpha}{1+\alpha}\right)^2 \left(\frac{100}{g_*^t}\right)^{1/3} \quad \widetilde{f}_{\rm sw} \simeq 1.9 \times 10^{-5} \,\mathrm{Hz} \frac{1}{v_b} \widetilde{\beta} \left(\frac{T_t}{100 \,\mathrm{GeV}}\right)$$

2. Collision of the bubbles (envelop approximation)

$$\widetilde{\Omega}_{\rm env}h^2 \simeq 1.67 \times 10^{-5} \times \left(\frac{0.11v_b^3}{0.42 + v_b^2}\right) \widetilde{\beta}^{-2} \left(\frac{\kappa_{\phi}\alpha}{1 + \alpha}\right)^2 \left(\frac{100}{g_*^t}\right)^{1/3} \quad \widetilde{f}_{\rm env} \simeq 1.65 \times 10^{-5} \,\mathrm{Hz} \times \left(\frac{0.62}{1.8 - 0.1v_b + v_b^2}\right) \widetilde{\beta} \left(\frac{T_t}{100 \,\mathrm{GeV}}\right)^{1/3} = 0.000 \,\mathrm{GeV}$$

3. Magnethydrodynamic (MHD) plasma turbulence in the bubbles

$$\widetilde{\Omega}_{\rm turb}h^2 \simeq 3.35 \times 10^{-4} v_b \widetilde{\beta}^{-1} \left(\frac{\epsilon \kappa_v \alpha}{1+\alpha}\right)^{3/2} \left(\frac{100}{g_*^t}\right)^{1/3} \qquad \qquad \tilde{f}_{\rm turb} \simeq 2.7 \times 10^{-5} \,\,{\rm Hz} \frac{1}{v_b} \widetilde{\beta} \left(\frac{T_t}{100 \,\,{\rm GeV}}\right)^{1/3}$$

 v_b : wall velocity $\kappa_\phi~\kappa_v~$: efficiency factors $~\epsilon=0.05$

The spectrum are evaluated by inputting the latent heat α , variation of the bubble nuclearation rate β and transition temperature T_t

Higgs model with N singlet fields

M. Kakizaki, SK, T. Matsui, Phys. Rev. D92 (2015) no.11,115007

Imposed O(N) for simplicity $S^{T} = (S_1, \cdots, S_N)$

$$V_0 = -\mu^2 |\Phi|^2 + \frac{\mu_S}{2}^2 |S|^2 + \frac{\lambda}{2} |\Phi|^4 + \frac{\lambda_S}{4} |S|^4 + \frac{c}{2} |\Phi|^2 |S|^2$$

Mass of scalar fields:

$$m_S^2 = \mu_S^2 + \frac{c}{2}v^2$$

 $\varphi_c/T_c > 1$ is satisfied by the nondecoupling effect of the singlet fields (compatible with $m_h = 125 \text{GeV}$)

$$\frac{\varphi_C}{T_C} \simeq \frac{1}{3\pi v m_h^2} \left\{ 6m_W^3 + 3m_Z^3 + Nm_S^3 \left(1 - \frac{\mu_S^2}{m_S^2} \right)^3 \left(1 + \frac{3\mu_S^2}{2m_S^2} \right) \right\} > 1$$

$$\lambda_{hhh}^{O(N)} \simeq \frac{3m_h^2}{v^2} \left\{ 1 - \frac{m_t^4}{\pi^2 v^2 m_h^2} + N \frac{m_S^4}{12\pi^2 v^2 m_h^2} \left(1 - \frac{\mu_S^2}{m_S^2} \right)^3 \right\} > \lambda_{hhh}^{SM}$$

Predictions on the hhh coupling

Large deviations in hhh coupling

M. Kakizaki, SK, T. Matsui, Phys. Rev. D92 (2015) no.11,115007

GW spectrum from 1st OPT

M. Kakizaki, S.K., T. Matsui, Phys. Rev. D92 (2015) no.11,115007

(*N*, *m*_s) may be determined from GWs

O(N) singlet model with the mass m_s

Sensitivities eLISA arXiv:1512.06239 DECIGO, Class. Quant. Grav. 28, 094011 (2011)

M. Kakizaki, SK, T. Matsui, Phys. Rev. D92 (2015) no.11,115007

(*N*, *m*_s) may be determined from GWs

O(N) singlet model with the mass m_s

Sensitivities eLISA arXiv:1512.06239 DECIGO, Class. Quant. Grav. 28, 094011 (2011)

M. Kakizaki, SK, T. Matsui, Phys. Rev. D92 (2015) no.11,115007

Final Example: Strongly 1st OPT by non-thermal mixing effect

Thermal loop effect
$$\checkmark$$

 $V_{\rm eff} = D(T^2 - T_0^2)\varphi^2 - (ET - e)\varphi^3 + \frac{\lambda(T)}{4}\varphi^4$
Non-thermal effect \checkmark

Higgs singlet model K. Fuyuto and E. Senaha, 2014

$$V_{0} = -\mu_{\Phi}^{2}|\Phi|^{2} + \lambda_{\Phi}|\Phi|^{4} + \mu_{\Phi S}|\Phi|^{2}S + \frac{\lambda_{\Phi S}}{2}|\Phi|^{2}S^{2} + \mu_{S}^{3}S + \frac{m_{S}^{2}}{2}S^{2} + \frac{\mu_{S}'}{3}S^{3} + \frac{\lambda_{S}}{4}S^{4}$$

$$\Phi = \begin{pmatrix} G^{+} \\ \frac{1}{\sqrt{2}}(v_{\Phi} + \phi_{1} + iG^{0}) \end{pmatrix}, \quad S = v_{S} + \phi_{2} \qquad (\phi_{1}, \phi_{2}) \Rightarrow \quad (h, H) \text{ with } \theta$$

$$Multi-field \text{ analysis of EWPT is necessary} \qquad v_{S} \qquad \varphi_{c}/T_{c} > 1.1 - 1.2$$

Public tool "CosmoTransition" (Python code) is used.

 (v_{Φ}, v_S)

K.Hashino, M.Kakizaki, S.K., <u>T.Matsui</u>, P.Ko, arXiv1608.00297

LISA (C1-C4): [Caprini et al. (2015)]

DECIGO (Pre, 1 cluster, Correlation) [Kawamura et al. (2011)]

Benchmark point

α

v_{Φ} [GeV]	$v_S \; [\text{GeV}]$	$m_h \; [{\rm GeV}]$	$\mu_{\Phi S} \; [\text{GeV}]$	μ_S' [GeV]	$\mu_S \; [\text{GeV}]$	$m_H ~[{ m GeV}]$	θ [degrees]
246.2	90	125.5	-80	-30	0	[160, 240]	[-45, 0]

LISA and DECIGO are capable of detecting GWs from 1st OPT in the HSM.

Future experiments

In 2030-40s, we obtain hints of the
new physics scales, and we can
determine the target for the next
generation experiments

	FCC? HE-LHC 100TeV?	ILC500? 1TeV? CLIC?	new physics scales, and we can determine the target for the next generation experiments BBO?		
2040		ILC250,	DECIGO?	Hyper-K?	
2034 2030	HL-LHC Direct/indir ect	CEPC, Higgs precision	EWPT via GW	N0ββ EDM	
2026 2017	searches LHC Run II. III	SuperKEB	iolden Age 2030s	LFV 	
				52	

Part III Summary

- Higgs is a probe of new physics beyond SM
 - Neutrino Mass
 - Dark Matter
 - Baryogenesis
- Higgs potential can be probed at future colliders and GW interferometers
- Synergy among LHC, LC and LISA/Decigo is important to probe new physics scenarios