
Factorization 
l  Factorization is the key to 

perturbative QCD 
◆  the ability to separate the short-

distance physics and the long-
distance physics 

l  In particular, parton distribution 
functions are part of the long-
distance physics 

l  Factorization tells us that PDFs 
determined from one process 
(or group of processes)  can be 
used for other processes 

l  So we can determine PDFs from 
experiments whose data was 
taken long before you were born 
(and more recent data as well) 
and use them for the LHC 

The calculation of hard scattering processes 
at the LHC requires: 
(1) knowledge of the distributions of the  
quarks and gluons inside the proton, i.e.  
what fraction of the momentum of the  
parent proton do they have  
->parton distribution functions (pdf’s) 
(2) knowledge of the hard scattering cross 
sections of the quarks and gluons, at LO, 
NLO, or NNLO in the strong coupling  
constant αs 



Let’s think about this from a space-time perspective 

l  Partons in the proton are 
always emitting virtual gluons/
quark-antiquark pairs which 
then recombine (the proton 
remains intact) 

l  The lifetime of these virtual 
states depends inversely on 
the energy of the partons 
l  uncertainty principle 

l  If I can probe smaller and 
smaller distances (time-
scales), then I can resolve 
more of the radiative structure 
inside the proton 

l  I can probe these smaller 
distances by using higher 
energies (Q) to probe small time interval, 

distance scale 



Consider deep-inelastic scattering (DIS) 

l  Condition for DIS on protons 
◆  Q>mp ~ 1/Rp : scale Q (typically the virtual mass of the photon) 

l  Using Breit frame 

l  Introducing Bjorken variable x 

brick wall frame of reference 

(we’ll call this x from now on, the fraction of the  
proton’s momentum taken by a parton) 

here I’m actually 
probing these  
virtual fluctuations;  
quark anti-quark pair 
cannot recombine 



Consider the timescales involved 



Parton distributions 
l  The momentum of the proton is distributed among the quarks and 

gluons that comprise it 
◆  about 40% of the momentum is with gluons, the rest with the quarks 
◆  note that the quarks at high x tend to be valence quarks (uud), while the 

quarks at low x tend to be sea quarks produced by gluon splitting into 
quark-antiquark pairs (u-ubar, d-dbar, s-sbar, etc) 

momentum fraction 

Q is a (factorization) 
scale at which PDFs 
are evaluated) 

f(x,Q2)  
describes 
the momentum distribution of partons inside a proton 



Parton distributions 
l  The momentum of the proton is distributed among the quarks and 

gluons that comprise it 
◆  about 40% of the momentum is with gluons, the rest with the quarks 
◆  note that the quarks at high x tend to be valence quarks (uud), while 

the quarks at low x tend to be sea quarks produced by gluon splitting into 
quark-antiquark pairs (u-ubar, d-dbar, s-sbar, etc) 

momentum fraction 

as we expected from 
our simple model 



Parton distribution functions (PDFs) 

l  Note the changes in the distributions as Q2 increases 
(DGLAP) 

l  High x distributions decrease, while low x distributions 
increase 
◆  due to the effects of QCD evolution 

Q2=2 GeV2 
Q2=10000 GeV2 

 



Back to DIS 

due to DGLAP evolution, number 
of partons at low x increases  
with Q2; the number of partons 
at high x decreases with Q2 
 

note that early measurements of  
DIS at SLAC were for x values  
around 0.1; at these x values the 
number of partons is relatively 
stable with respect to Q2, i.e. no 
scaling violations 



Global PDF fits are carried out 
using data from a variety of  
processes, including DIS data 
taken long before you were  
born. Increasingly, LHC data 
are being used in the fits.  

PDFs are non-perturbative  
objects. Only evolution is  
perturbative (DGLAP). 



Global fits 
l  With the DGLAP equations, 

we know how to evolve PDF’s 
from a starting scale Q0 to any 
higher scale 

l  …but we can’t calculate what 
the PDF’s are ab initio 
◆  one of the goals of lattice 

QCD 
l  We have to determine them 

from a global fit to data 
◆  factorization theorem tells 

us that PDF’s determined 
for one process are 
applicable to another 

◆  extremely important proof 

l  So what do we need 
◆  a value of Qo (1.3 GeV for 

CTEQ) lower than the data 
used in the fit (or any 
prediction) 

◆  a parametrization for the 
PDF’s 

◆  a scheme for the PDF’s 
◆  hard-scattering calculations at 

the order being considered in 
the fit 

◆  PDF evolution at the order 
being considered in the fit 

◆  a world average value for αs 

◆  a lot of data 
▲  with appropriate kinematic 

cuts 
◆  a treatment of the errors for 

the experimental data 
◆  MINUIT 



Global fits 
l  Parametrization: initial form 

◆  f(x)~xα(1-x)β

◆  estimate β from quark 
counting rules 

▲  β=2ns-1 with ns being the 
minimum number of 
spectator quarks 

▲  so for valence quarks in a  
proton (qqq), ns=2, β=3 

▲  for gluon in a proton (qqqg), 
ns=3, β=5 

▲  for anti-quarks in a proton 
(qqqqqbar), ns=4, β=7 

◆  estimate α from Regge 
arguments 

▲  gluons and anti-quarks have 
α~-1 while valence quarks 
have α~=1/2 

◆  but at what Q value are these  
arguments valid?  

l  What do we know? 
1.  we know that the sum of  the 

momentum of all partons in the 
proton is 1  

2.  we know the sum of valence 
quarks is 3 
◆  and 2 of them are up quarks 

and 1 of them is a down 
quark 

◆  we know that the net number 
of anti-quarks is 0 

◆  we know that the net number 
of strange quarks (charm 
quarks/bottom quarks) in the 
proton is 0 

This already puts a lot of restrictions 
on the PDF’s   



PDF luminosities 
l  Useful to define PDF luminosities  

for any 2 partons, A  
and B 
 
PDF luminosity times  
partonic cross section 
equals hadronic cross 
section 
 
note that gluon-gluon 
scattering dominates 
at low mass and  
quark-quark scattering 
dominates at high mass 
 
of course, specific PDF 
luminosity needed depends  
on which process is being 
considered 



Factorization theorem 
confinement confinement freedom 

we’ll discuss 
later 

p3 

p4 



Master formula for cross section calculation 

both PDFs 
and matrix 
elements 
can be at LO,  
NLO and 
NNLO 

We’ll start by calculating the matrix element for W boson production at leading 
order. 

a factorization scale µF a renormalization 
scale µR 



W boson production at leading order 

l  Consider production of an on-shell W+ boson; only 1 diagram 

l  The corresponding matrix element reads 

l  Summed and squared expression reads 

CKM matrix element weak coupling 

quarks have to be a color-anticolor singlet since the W boson has no color 

factor of 3 comes from sum over 3 possible quark-line colors, 1/9 takes care of averaging over 
all possible color configurations of the quark and antiquark, and 1/4 takes care of averaging over 
the incoming quark spins. 

Q=p1+p2=mW
2 



...add the decay 

l  Now let the W+ decay 

l  Matrix element can be written as  

l  Squaring yields 

l  Define Mandelstam variables 

average over initial quarks’ spins and colors, 
and sum over lepton spins implicit 

W is no longer a  
final state particle, 
but instead a  
propagator 



Phase space 

l  Write phase-space integral over final state particles as 

l  Then can re-write 

l  And for the final cross section 

some kinematic 
tricks  

solid angle of outgoing lepton in rest frame of collision 

Breit-Wigner for  
W propagator 

width of the 
W boson 
 

conservation of 
momentum 



Narrow width approximation 

l  It is often useful to use the narrow width approximation to simplify 
the calculation, where the propagator (Breit-Wigner) of mass MX 
and width Γx is replaced by 

l  The cross section then can be written as 

l  Note this ignores correlations between the initial state particles and 
the final state particles (spins for example) 

 



Consider the emission of a gluon (or quark from a gq initial state)  

l  Three sets of diagrams,each 
with two interfering amplitudes 
◆  identical initial and final 

states 

these  
intefere 

these  
interfere 
 

these  
interfere 
 

color matrix appearing in the quark-quark-gluon vertex 

note potentially divergent terms when parton gets soft, or angle  
approaches 0 



Matrix elements squared 

l  Square and average/sum over initial/final states polarizations and colors, 
and performing some color algebra, get 

l  Closer inspection reveals that the squared matrix elements can be written 
as the leading order matrix element squared (for W production) times a 
QCD emission term, consisting of the strong coupling and a color factor 
times an expression representing the kinematics of the extra emission 

note the  
divergence when 
t-hat or u-hat  
goes to zero  



Modern life 

l  Note that this procedure works for simple processes, 2->n, where n 
is small (n=1 for W production, n=2 for W+j), but the number of 
Feynman diagrams increases (more than) factorially with n 

l  Squaring the amplitudes, taking traces, is just too complex a 
process for large n 

l  In modern techniques, alas beyond the scope of these lectures, the 
focus is on evaluating individual amplitudes as a function of their 
internal and external degrees of freedom 
◆  helicity amplitude method: any Feynman amplitude 

(represented by propagators and vertices for the internal lines 
and spinors and polarization vectors for the external particles) 
is translated into a complex number dependent on external 
helicities and momenta 

l  Every amplitude becomes just a complex number 
l  Summation and squaring is then a (more) straightforward exercise 



Let’s start over, in a somewhat more pedagogical way 

l  Consider Drell-Yan production 
◆  write cross section as  

◆  where X=l+l-  
◆  note we’re back to the parton 

model, i.e. no QCD corrections 
l  Potential problems appeared to 

arise from when perturbative 
corrections from real and virtual 
gluon emissions were calculated 
◆  but these logarithms were the 

same as those in structure 
function calculations and thus 
can be absorbed, via DGLAP 
equations in definition of parton 
distributions, giving rise to 
logarithmic violations of scaling 

◆  can now write the cross section 
as 

where xa is the momentum fraction 
of parton a in hadron A, and xb the  
momentum fraction of parton b in  
hadron B, and Q is a scale that  
measures the hardness of the  
interaction 



…but 
l  Key point is that all logarithms 

appearing in Drell-Yan 
corrections can be factored into 
renormalized (universal) parton 
distributions 
◆  factorization 

l  But finite corrections left behind 
after the logarithms are not 
universal and have to be 
calculated separately for each 
process, giving rise to order αs

n 
perturbative corrections 

l  So now we can write the cross 
section as  

l  where µF is the factorization scale 
(separates long and short-
distance physics) and µR is the 
renormalization scale for αs 

l  choose µR=µF~Q (say,mW/Z) 

An all-orders cross section has no 
dependence on µF and µR; a residual  
dependence remains (to order αs

n+1) for 
a finite order (αs

n) calculation 
(see later discussion as well) 

also depends on µR and 
µF, so as to cancel scale 
dependence in PDF’s and αs,  
to this order 



Kinematics 
l  Double differential cross 

section for production of a 
Drell-Yan pair of mass M and 
rapidity y is given by 

◆  where  

◆  and 

l  Thus, different values of M 
and y probe different values of 
x and Q2 

€ 

ˆ σ o =
4πα 2
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W/Z production 
l  Cross sections for on-shell W/Z 

production (in narrow width limit) 
given by 

l  Where Vqq’ is appropriate CKM 
matrix element and vq and aq are 
the vector and axial coupling of 
the Z to quarks 

l  Note that at LO, there is no αs 
dependence; EW vertex only 

l  Quark and anti-quark have to be 
color-anticolor pair 
◆  factor of 3 suppression 

l  NLO contribution to the cross 
section is proportional to αs; 
NNLO to αs

2… 

LO->NLO is a fairly  large (+) correction  
 
NLO->NNLO is a fairly small (+)  
correction 
 



W/Z pT distributions 
l  Most W/Z produced at low pT, 

but can be produced at non-
zero pT due to diagrams such 
as shown on the right; note 
the presence of the QCD 
vertex, where the gluon 
couples (so one order higher) 

l  So an example of a 2->2 
process 

 

W boson 



W/Z pT distributions 
l  Most W/Z produced at low pT, 

but can be produced at non-
zero pT due to diagrams such 
as shown on the right; note 
the presence of the QCD 
vertex, where the gluon 
couples (so one order higher) 

 
l  Sum is over colors and spins 

in initial state, averaged over 
same in final state 

l  Transverse momentum 
distribution is obtained by 
convoluting these matrix 
elements with PDF’s in usual 
way 

Note that 2->2 matrix elements are 
singular when final state partons are  
soft or collinear with initial state partons 
(soft and collinear->double logarithms) 
 
Related to poles at t=0 and u=0 
 
But singularities from real and virtual  
emissions cancel when all contributions 
are included, so NLO is finite 

^ ^ 

If this were photon 
production, and not 
W, then this last term 
would not be present 

Mandelstam variables 



Aside 
l  Can we say which quark the 

gluon is emitted from?  
l  No, that’s a classical picture 

(most often adopted in Monte 
Carlos), but doesn’t fit into our 
quantum mechanical picture 

l  In a similar way, if we have a 
diagram with a gluon that can 
be emitted from either the 
initial or final state, we can’t 
say from which it was emitted  
◆  the two diagrams interfere 

with each other 



W/Z pT distributions 

l Back to the 2->2 
subprocess 

◆  where Q2 is the 
virtuality of the W 
boson 

l Convolute with PDFs 

it’s pretty clear that Q~mW is a good choice 
as long as the gluon is reasonably soft 

phase space  
for W and gluon 

momentum 
conservation 



W/Z pT distributions 
l  Transform into differential 

cross section 

◆  where we have one 
integral left over, the gluon 
rapidity 

l  Note that        
◆  thus, leading divergence can 

be written as 1/pT
2  

l  In this limit, behavior of cross 
section becomes 

l  As pT of W becomes small, 
limits of yg integration are 
given by +/- log(s1/2/pT) 

l  The result then is 

…diverges unless we apply 
a pT

min cut; so we end up 
with a distribution that  
depends not only on αs but 
on αs times a logarithm: 
universal theme  

€ 

pT
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Rapidity distributions 
l  Now look at rapidity distributions 

for jet for two different choices of 
pT

min 
l  Top diagrams imply that gluon is 

radiated off initial state parton at 
an early time (ISR) 

l  With collinear pole, this would 
imply that these gluons would be 
emitted primarily at forward 
rapidities 

l  But the distributions look central 
l  The reason is that we are binning 

in pT and not in energy, and the 
most effective place to convert 
from E to pT is at central rapidities 

l  Suppose I re-draw the Feynman 
diagrams as shown to the right 
◆  is there a difference from 

what is shown at the top of 
the page?  

◆  hint: no 

the pT requirement of the gluon  
serves as the cutoff 



Now on to W + 2 jets 
l  For sake of simplicity, 

consider Wgg 
l  Let p1 be soft 
l  Then can write  

◆  where tA and tB are 
color labels of p1 and 
p2 

l  Square the matrix 
amplitude to get 

so the kinematic structures obtained 
from the Feynman diagrams are 
collected in the function D1,D2 and D3, 
which are called color-ordered  
amplitudes 

using tr(tAtBtBtA)=NCF
2    and tr(tAtBtAtB)=-CF/2 



W + 2 jets 

l  Since p1 is soft, can write D’s 
(color-ordered amplitudes) as 
product of an eikonal term and 
the matrix elements containing 
only 1 gluon 

◆  where εµ is the polarization 
vector for gluon p1 

l  Summing over gluon 
polarizations, we get 

◆  where 



Observables and orders 

suppose I want to know 
dσ/dφjj to NLO; then I  
would need the 1 loop 
correction to the  
diagram on the left, and  
the W+3 jets real  
correction; both of order 
αs

3 



Power series 

 
 
 
 
For perturbation theory to work, need  αs ≡ gs

2/4π <<1 
 
Each vertex has gs in amplitude->gs

2 is proportional to  αs in cross 
section 
 
Higher orders->more vertices->more diagrams (n!)->fn becomes 
more difficult to calculate 
 
But if αs<<1, can truncate series (LO, NLO, NNLO,…) 
 
For W production, NNLO corrections are reasonably small; not true 
for Higgs production, for example 

Cross section is a power series in αs 

( )…n
nn

n
s fd ∑

∞

=

=
0

ασ

W production 



Color flow 

l  The leading term (in number of 
colors) contains singularities 
along two lines of color flow-one 
connecting gluon p2 to the quark 
and the other connecting it to the 
anti-quark 
◆  sub-leading term has 

singularities along the line 
connecting the quark and 
anti-quark 

l  It is these lines of color that 
indicate preferred direction for 
emission of additional gluons 
◆  needed by programs like 

Pythia/Herwig for example 
◆  sub-leading terms don’t 

correspond to any unique 
color flow 

…and thus can’t be fed directly into 
the parton shower Monte Carlo  
programs 



Eikonal factors 
l  Re-write 

l  As 

l  It is clear that the cross section 
diverges either as cosθa->1 
(gluon is collinear to parton a) or 
as E->0 
◆  similar for parton b 

l  Each divergence is logarithmic 
and regulating the divergence by 
providing a fixed cutoff (in angle 
or energy) will produce a single 
logarithm from collinear 
configurations and another from 
soft ones 
◆  double logs 



Brief interlude: jet definitions and algorithms 

l  At (fixed) LO, 1 parton = 1 jet 
◆  why not more than 1? I have 

to put a ΔR cut on the 
separation between two 
partons; otherwise, there’s a 
collinear divergence. LO 
parton shower programs 
effectively put in such a cutoff 

l  But at NLO, I have to deal with 
more than 1 parton in a jet, and 
so now I have to talk about how 
to cluster those partons 
◆  i.e. jet algorithms 
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Jet algorithms at NLO 
l  At NLO (NNLO), there can be 

two(three)  partons in a jet, life 
becomes more interesting and 
we have to start talking about 
jet algorithms to define jets 
◆  we will see that the 

addition of the extra 
parton(s) and virtual terms 
will cancel the divergence 
mentioned on the previous 
slide  

l  A jet algorithm is based on some 
measure of localization of the 
expected collinear spray of 
particles 

l  Start with an inclusive list of 
partons (fixed order), particles 
(PS shower Monte Carlos, and 
data)  

l  End with lists of same for each jet 
l  …and a list of particles… not in 

any jet; for example, remnants of 
the initial hadrons 

l  Two broad classes of jet 
algorithms 
◆  cluster according to proximity 

in space: cone algorithms 
◆  cluster according to proximity 

in momenta: kT algorithms 



What do I want out of a jet algorithm?  

l  It should be fully specified, 
including defining in detail any 
pre-clustering, merging and 
splitting issues 

l  It should be simple to implement 
in an experimental analysis, and 
should be independent of the 
structure of the detector 

l  It should be boost-invariant 
l  It should be simple to implement 

in a theoretical calculation 
◆  it should be defined at any order 

in perturbation theory 
◆  it should yield a finite cross 

section at any order in 
perturbation theory 

◆  it should yield a cross section that 
is relatively insensitive to 
hadronization effects 

l  It should be IR safe, i.e. adding a 
soft gluon should not change the 
results of the jet clustering 

l  It should be collinear safe, i.e. 
splitting one parton into two 
collinear partons should not 
change the results of the jet 
clustering 



Jet algorithms 
l  The algorithm should behave in a similar manner (as much as 

possible) at the parton, particle and detector levels. Note that 
differences between levels can unavoidably creep in.  



The kT family of jet algorithms 
l  p=1 

◆  the regular kT jet algorithm 
l  p=0 

◆  Cambridge-Aachen algorithm 
l  p=-1 

◆  anti-kT jet algorithm 
◆  Cacciari, Salam, Soyez ’08 
◆  also P-A Delsart ’07 (reverse 

kT) 
◆  soft particles will first cluster 

with hard particles before 
clustering among themselves 

◆  no split/merge 
◆  leads mostly to constant area 

hard jets 

l #1 algorithm for 
ATLAS, CMS 

l Actually, seems to be 
the only algorithm 
used 
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ATLAS W + 2 jet event 

.with the W 
boson  
decaying into 
an electron  
and a neutrino 
 
...and the 2 jets 
defined with the 
antikT algorithm 
with R=0.4 



Back to logarithms 
l  You can keep applying this 

argument at higher orders of 
perturbation theory 

l  Each gluon that is added 
yields an additional power of 
αs, and via the eikonal 
factorization outlined, can 
produce an additional two 
logarithms (soft and collinear) 

l  So can write the W + jets 
cross section as  

◆  where L represents the 
logarithm controlling the 
divergence, either soft or 
collinear (Sudakov logs) 

◆  note that αs and L appear 
together as αsL 

l  Size of L depends on criteria 
used to define the jets (min pT, 
cone size) 

l  Coefficients cij depend on 
color factors 

l  Thus, addition of each gluon 
results in additional factor of 
αs times logarithms 

l  In many (typically exclusive) 
cases, the logs can be large, 
leading to an enhanced 
probability for gluon emission 
to occur 

l  For most inclusive cases, logs 
are small and αs counting may 
be valid estimator for 
production of additional jets 

l  For completely inclusive cross 
sections, the logs vanish 



Specific example 

l  Remember we encounter 
logs whenever an emitted 
gluon becomes  soft and/
or collinear 

l  We said the cij were color 
factors 

l  So for emission of parton 5 
from parton 1, color factor is 
CF 

l  For emission of parton 4 from 
parton 3, CA 

l  If parton 5 is soft, and 
collinear with parton 1, and 
parton 4 is soft, and is 
collinear with parton 3, have 4 
powers of logs 

l  If one of the partons is not soft or 
collinear, then only 3 powers of 
logs 

l  …and so on 
l  Factors of 2, π, etc ignored 

parton 5 

parton 1 

 

parton 2 

 

not present since have 2 extra gluons, 
not 1 



Re-shuffling 

l  re-write the term in brackets 
as 

l  Where the infinite series has 
been resummed into an 
exponential form 
◆  first term in expansion is 

called leading logarithm 
term, 2nd next-to-leading 
logarithm, etc 

l  Now can write out each 
contribution as a combination 
of terms in powers of αs and 
logarithms 

as jet definitions change, size of the logs 
shuffle the contributions from one jet 
cross section to another, keeping the sum 
over all contributions the same; for example, 
as R decreases, L increases, contributions shift 
towards higher jet multiplicities 

each gluon added has an additional 
factor of αs and two additional logs 
(soft and collinear) 
cij depend on color factors 

for W  + jets 



Re-shuffling 

• Configuration shown to the right 
can be reconstructed as an event 
containing up to 2 jets (0,1,2),  
depending on jet definition and  
momenta of the partons. 
• For a large value of Rcone, this is 
one jet; for a smaller value, it may 
be two jets  
• The matrix elements for this process 
contain terms proportional to 
αs log(pT3/pT4) and as log(1/ΔR34), 
so min values for transverse  
momentum and separation must be 
imposed 
• Suppose that I consider completely  
inclusive cross sections (σW+>=0 jets) 
• Then the logs vanish 



Reviewing 



NLO calculations 
l  NLO calculation requires 

consideration of all diagrams 
that have an extra factor of αs 
◆  real radiation, as we have 

just discussed 
◆  virtual diagrams (with 

loops) 
l  For virtual diagram, have to 

integrate over loop momentum  
◆  but result contains IR 

singularities (soft and 
collinear), just as found for 
tree-level diagrams 

O(αs) virtual corrections in NLO  
cross section arise from 
interference between tree level and 
one-loop virtual amplitudes 

vertex  
correction 

self-energy 
corrections 

If we add the real+virtual contributions, we find that the singularities will cancel, 
for inclusive cross sections. We have to be more clever for differential distributions.   
 



Scale choices 
l  We know that we have two 

scales, µR and µF 

l  We know that they should be 
associated with the relevant 
scale in the hard scattering 
process 
◆  sometime this scale is 

evident, like mW for W 
production, pT

jet for 
inclusive jet production 

◆  but what if I have a 
process like W+jet(s) 

▲  there I have both mW and 
pT

jet, and these scales can be 
very different->very different 
answers 

▲  we’ll see that for some 
cases, general scales like HT 
may work best 

l  Often µR and µF are taken 
equal to each other, but the 
physics associated with each 
is a bit different, so they can 
be varied separately…as long 
as the ratio between the two 
scales is not too large (>2) 

l  For then, we would introduce 
a new log into the calculation, 
the log of the ratio of the two 
scales 

l  These logarithms would then 
have to be re-summed to 
restore precision to the 
measurement 

l  We don’t want to have to do 
that 
sum of transverse momenta of all objects in event 



Scale uncertainties 

l  We try to estimate the uncertainty due to uncalculated 
higher order terms by varying µR,µF over some range, 
typically a factor of 2 

l  This is normally the best we can do, but we have to 
keep in mind that  higher order corrections can arise 
from a number of other sources such as Sudakov 
effects, large color factors, large π2 terms, the opening 
of new channels 

l  These  contributions are not estimated by the variation 
of the scale logarithms and can be larger than the 
variation 



What does the scale dependence for a cross section look like?  

l  Here, we’re specifically looking at 
inclusive jet production, but this holds 
for other collider processes 

l  Write cross section indicating explicit 
scale-dependent terms for NLO 

l  First term (lowest order) in (3) leads to 
monotonically decreasing behavior as 
scale increases (the LO piece) 

l  Second term is negative for µ<pT, 
positive for µ>pT 

l  Third term is negative for factorization 
scale M < pT 

l  Fourth term has same dependence as 
lowest order term 

l  Thus, lines one and four give 
contributions which decrease 
monotonically with increasing scale 
while lines two and three start out 
negative, reach zero when the scales 
are equal to pT, and are positive for 
larger scales 

l  At NLO, result is a roughly parabolic 
behavior 

(1) 
(2) 

(3) 
(4) 



Why does the scale dependence have the shape it does?  

l  Write cross section indicating explicit 
scale-dependent terms 

l  First term (lowest order) in (3) leads to 
monotonically decreasing behavior as 
scale increases (the LO piece) 

l  Second term is negative for µ<pT, 
positive for µ>pT 

l  Third term is negative for factorization 
scale M < pT 

l  Fourth term has same dependence as 
lowest order term 

l  Thus, lines one and four give 
contributions which decrease 
monotonically with increasing scale 
while lines two and three start out 
negative, reach zero when the scales 
are equal to pT, and are positive for 
larger scales 

l  At NLO, result is a roughly parabolic 
behavior 

(1) 
(2) 

(3) 
(4) 

Note that  
NLO=LO  
for a scale 
of about pT/2;  
for other scales 
NLO>LO, or 
NLO<LO 



Look at scale dependence in 2-D 

Jet production at the LHC 



It’s also useful to use a log-log scale 
l  …since 

perturbative 
QCD is 
logarithmic 

l  Note that 
there’s a saddle 
region, and a 
saddle point, 
where locally 
there is little 
slope for the 
cross section 
with respect to 
the two scales 

l  This is kind of 
the ‘golden 
point’ and 
typically around 
the expected 
scale (pT

jet in 
this case) 



It’s also useful to use a log-log scale 
l  Choose pTjet as the 

central scale 
l  The scale variation 

represents an 
estimate of the 
uncalculated higher 
orders 

l  Typically vary both 
µR and µF up and 
down from their 
central values to 
estimate the scale 
uncertainty 

l  ...sometimes 
making sure that 
the ratio of the two 
scales is never 
larger than two, 
creating the 
diamond 



Advantages of higher orders 
l  Less sensitivity to unphysical input 

scales, i.e. renormalization and 
factorization scales 

l  NLO is first level of prediction 
where normalization (and 
sometimes shape) can be taken 
seriously 

l  At NNLO can take uncertainties 
more seriously 

l  More physics 
◆  parton merging  gives structure 

in jets 
◆  more species of incoming 

partons 

consider inclusive jet prod 
at LO, NLO, NNLO 

uncertainty at 
NNLO<NLO<LO 



More scale terms in NNLO expression 



Back to  W production to NLO 

l  In 4-dimensions, the contribution 
of the real diagrams can be 
written (ignoring diagrams with 
incoming gluons for simplicity) 

◆  where 

l  Note that the real diagrams 
contain collinear singularities,     
u->0, t->0, and soft singularities, 
z->1 
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and ˆ s + ˆ t + ˆ u = Q2

 
and don’t sweat the details; I just 
want you to see in general terms 
how a NLO calculation is 
carried out 

^ ^ 



Aside: dimensional regularization 
l  Suppose we have an integral of the form, typical of the integrals in a NLO 

calculation 

l  We get infinity if we integrate this in 4  dimensions, so go to 4-2ε 
dimensions 

l  Using 
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Dimensional regularization, continued 
l  Find 

◆  singular bits, plus finite bits as ε->0, plus log singularity as m->0 
 
l  Define MS scheme: subtract (absorb) 1/ε pole, γE, and ln(4π) bits 

€ 

I =
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Now do the dimension trick for the real part  

l  Problem: if I work in 4 
dimensions, I get divergences 

l  Solution: working in 4-2ε 
dimensions, to control the 
divergences (dimensional 
reduction) 

 
l  with 
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We get 1/ε terms from individual soft and collinear singularities 
We get 1/ε2 terms for overlapping IR singularities. 
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“+ distribution” 


