Factorization

Factorization is the key to
perturbative QCD

+ the ability to separate the short-
distance physics and the long-
distance physics

In particular, parton distribution
functions are part of the long-
distance physics

Factorization tells us that PDFs
determined from one process
(or group of processes) can be
used for other processes

So we can determine PDFs from
experiments whose data was
taken long before you were born
(and more recent data as well)
and use them for the LHC

“Hard™ Scattering
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proton

underlying event
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The calculation of hard scattering processes
at the LHC requires:

(1)knowledge of the distributions of the
quarks and gluons inside the proton, i.e.
what fraction of the momentum of the
parent proton do they have

->parton distribution functions (pdf’ s)

(2) knowledge of the hard scattering cross
sections of the quarks and gluons, at LO,
NLO, or NNLO in the strong coupling
constant o,



Let’s think about this from a space-time perspective

® Partons in the proton are
always emitting virtual gluons/
quark-antiquark pairs which
then recombine (the proton
remains intact)

® The lifetime of these virtual
states depends inversely on
the energy of the partons

® uncertainty principle

® If | can probe smaller and
smaller distances (time-
scales), then | can resolve
more of the radiative structure
inside the proton

® | can probe these smaller |
distances by using higher AN
energies (Q) to probe

small time interval,
distance scale



Consider deep-inelastic scattering (DIS)
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here I’ m actually
probing these
ANANNANNN———————— virtual fluctuations;

® Condition for DIS on protons quark anti-quark pair
+ Q>m, ~1/R, : scale Q (typically the virtual mass of the photon) cannot recombine

® Using Breit frame

qﬂ = xBPz(O’ 07 Oa 2) p# = ﬁ:BPz(l, 0’ 0’ 1)

AVAVAVAVA! s brick wall frame of reference

p* =zpP,(1,0,0,—1)

P* = (Py,0,P,) with P, = /P2 —m2 ~ Py
¢" =(0,0,—q:) withQ*=—¢° =q.
® Introducing Bjorken variable x

¢ _ q2 (we’ll call this x from now on, the fraction of the
2P-q  2P;q; proton’s momentum taken by a parton)

XB =



Consider the timescales involved

electron

electron
@ interaction time between photon and proton from longitudinal wavelength
of photon 7ine ~ A, ~ 1/q;
@ parton wavelength must be as large as photon wavelength for them to
“see” each other: — p, = q;

o lifetime of parton Tite ~ p./p7 > Tint

must be larger than interaction time!

therefore: p, > p, for interaction to happen

if this holds: collision of two quasi-free particles
collinear factorisation
into hard process and independent proton — parton transitions

@ then cross section proportional to probabilities to find partons in proton,
given by the parton distribution functions f;/,

oDpIS "~ Zef,fq/p(x, Qz),
a



Parton distributions

® The momentum of the proton is distributed among the quarks and
gluons that comprise it
+ about 40% of the momentum is with gluons, the rest with the quarks
+ note that the quarks at high x tend to be valence quarks (uud), while the
e Q2) quarks atllow X tenq to be sea quarks produced by gluon splitting into
describes  Quark-antiquark pairs (u-ubar, d-dbar, s-sbar, etc)

the momentum distribution of partons inside a proton

3

C\JA I T I'll T T L] IIII T T LI ||III T T C\JA I I T T I l
e] . PDF 1 O - i
) L Q is a (factorization) ) R

= o.5[ scale at which PDFs S =GR -
» b oare avaliiated) T N\ down { X \ - =
[ are evaluated) ] UL NN
= --strange 1 =TT, e 7]
2 - -charm FarrEE .
= ---upbar - B T TR 7

- ---downbar - 1 RN '
1.5 ] 10 DU =
- —gluon 1 - o '.—
B — ol .
| ] — “ A :_
B _ — .\. .\‘.\- N

1 ] - \od
1 L T T==a. \ N

: i TTe. S~ v .‘-“l H
S B 21 . ~ ' !\"- _
0.5~ ee. ] 10°E T~ S
~-.,~j-...'.";"--'-.-..-..-..'..'..'..'. """"""""""""" ] — ) L
B R R £X T T TS . B K L
=TT TS ] - \ -

L .'.':' | | ||||| ||\||| \I-":T'



xf(x,Q%)

Parton distributions

® The momentum of the proton is distributed among the quarks and
gluons that comprise it
+ about 40% of the momentum is with gluons, the rest with the quarks

+ note that the quarks at high x tend to be valence quarks (uud), while
the quarks at low x tend to be sea quarks produced by gluon splitting into
quark-antiquark pairs (u-ubar, d-dbar, s-sbar, etc)
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xf(x,Q%)

Parton distribution functions (PDFs)

® Note the changes in the distributions as Q? increases
(DGLAP)

® High x distributions decrease, while low x distributions
Increase
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Fig. 6.6 The CT14 NNLO parton distribution functions evaluated at a
Q* of 10000 GeV?.



Back to DIS

electron Y % |

electron

N 7]
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Experimental data in CTEQ-TEA PDF analysis

: PDFs are non-perturbative
: objects. Only evolution is
L ; perturbative (DGLAP).
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FIG. 1: A graphical representation of the space of {z,u} points probed by the full dataset treated in the present analysis,
designated as “CTEQ-TEA”. It corresponds to an expansion of the CTI4HERA?2 data [10] fitted in the most recent CT14
framework [1], including measurements from Run II of HERA [6].



Global fits

® \Vith the DGLAP equations, ® So what do we need
we know how to evolve PDF’ s + avalue of Q, (1.3 GeV for

from a starting scale Q, to any Sge%?r)] Itc;]v;/eﬁrttFO?natnhye data

higher scale orediction)
® ...but we can’t calculate what + a parametrization for the
the PDF’ s are ab initio PDE’ s
+ one of the goals of lattice + ascheme for the PDF’ s
QCD + hard-scattering calculations at
® Ve have to determine them the order being considered in
from a global fit to data the fit
« factorization theorem tells + PDF evolution at the order
us that PDE’ s determined being considered in the fit
for one process are + a world average value for o
applicable to another + alot of data
» extremely important proof A Wwith appropriate kinematic
cuts

+ a treatment of the errors for
the experimental data
NAINI T



Global fits

® Parametrization: initial form
o f(X)~x*(1-x)P

® \Vhat do we know?

estimate B from auark 1. we know that the sum of the
¢ i p | q momentum of all partons in the
coun |r219 r:J eih being th proton is 1
=ZNn_.-1 wWith n_. bein e
: Eninin;um numge,. Ofg 2. we kn0\_/v the sum of valence
spectator quarks quarks is 3

+ and 2 of them are up quarks
and 1 of them is a down

A so for valence quarks in a
proton (qqq), n&=2, f=3

a for gluon in a proton (qqqg),
n=3, p=5
a for anti-quarks in a proton
(qqqqgbar), ng=4, p=7
estimate o from Regge
arguments

A gluons and anti-quarks have
a~-1 while valence quarks
have a~=1/2

but at what Q value are these
arguments valid?

quark

we know that the net number
of anti-quarks is 0

we know that the net number
of strange quarks (charm
quarks/bottom quarks) in the
proton is 0

This already puts a lot of restrictions

on the PDF’ s



PDF luminosities
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Fig. 6.30 The parton-parton luminosities for CT14 for pp collisions at 13
TeV plotted as a function of mass (Mx = V/3).

|:fu/A(~TA7 ,UF)fd-/B(IBv pF) + {U — d_}}

for any 2 partons, A
and B

PDF luminosity times
partonic cross section
equals hadronic cross
section

note that gluon-gluon
scattering dominates

at low mass and
quark-quark scattering
dominates at high mass

of course, specific PDF
luminosity needed depends
on which process is being
considered



Factorization theorem

confinement freedom confinement

long distance

long distance short distance

Sy~

Heavy quark decays
e.m. and e.w. processes

.Q
.h
~

we’ll discuss
later

vacuum perturbation
produce light quarks

E
p fi(t) | Py=x, P, P4

Mandelstamm variables : |
(p, + P1)2 I
(p, +ps)°

(p, +p,)* production cross section

|
|
p// Parton density function : calculable in pQCD
p pl p2

7‘_‘P
Ps

s

-+
Il

u

fragmentation function
c->D



Master formula for cross section calculation

a factorization scale u a renormalization

/ ‘\ scale %‘R

1
0250 = ) /ande fa/hy (Xay W) o /1y (Xby 10F) Gab—sn(KF, R)
b o

both PDFs
/ and matrix
IS phase space parton distribution functions elements
1 e A ~ can be at LO,
NLO and
= Z / dxadxp  f5/h (Xay L) b /1y (Xbs 1F) NNLO
a,b 0 A4
1 2
X 2_§ X dd, |Mab—>n| (q)n; HF, HR) :
~— —— N\ - v
incoming flux F'S phase space amplitude squared

We'll start by calculating the matrix element for W boson production at leading
order.



W boson production at leading order

® Consider production of an on-shell W* boson; only 1 diagram

u

W

d
® The corresponding matrix element reads

CKM matrix element weak coupling

iV}jd.‘]V%' - A =5 W
MuJ—)VV*’ - _TJ ’i(p2)7’ 9 uj(pl)el(t )

quarks have to be a color-anticolor singlet since the W boson has no color

® Summed and squared expression reads

5

- _ 2 _ 3 |V1Ld|2gl2/V 7 ul — Q;LQV
Z|M«ud—>w+| ~ 9.4 9 Tr [3527 ¢17 9 ] [ Juv + m%v ]
- |Vud|2g]2/v Q2 . |Vud|2912/V m2
12 12 W
factor of 3 comes from sum over 3 possible quark-line colors, 1/9 takes care of averaging over
all possible color configurations of the quark and antiquark, and 1/4 takes care of averaging over
the incoming quark spins.

Q=p,+p,=my°



.add the decay

® Now let the W* decay

u l
>vwWXN<
. R St -

d . ¢ . YuL = Vu 9

® Matrix element can be written as /,
M _ I _igWVud _ —igw B
ud—vel — |Vd T YuL | Uy Uy W%}L Uy
. W is no longer a
—1 [g,w ~ (Putp)"(Pu +Ppg)" ]—) final state particle,
(pu + pa)? — miy +imwTw miy | but instead a

® Squaring yields propagator

- 3 |Vud|*gy L —5 v, o1l—5
ZlMuJ—)E+Ug|2 = 9.4 u4 W,Tr ﬁd_’yuﬁu’yp 2 Tr ¢ue’7 ¢l77 2

(gw - ngu) (gpa - ngg?a)

w

Q2 —m2,)? + m3, T2, average over initial qua.rks _spln_s.and colors,
and sum over lepton spins implicit

X

_ |Vud|2gév £

12 (Q*—mp)? +m Ty’

® Define Mandelstam variables

§ = Q2 = (pu +pJ)2 and i = (pu_pi)2



Phase space

conservation of

® \Write phase-space integral over final state particles as t
momentum
d'p, 2y d'py 2 454 7
e, = 2m)5(p2) (27)* 6% (p, —
oo, = [ GEn0) G nswE) @) S u +pa— e~ 1)
= 321 - /d2QZ, > solid angle of outgoing lepton in rest frame of collision
™
_ width of the
® Then can re-write 1 W boson
HLO) _ 1 szE |M|2J—> ;= Gw |Vud|2 / 2md cos g* $*(1 — cos6*)*
N u Ve .98 . A 2
25 327 12 - 258 J, 4. 327 [(3 _ m%v) + m%/VF%V
_ g [Vadl® 8 / | |
767 (35— mi,)" +m3, T3, Breit-Wigner for some kinematic
_ _ W propagator tricks

® And for the final cross section dé
dz,dz; = — dyw

S

4| Voal® 1 5 = 2y

Jﬁzlzl?z—wﬂ - gW5'|76ud| / dyw d3 A 2 12 2 12 S ?ggdsxu
i [S - mW] + mWFW Yem. = Elog l'_J

X Zwufu/hl (Tus 1F)2i /0, (T g, LF)
w,d



Narrow width approximation

® It is often useful to use the narrow width approximation to simplify
the calculation, where the propagator (Breit-Wigner) of mass My
and width I', is replaced by

ds T

; — — dsé(8 — M3
G M2+ METS  MyTy 4906~ M)

® The cross section then can be written as

yxnax

4 2 — R
O(LO) 9w ‘Vud‘ myy dy Zf myye?" u f mye W y
hlhz—)l/gé 5768 F‘/‘,’ — U/ 151 \/g (/12 \/g

w,d

—Ymax

where the W rapidity yw is constrained by z,z ;5 = m3, and therefore

1 S
|yW" S Ymax — 510{.); ’7722 .
w

® Note this ignores correlations between the initial state particles and
the final state particles (spins for example)



Consider the emission of a gluon (or quark from a gq initial state)

® Three sets of diagrams,each g

with two interfering amplitudes " Y ese’

+ identical initial and final W intefere
<>

states
ﬁ+ d J e

Vy

W

S ¥

Z.gng‘/ud _ a ﬁ(i_ﬁ
MuJ—)gW‘*’ - \/5 Vd,i |: v T, Y]

1 u Vy

¢g - ﬁd
] 2 TuL d t d
these

(p,
+ .
P+ ¥, T;;} el et interfer

~

these
inte”rfere

Vy

. + g
_igsgw Vud B { o Py + P

Mo o — a
dg—uw V2 9 (py + pa)? """

¢q_¢ﬂ ]
+yuL ————57 T} | Vu,j€
. (pg_pﬁ)z l] !

Bo_*v,a

Weg

color matrix appearing in the quark-quark-gluon vertex

1 1
=— when parton gets soft, or angle

note potentially divergent terms  (p, — p,)? 2E,E4(1 — cosf) approaches 0




Matrix elements squared

® Square and average/sum over initial/final states polarizations and colors,
and performing some color algebra, get

2 2 12 ~92 2 A
IM|? . _ ArasCr giy [Vua|® 2 + 0 + 2my, 8
ud—sgW+ 192 tA{L

and

2 2 32 ~2 2 7
| |u_q—>(lVV+ - | |Jg—)ﬁW’+ - 12 — 51 ‘

In all cases Mandelstam variables have been used, namely

= (pa +m)* = (p1 + p2)*,
= (pa — p1)2 = (pp — p2)2,
= (pa —p2)* = (P — P1)*,
® Closer inspection reveals that the squared matrix elements can be written
as the leading order matrix element squared (for W production) times a

QCD emission term, consisting of the strong coupling and a color factor
times an expression representing the kinematics of the extra emission

§4+t+10 = mi4+mi+mi+ms.

:> ~> WU

(LO) |2 _ 12 | ~2 2 2
M2 N M udsw+ - (A7 Cr) t” +u” + 2myy, s note the
+ = X = .
ud=gW mé, ° ti divergence when

t-hat or u-hat

| MLO) 2 82 442+ 2m3t
= goes to zero

2 2 wd—W+
‘M|ug—>d‘/V+ - |M|(ig—)'&VV+ - leU(—HV ’ (4’/TO(STR)
W

—Su

L~ -



Modern life

® Note that this procedure works for simple processes, 2->n, where n
is small (n=1 for W production, n=2 for W+j), but the number of
Feynman diagrams increases (more than) factorially with n

® Squaring the amplitudes, taking traces, is just too complex a
process for large n

® In modern techniques, alas beyond the scope of these lectures, the
focus is on evaluating individual amplitudes as a function of their
internal and external degrees of freedom

+ helicity amplitude method: any Feynman amplitude
(represented by propagators and vertices for the internal lines
and spinors and polarization vectors for the external particles)
is translated into a complex number dependent on external
helicities and momenta

® Every amplitude becomes just a complex number
® Summation and squaring is then a (more) straightforward exercise



Let’s start over, in a somewhat more pedagogical way

® Consider Drell-Yan production

_ _ where x, is the momentum fraction
+ Wwrite cross section as

of parton a in hadron A, and x,, the
momentum fraction of parton b in
hadron B, and Q is a scale that

+ Where X=I*I measures the hardness of the

+ note we’re back to the parton interaction
model, i.e. no QCD corrections

® Potential problems appeared to
arise from when perturbative
corrections from real and virtual
gluon emissions were calculated

+ but these logarithms were the
same as those in structure

function calculations and thus
can be absorbed, via DGLAP
equations in definition of parton
distributions, giving rise to
logarithmic violations of scaling

+ can now write the cross sectior oag = f dx,dxy fasa(Xas OF) forp(xp, Q) Gap—x
as

OaB = fdxadxb faja(xa) fo;8(Xp) Oap—x

Figure 1. Diagrammatic structure of a generic hard-scattering process.



...but

® Key point is that all logarithms
appearing in Drell-Yan
corrections can be factored into
renormalized (universal) parton
distributions

+ factorization

® But finite corrections left behind
after the logarithms are not
universal and have to be

CaICUIated Sepa rately fOl' eaCh Figure 1. Diagrammatic structure of a generic hard-scattering process.
process, giving rise to order o." also depends on uy and
perturbative corrections us, SO as to cancel scale
® So now we can write the cross dependence in PDF s and a,,
Sectlon as to this order
: 2\ £ v o2 A 2, X
OaB = /dl’adl'b Jfaja(Xas UE) foyp(Xp, uE) X [ 00 + as(ug) o1 + - lap—x.

® where ¢ is the factorization scale An all-orders cross section has no
(separates long and short- dependence on ur and u; a residual
distance physics) and ug is the dependence remains (to order a,"*") for
renormalization scale for o a finite order (a.,") calculation

e =Up~ i i
choose ug=ur~Q (say,my;) (see later discussion as well)



Kinematics

® Double differential cross LHC parton kinematics
section for production of a 10" Ty
_ H [ x,, = (M/14 TeV) exp(zy)
Dre_II _Yan.pal_r of mass M and oL oiu T
rapidity y is given by :
10
d 5 ) i
dMgd_v — ;(; [Zk: Qi(Qk(xl. M~)qg (x>, M?) + [l o 2])] 105§— M=1TeV
— 10F
+ where T f
471 052 -~ 10 E M =100 GeV
60 = 2 “O :
3M ;
100 F
+ and F o/
10° :
FM=10GeV
= ﬂ Ay n — ﬁ e E
Al—\/EL. Ag—ﬁb ‘ 1012_
® Thus, different values of M 1o¢ L

107

and y probe different values of
x and Q2



W/Z production

® Cross sections for on-shell W/Z
production (in narrow width limit)
given by

6,q¢}'—>W

b . .
?s/iGpMé,|qu,|28(s — M3),

.
Aga—>Z 2,.2 A 2

® Where V. is appropriate CKM
matrix element and v, and a, are
the vector and axial coupling of
the Z to quarks

® Note that at LO, there is no oy
dependence; EW vertex only

® Quark and anti-quark have to be
color-anticolor pair

+ factor of 3 suppression

® NLO contribution to the cross

section is proportional to o;
NNLO to ag?...

3.5

T W Tevatron (Run 2) 7 (x10) ]

o T COF(e,u) DOle,w)
2.0

[ MRST2004 CTEQG6.1

Figure 4. Predictions for the W and Z total cross sections at the Tevatron and LHC, using
MRST2004 [10] and CTEQG6.1 pdfs [11], compared with recent data from CDF and D0O. The
MRST predictions are shown at LO, NLO and NNLO. The CTEQ6.1 NLO predictions and the

accompanying pdf error bands are also shown.
LO->NLO is a fairly large (+) correction

NLO->NNLO is a fairly small (+)
correction



W/Z p+ distributions

® Most W/Z produced at low p-,
but can be produced at non- ﬁg
zero p; due to diagrams such
as shown on the right; note W
the presence of the QCD
vertex, where the gluon -
couples (so one order higher)

® S0 an example of a 2->2
process “Hard” Scattering

W boson
—

proton proton

underlying event underlying event

outgoing parton



W/Z p+ distributions

® Most W/Z produced at low p;, ° 4406
but can be produced at non-
zero p; due to diagrams such v
as shown on the right; note
the presence of the QCD d
vertex, where the gluon
couples (so one order higher)  Mandelstam variables

If this were photon

A0 A9 7 A
. 8 t“+u-+2M3:.5s :

Zquq ~We)2 ﬂasﬁGpM%..-quqflz ot —Twoy productlon., and not
) til W, then this last term
| 82 +a%+2ftM2 ¥ would not be present

Z Wq' (2 2 W

_ , Note that 2->2 matrix elements are
® Sum is over colors and spins singular when final state partons are

In initial state, averaged over soft or collinear with initial state partons
same In final state (soft and collinear->double logarithms)

® Transverse momentum
distribution is obtained by
convolutlng_these rf]at_nx But singularities from real and virtual
elements with PDF" s in usual emissions cancel when all contributions
way are included, so NLO is finite

A A
Related to poles at t=0 and u=0



Aside

® Can we say which quark the ﬁ
gluon is emitted from?

® No, that's a classical picture
(most often adopted in Monte )
Carlos), but doesn’t fit into our
gquantum mechanical picture

® In a similar way, if we have a
diagram with a gluon that can
be emitted from either the
initial or final state, we can’t
say from which it was emitted

+ the two diagrams interfere
with each other

W
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W/Z p+ distributions

® Back to the 2->2 ’
subprocess H
- 22 A2 2Q2 3§
JMud—>W+g 2 —~ I~ +u A+ ) S
| | ( til d I %

5.

¢ Where. Q7% Is the it's pretty clear that Q~m,, is a good choice
virtuality of the W 55 |ong as the gluon is reasonably soft
boson

® Convolute with PDFs

|*’M|2 d3pW (131)3
(py +pi— Pe —
3272 Ey ' g, * Pt P {g Pw)

phase space momentum
for W and gluon conservation

o =/dx1dxzfu(x1- Q%) f3(x2, Q%)



W/Z p+ distributions

® Transform into differential
Cross section

do

] R ) 2 . ) 2 I.f’\/tl2
~ ; (I,Vg fu(/‘l* Q )f(_l(xz‘ Q )—=

szd\‘d[)% § u /f u

+ where we have one

integral left over, the gluon w W
rapidity ..
» _ ! : . %y
® Note that pr=?u ¢ d B\ﬂ

+ thus, leading divergence can
be written as 1/p;?
® In this limit, behavior of cross
section becomes

do 2 1

dQdydp2 TS p:

do log(s/p%)
dQ3dydp; Py
...diverges unless we apply
a p™n cut; so we end up
with a distribution that
depends not only on o, but
on o4 times a logarithm:
universal theme

/d\g fulxy, Q ) f7(x2, Q ) + (sub-leading in p

® As p; of W becomes small,
limits of y, integration are
given by ¥1- log(s'?/p+)

® The result thenis



Rapidity distributions

Now look at rapidity distributions the p; requirement of the gluon

for jet for two different choices of gg serves astkg cutoff
mein

Top diagrams imply that gluon is
radiated off initial state parton at
an early time (ISR) a

With collinear pole, this would

imply that these gluons would be i
emitted primarily at forward s | :
rapidities .
But the distributions look central "} _
. R R 0.00 S . e
The reason is that we are binning T vy T oy
in pT and not in energy, and the Figure 9. The rapidity distribution of the final-state parton found in a lowest-order calculation of
. the W + 1 jet cross section at the LHC. The parton is required to have a pr larger than 2 GeV (left)
mOSt effe Ctlve place to CO nvert gll SOI.Gey( righlt). Contributic;ns from gq annihilation (solid red line) and the gg process (dashed
. . ue line) are shown separately.
from E to p; is at central rapidities
Suppose | re-draw the Feynman e MV YN

diagrams as shown to the right

+ is there a difference from
what is shown at the top of

the page?
¢ hint: no

d ——h NNV d ——Dooo0o00



Now on to W + 2 jets

® For sake of simplicity,

: YOUOTOTUS 2 YososTosTS 2
consider Wgg . W 1
® Let p, be soft o) 1 o2
. q
® Then can write ———mmg‘f;: , S w

A 2

M= Wes — t24%8(Dy + D3) +t8t2(D) — D3). 9 —« Lo W 5—<—mmm§§)
b) 1

(D3a) (D3

¢ Where tA and tB are so the kinematic structures obtained

from the Feynman diagrams are
color labels of p; and collected in the function D,,D, and D,

P- which are called color-ordered

® Square the matrix amplitudes
amplitude to get using tr(tPBE)=NC.2 and tr(tABtAE)=-C../2

|J\4q51—>ng|2 — NC% [IDz + D3|2 +|D| — D3|2] — Cr Re [(D2 + D3)(Dy — D3)*]
C,:N

|
[IDo + Ds)* +|Dy — DsJ* — 31D+ D2|2] .

4—



W + 2 jets

® Since p, is soft, can write D’ s
(color-ordered amplitudes) as
product of an eikonal term and
the matrix elements containing
only 1 gluon

q* Py
D> + D5 —)GL( — = )J\/I 7—Wes
! P1-q P1-pP2 " §
M =L
P> q
Dl—D3—>€L( — — _)J\/l - Wes
“\pipr pig)” 9778

+ where ¢ is the polarization
vector for gluon p;

® Summing over gluon
polarizations, we get

o CrN? )

Mad=Wee 2 2 ZE [[q p2l+1p2 1 -
+ Where
a.b

— =[a b].
pir.a p1.b

]\f?.

I _
lq (il] MIT=VE




Observables and orders

U T Table 3.1 The order at which various observables related to W production
N are computed, as a function of the overall power of the strong coupling in
" the theoretical calculation.

strong coupling order | Otot, do/dy | do /dpr (W) | do/do;; |

d a? —— LO i }

— o 7
g ol —1 NLO— 1O .
u — /
. W— a2 NNLO NLO LO
W
N3LO NNLO /ﬁo

suppose | want to know
2 do/d¢; to NLO; then |
Y 00000000 ™ would need the 1 loop
d ~ correction to the
I —<—hr v W

diagram on the left, and
the W+3 jets real
correction; both of order
o’



Power series

W production

strong coupling order | Otot, do/dy |

Cross section is a power series in o, a0 LO

— n 2
do = Eas fn() o NNLO
n=n o N’LO

For perturbation theory to work, need a,= g2/4n <<1

Each vertex has g, in amplitude->g? is proportional to o in cross
section

Higher orders->more vertices->more diagrams (n!)->f becomes
more difficult to calculate

But if o, ,<<1, can truncate series (LO, NLO, NNLO,...)

For W production, NNLO corrections are reasonably small; not true
for Higgs production, for example



IJMqé—HVgg |2

Color flow

CpN* I B
5 |lg P2l +1p2q] = 7lg 4]

—

soft
—

J\Aqti*Wg

® The leading term (in number of
colors) contains singularities
along two lines of color flow-one
connecting gluon p, to the quark
and the other connecting it to the
anti-quark

+ sub-leading term has
singularities along the line
connecting the quark and
anti-quark

It is these lines of color that

indicate preferred direction for
emission of additional gluons

+ needed by programs like
Pythia/Herwig for exampl

+ sub-leading terms don’ t
correspond to any unique
color flow

Q

q

9 ————ooooooe> T 4 ———vvvvn W
YooOUToe 2 yooooooeD™ 2
I —<—r v W T — oo
(D1) (D2)
1
K —»—mvmi 9 ——vr vy W
2
Y 2
I —<— v W 3 —<—va§
(D3a) (D3b) 1
———wooogooo~ ! 9 ————booooooo
Yoo000000~ 2 To00000™ 2
.
——<—HNwvvvn W T <R W

_———— ]

_———]

Figure 12. Two examples of colour flow in a W + 2 jet event, shown in red. In the left-hand
diagram, a leading colour flow is shown. The right-hand diagram depicts the sub-leading colour
flow resulting from interference.

e/

programs

...and thus can’ t be fed directly into
the parton shower Monte Carlo



la b]dPSgluon =

Eikonal factors

Re-write
a.b
——— =a b].
P1.da pl.b
As
|

EdE dcosé,

2
E<1 —cosb,

It is clear that the cross section
diverges either as cos0_->1
(gluon is collinear to parton a) or
as E->0

+ similar for parton b

Each divergence is logarithmic
and regulating the divergence by
providing a fixed cutoff (in angle
or energy) will produce a single
logarithm from collinear
configurations and another from
soft ones

+ double logs

F
%

F
%

9 ————oooogooo~ 1 9

q—<—’\

r,

00000000~ 2
O000Q000

v W g

I E—

booooooo™ 1

I E—

0000000 2

AN W

—_——— ]

Figure 12. Two examples of colour flow in a W + 2 jet event, shown in red. In the left-hand
diagram, a leading colour flow is shown. The right-hand diagram depicts the sub-leading colour

flow resulting from

interference.



Brief interlude: jet definitions and algorithms

' =1 2 -2 process
® At (fixed) LO, 1 parton =1 jet Lo QCD
+ why not more than 1? | have

to put a AR cut on the

separation between two

partons; otherwise, there’ s a

collinear divergence. LO

parton shower programs

effectively put in such a cutoff
/6panou4

-jet final state
1 parton/jet

® But at NLO, | have to deal with
more than 1 parton in a jet, and
so now | have to talk about how
to cluster those partons
+ l.e. et algorithms




Jet algorithms at NLO

® At NLO (NNLO), there can be

two(three) partons in a jet, life
becomes more interesting and
we have to start talking about

jet algorithms to define jets

+ we will see that the
addition of the extra
parton(s) and virtual terms
will cancel the divergence
mentioned on the previous
slide

A jet algorithm is based on some
measure of localization of the
expected collinear spray of
particles

Start with an inclusive list of
partons (fixed order), particles
(PS shower Monte Carlos, and
data)

End with lists of same for each jet

...and a list of particles... not in
any jet; for example, remnants of
the initial hadrons

Two broad classes of jet
algorithms

+ cluster according to proximity
in space: cone algorithms

+ cluster according to proximity
in momenta: k; algorithms



What do | want out of a jet algorithm?

It should be fully specified,
including defining in detail any
pre-clustering, merging and
splitting issues

It should be simple to implement
in an experimental analysis, and
should be independent of the
structure of the detector

It should be boost-invariant

It should be simple to implement
in a theoretical calculation

+ it should be defined at any order
in perturbation theory

+ it should yield a finite cross
section at any order in
perturbation theory

+ it should yield a cross section that

is relatively insensitive to
hadronization effects

® |t should be IR safe, i.e. adding a

soft gluon should not change the
results of the jet clustering

XA N

It should be collinear safe, i.e.
splitting one parton into two
collinear partons should not
change the results of the jet
clustering

W\

A




Jet algorithms

® The algorithm should behave in a similar manner (as much as
possible) at the parton, particle and detector levels. Note that
differences between levels can unavoidably creep in.

NN e

LO partons NLO partons parton shower hadron level
Jet | Def" Jet | Def" Jet | Def" Jet | Def"
jet 1 jet 2 jet 1 jet 2 jet 1 jet 2 jet 1 jet 2

VO Y

Projection to jets should be resilient to QCD effects



The k; family of jet algorithms

® p=1 d=distance measure
+ the regular k; jet algorithm 5 N
. P ,2p i
® p=0 dij _mln(pT,i’pT,j) D?
+ Cambridge-Aachen algorithm 5
® p=-1 dl-,- = prZ- size of
o : jetin
+ anti-k; jet algorithm Ay-Ad

+ Cacciari, Salam, Soyez'08 . @ #1 algorithm for  space
+ also P-A Delsart " 07 (reverse ATLAS CMS

Kr) ,
« soft particles will first cluster ® Actually, seems to be

with hard particles before

clustering among themselves the Only algorithm

+ no split/merge used

+ leads mostly to constant area
hard jets



.with the W
boson
decaying into
an electron
and a neutrino

...and the 2 jets
defined with the
antikT algorithm
with R=0.4

ATLAS W + 2 jet event

L ATLAS

JLEXPERIMENT
Run Number: 187811
Event Numberd45512343
W(ev)+jet mass = 1614.7 GeV

4/

/// electron

Leading Jet pT = 769.0 Ge¥
Electron pT = 99.2 GeY
Missing Et = 671.7 GeV

Associated Jet pT =81.1 GeV

leading jet




Back to logarithms

You can keep applying this
argument at higher orders of
perturbation theory

Each gluon that is added
yields an additional power of
o, and via the eikonal
factorization outlined, can
produce an additional two
logarithms (soft and collinear)

So can write the W + jets
cross section as

do = op(W + 1 jet) [I +ozS(C|3L2 +cy1L + cyp)

. J . .
+(:'t‘5"((.“3_-1L'1 +c3L” + el +cy L +cy)+---

+ Where L represents the
logarithm controlling the
divergence, either soft or
collinear (Sudakov logs)

+ note that o, and L appear
together as o L

Size of L depends on criteria
used to define the jets (min p-,
cone size)

Coefficients c; depend on
color factors

Thus, addition of each gluon
results in additional factor of
o, times logarithms

In many (typically exclusive)
cases, the logs can be large,
leading to an enhanced
probability for gluon emission
to occur

For most inclusive cases, logs
are small and o counting may
be valid estimator for
production of additional jets

For completely inclusive cross
sections, the logs vanish



Specific example

® Remember we encounter K"a“”‘s parton 4

logs whenever an emitted P! & Ja

gluon becomes soft and/ ' - Ségc@[ ;

. B60¢
or collinear
|
la b]d P Sgjyon = — — EdE dcosé,
E< 1 —cosb, parton2 b
g

® We said the ¢; were color “Lw

faCtO rs Figure 13. A final-state configuration containing a W and 2 partons. After the jet definition has

. . been applied, either zero, one or two jets may be reconstructed.

® So for emission of parton 5

from parton 1, color factor is not present since have 2 extra gluons,

CF not 1 ;

o do = op(W + 1 jet) || + asterE+cmE=+107

® For emission of parton 4 from ) . [ X ,

parton 3.C +as (Cy L™ + cp3L” + e L™ + ¢y L + o) + - ]

» YA

® |[f parton 5 is soft, and

® If one of the partons is not soft or
collinear, then only 3 powers of
logs

collinear with parton 1, and
parton 4 is soft, and is
collinear with parton 3, have
powers of logs ® ..andsoon

® Factors of 2, m, etc ignored



for W + jets

/ Re-shuffling

do = oo(W + 1 jet) [1 +as(cinL? +cpi L + cio) each gluon added has an additional
factor of o, and two additional logs

WSQ(C24L4+C23L3 +C22L2 +C21L+C2())+---] .
(soft and collinear)

® re-write the term in brackets ¢, depend on color factors
as
[..]:l+aSL2C]2+(aSL2)2C24+aSLCIl(] +aSL2C23/Cll+---)+...

= exp [clgasL2 + C| 1a5L] .

- e . Ow = 0Ows40; + 0O + Owei + 0O 3+
® Where the infinite series has " +0j TOW+1j T OW+2j T OW+3j

been resummed into an ow.0j = ao + as(anL* +ap L +ajo)
exponential form +os (@l + anl® +anl® + ay L +ax) +- - -
o first term in expansionis  ow.1j = as(biaL* + by L + byo)
called leading Iogarlthm + a5t (byg L + bysL? + by L2 + by L +byg) + - - -
term, 2nd next-to-leading *, .. —....
logarithm, etc as jet definitions change, size of the logs
® Now can write out each shuffle the contributions from one jet

contribution as a combination  cross section to another, keeping the sum

of terms in powers of o.. and over all contributions the same; for example,
Iogarithms S as R decreases, L increases, contributions shift

towards higher jet multiplicities



Re-shuffling

parton 4

*Configuration shown to the right §

can be reconstructed as an event @éf“ ,
containing up to 2 jets (0,1,2), ATEOOY T partens
depending on jet definition and

momenta of the partons.

For a large value of R, this is L
one jet; for a smaller value, it may 1

be two jets -W

*The matrix elements for this process]ias I& A it confirion snuiine o 1 a2 prons: A e e defiion b
contain terms proportional to

0 log(pra/Pr4) and as 10g(1/AR3y),
so min values for transverse :
momentum and separation must be  Ow+1j; = as(bi2L” + by L + byo)
imposed + a5 (byyL* + bysL> + by L? + by L + byg) + - - -
*Suppose that | consider completely
inclusive cross sections (Oyy.>=g jets)
*Then the logs vanish

2
Ows+0j = Ao +as(app L™ +ay L +ay)

9 ) 3 "
+Q’5"((17_4L'1 +ayl” +an L +a) L +ax)+---

Ow+2j = -



Reviewing

Ows0; = ag + as(appL* +ay L +aj)

+a52(a24L4 + 6123L3 +a22L2 +a21L + azo) 4+ -
Ows1j = as(biaL” + by L + byp)

+ s> (bygL? + bysL> + by L + by L +byg) + - - -

Ow+2j = =

. j ((\ N LL resvmmel b\\ ’Qar—‘cov\ sWswe— =
| X
® NLL (Dacxa\\ \ve:uv«w\eé\ b @ (L Oh
- * 'NA ;//,/-0 Q ‘_\ 5‘\/‘\:0\;..;1/‘?
L(p .//.J J( //
Lg | | ;/}HL/-
1xL 2 VY
BT A - =
~ L
L\ b 7’ |-

\ \ |\| L

\ > )

Ls oo &; o



NLO calculations

® NLO calculation requires .
consideration of all diagrams @/ﬁ
that have an extra factor of o, - -
+ real radiation, as we have
just discussed a I D‘%

vertex w ob%

+ virtual diagrams (with _
correction

I 00 p S ) % W W
® For virtual diagram, have to . . self-energy _
d d corrections ¢

Integ rate Over Ioop momentu m Figure 14. Virtual diagrams included in the next-to-leading order corrections to the Drell-Yan

. but reSUIt Contains IR production of a W at hadron colliders.
singularities (soft and O(a.,) virtual corrections in NLO

collinear), just as found for  cross section arise from
tree-level diagrams interference between tree level and

one-loop virtual amplitudes

If we add the real+virtual contributions, we find that the singularities will cancel,
for inclusive cross sections. We have to be more clever for differential distributions.



Scale choices

® \We know that we have two ® Often ug and ugare taken
scales, ug and ug equal to each other, but the
® \We know that they should be physics associated with each
associated with the relevant is a bit different, so they can
scale in the hard scattering be varied separately...as long
process as the ratio between the two
+ sometime this scale is scales is not too large (>2)
evident, like m,, for W ® For then, we would introduce
production, piet for a new log into the calculation,
inclusive jet production the log of the ratio of the two
+ butwhatif | have a scales
process like W+jet(s) ® These logarithms would then
a there | have both my, and have to be re-summed to
p.*, and these scales can be restore precision to the
very different->very different measurement

answers

, ® Ve don’t want to have to do
A we’ll see that for some

cases, general scales like HT\ that
may work best sum of transverse momenta of all obiects in event



Scale uncertainties

® Ve try to estimate the uncertainty due to uncalculated
higher order terms by varying ug,ur Over some range,
typically a factor of 2

® This is normally the best we can do, but we have to
keep in mind that higher order corrections can arise
from a number of other sources such as Sudakov
effects, large color factors, large 72 terms, the opening
of new channels

® These contributions are not estimated by the variation
of the scale logarithms and can be larger than the
variation



What does the scale dependence for a cross section look like?

Consider a large transverse momentum process such as the single jet inclusive cross section

® Here, we're specifically looking at
inclusive jet production, but this holds
for other collider processes

® \Write cross section indicating explicit

involving only massless partons. Furthermore, in order to simplify the notation, suppose
that the transverse momentum is sufficiently large that only the quark distributions need
be considered. In the following, a sum over quark flavors is implied. Schematically, one can

write the lowest order cross section as

scale-dependent terms for NLO o .
. . E—=0=0a"(p)op®q(M) @ q(M) (1)
® First term (lowest order) in (3) leads to e
monotonlca”y decreaS|ng behav|or as where a(p) = ag(p)/2m and the lowest order parton-parton scattering cross section is de-
scale increases (the LO piece) noted by og. The renormalization and factorization scales are denoted by pu and M, respec-
® S econd term is ne g ative for M<p tively. In addition, various overall factors have been absorbed into the definition of 45. The
p 0 SitiV e fOI‘ M>p Ik symbol @ denotes a convolution defined as
T 1
. . . . . dy , T .
® Third term is negative for factorization fea= / 5 19! 2)
scale M < pT When one calculates the O(a3) contributions to the inclusive cross section, the result can

® Fourth term has same dependence as be written as
lowest order term (1

® Thus, lines one and four give 2
contributions which decrease
monotonically with increasing scale (3
while lines two and three start out (4
neg ative, reaCh Zero When the ScaleS In writing Eq. (3), specific logarithms associated with the running coupling and the scale
are equal to pT, and are pOSitive fOr dependence of the parton distributions have been explicitly displayed; the remaining higher
Iarger Scales order corrections have been collected in the function K in the last line of Eq. (3). The g

® At NLO, result is a roughly parabolic
behavior

o = d®(u)op® q(M) @ q(M)
+ 2a°(p) bIn(p/pr)o8 @ o(M) @ o(M)
+ 2a°(p) In(pr/M) Py @ 68 @ g(M) @ q(M)
+ a®(p) K @ q(M) @ q(M). (3)

N S N S’



Why does the scale dependence have the shape it does?

Write cross section indicating explicit V-s=1aof£v“g,>=jf:;3( peles
scale-dependent terms Note that 1000

First term (lowest order) in (3) leads to  N-O=LO — ) T _No
monotonically decreasing behavior as ~ for a scale ~—

scale increases (the LO piece) of about p;/2; ¢ SO . .
Second term is negative for u<ps, for other scalesg —

positive for u>p; NLO>LO, or 5 —
Third term is negative for factorization NLO<LO ®

scale M < p;

Fourth term has same dependence as o
lowest order term g 05 i 15 2 25

Thus, lines one and four give
contributions which decrease
monotonically with increasing scale

be written as

while lines two and three start out (1
) (2)

negative, reach zero when the scales

are equal to p;, and are positive for (3)

larger scales (4)

At NLO, result is a roughly parabolic
behavior

WE;

When one calculates the O(a?) contributions to the inclusive cross section, the result can

o = a*(p)op @ q(M)® q(M)
+ 2a°(p) bIn(p/pr)op @ (M) @ ¢(M)
+ 2a°(p) In(pr/M) Py ®

+ d®(p) K @ q(M)® q(M). (3)

oB® q(M)® q(M)

In writing Eq. (3), specific logarithms associated with the running coupling and the scale

dependence of the parton distributions have been explicitly displayed; the remaining higher

order corrections have been collected in the function K in the last line of Eq. (3). The p



Look at scale dependence in 2-D

Jet production at the LHC

| Scale dependance. 0.0<lyl<0.3. 30<Pt[GeV]<45 |

| Scale dependance. 0.0<lyl<0.3. 30<Pt[GeV]<45 |

L

5




It's also useful to use a log-log scale

[ Scale dependance. 0.0<lyl<0.3. 30<Pt[GeV]<45 |

-

W

WA

...since
perturbative
QCD is
logarithmic
Note that
there’s a saddle
region, and a
addle point,
where locally
there is little
slope for the
cross section
with respect to
the two scales

This is kind of
the ‘golden
point’ and
typically around
the expected

scale (p{¢tin
this case)



It's also useful to use a log-log scale

[ Scale dependance. 0.0<lyl<0.3. 30<Pt[GeV]<45 |

R

- I
L :
1
1 1
1 un

Choose p4j°t as the
central scale

The scale variation
represents an
estimate of the
uncalculated higher
orders

Typically vary both
ug and pg up and
down from their
central values to
estimate the scale
uncertainty

...sometimes
making sure that
the ratio of the two
scales is never
larger than two,
creating the
diamond



Advantages of higher orders

Less sensitivity to unphysical input consider inclusive jet prod
scales, i.e. renormalization and at LO, NLO, NNLO
factorization scales NNLOJET 13 ToV itk 0 =07 1 =4, =)
NLO is first level of prediction cr — L0 —NLO —NNLO

10° —

where normalization (and
sometimes shape) can be taken
seriously

At NNLO can take uncertainties
more seriously o

More physics -
+ parton merging gives structure :

in jets 0% [ .

+ more species of incoming g

partons 'E

du/de [fb/GeV]
80!
[

-

o
>
[

uncertainty at
NNLO<NLO<LO

15 —

ratioto LO

15 —

ratio to NLO




U(MR’ HF, as(llR), Ly, LF) =
2
(aséer)) 53 ® filue) ® f;(ur)

More scale terms in NNLO expression

3
+ (%) 5 ® fiur) ® fi(ur)

| s “2600
tIn (%) 2606 ® fiur) ® f;(ur)

NNLOJET Vs=13 TeV anti-k, jets R=0.7 (w =n_=p)

10° [~ B ] +lr (%)3 [_&’(;))@f‘(”““)@ (})J'(’(:)Qbf"(“F))
o — LO —NLO —NNLO : _ &g_)) ® (P.-(:?) ® fk(nF)) ®f,~(up)]
10
é_ +Lg (%)4 (3 Bo ?7,9) +26 &S”) ® fi(ur) ® fi(ur)
g 10° +L§ (%)43%&9 ® fi(ur) ® fi(ur)
2 +L (%)4 (- @ filur) ® (P @ fulue))
10
-03® (P ® filur)) ® f;(ur)
1 - &S-” ® fi(ur) ® (P](,:) ® fk(l—‘F))
n - -0 ® (P,-(,:) ® fk(ﬂF)) ® fj (#F)]
102 |- —
% F I 13 (%L (600 (9 & futur) & (I & i)
%o‘, ; i# +%&S~’) ® filur) ® (P,-(,f) ® Py ® filur,
- | : +560 e (PP ® PP ® fillr)) ® f(n
Q 15 ;— | _é +%ﬂo ?7,(;-)) ® fi(ur) ® (P]-(,(:) ® fk(uF))
g E - +3606 ® (P @ fu(ue)) @ f ()]
¢ - . N - +LpLg (%)4 [— 3B ?73-)) ® filur) ® (P},?) ® fk(#F))

3
2x10®>  3x10° 6x10° 10 p, (GeV) (0) ©) :
—-3B06y; ® (P,-,c ® fk(#F)) ® fj(ﬂF)'



Back to W production to NLO

® |n 4-dimensions, the contribution
of the real diagrams can be
written (ignoring diagrams with
incoming gluons for simplicity)

. i 1 20°
‘M(ud%W+g2~g2CF[g+7+ QAS
t u ut
1+z2°\(-§ -5
2
~ o°C ~+— -2
§ F[(l—z)\t i) ]
+ Where
2
z=—and S+t +u=0"
s

® Note that the real diagrams
c/:\ontai/p collinear singularities,
u->0, t->0, and soft singularities,
z->1

—

and don’ t sweat the details; | just
want you to see in general terms
how a NLO calculation is

carried out



Aside: dimensional regularization

® Suppose we have an integral of the form, typical of the integrals in a NLO
calculation

d*k 1

e e

® \We get infinity if we integrate this in 4 dimensions, so go to 4-2¢
dimensions

d4k 2¢ d4_2£k d 4-2¢ 3-2¢
iy = 0 gy = (0 [ i [k
aQ, , 2 1
J o™ " lany 129
g k7 (W) L a1\ T(er(2-¢)
i o 1209 )

® Using

I'(1+2z)=zl(z);T'(1) = -y, = -0.5772...



Dimensional regularization, continued

® Find

1 1
Sl+—=7, + ln(4n:) + ZInKE\ + 0(¢)

e->0 (4.7r) € \m)

|

+ singular bits, plus finite bits as ¢->0, plus log singularity as m->0

® Define MS scheme: subtract (absorb) 1/¢ pole, yg, and In(4x) bits



O

real ~—

Now do the dimension trick for the real part

® Problem: if | work in 4
dimensions, | get divergences

® Solution: working in 4-2¢
dimensions, to control the
divergences (dimensional
reduction)

2 &
a, . (u
2nCF(Q2) or

® with

£

(%+E—n—)a(l—z)_gpqq(z)_z(l_z)+4(1+Z2)[
e 3 €

2
ln(l—z)] _21+z Inz
-z |, 1-z

/‘ distribution”

—) = lim{log(1 —2) 0(1-z-B) + llogz(ﬁ)é(l -Z- ﬁ)}
+ B'>O 2

1-z

We get 1/¢ terms from individual soft and collinear singularities
We get 1/¢? terms for overlapping IR singularities.



