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Lecture 1: Introduction and Basic Formalism

Exercise 1.1: A B-factory (e. g. KEKB) is designed for asymmetric head-on collisions

between a positron beam of energy 3.5 GeV and an electron beam of energy 8 GeV. Find

the center-of-mass energy for the B-factory. Do you understand why to adopt this design

for the energy and for the asymmetry?

Exercise 1.2: The dominant decay channel of the top quark is t → W+b. The partial

decay width given in terms of the known mass parameters at the leading order is

Γt =
GFm

3
t

8π
√
2
(1− m2

W

m2
t

)2(1 + 2
m2

W

m2
t

).

Assuming this formula gives its total decay width, estimate the top-quark life-time in units

of yocto-second.

If the QCD scale is ΛQCD ≈ 200 MeV, compare the top-quark life-time with the time scale

at which the QCD strong interaction sets in.

Also compare with the b-quark life-time, and try to understand the differences between the

decays of the two quarks.

(Use the PDG review for the parameters needed.)

Exercise 1.3: (challenging problem) In the “Standard Model” of elementary particle

physics, the amplitude for the scattering of the (longitudinally polarized) weak gauge bosons

(the force mediator for the nuclear β decay) W+W+ → W+W+ is calculated at high energies

to be

f(k, θ) =
1

16πk

(

−M2
H

v2

)(

t

t−M2
H

+
u

u−M2
H

)

where k is the W+ momentum in the Center-of-Momentum frame, MH is the mass of the

Higgs boson, and v ≈ 250 GeV is the Higgs vacuum expectation value. The angular-

dependent kinematical variables are

t = −2k2(1− cos θ) and u = −2k2(1 + cos θ).
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Note that the amplitude is give in the “natural units” where c = h̄ = 1, and everything is

expressed in terms of the energy units electron-volts: 1 GeV = 109 eV.

(a). Ignore spins and take the high-energy limit 2k ≫ MH , compute the partial wave

amplitude aℓ. Note that for final state identical particles W+W+, the angular integration

should be 1/2
∫ 1
−1 d cos θ.

(b). Impose the partial wave unitarity condition on aℓ for s-wave, determine the bound on

the mass of the Higgs boson MH (in units of GeV).

(c). If the Higgs boson did not exist in Nature, then the amplitude for the weak gauge boson

scattering for W+W+ → W+W+ would be expressed by taking the limit 2k ≪ MH → ∞.

Using the same procedure above, determine at what energy scale 2k the Standard Model

theory would break down to violate the partial wave unitarity.

(Remark: The “Large Hadron Collider” (LHC) at CERN, Geneva, provides proton-proton

collisions at a c.m. energy of 13,000 GeV, which was designed based on the above physics

argument. Consequently, we have witnessed the historical discovery of the Higgs boson!)

Exercise 1.4: A 125 GeV Higgs boson will have a production cross section of 20 pb at

the LHC. How many events per year do you expect to produce for the Higgs boson with a

designed LHC luminosity 1033/cm2/s? With the expected events, why is the Higgs boson

so difficult to observe?
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Lecture 2: Relativistic Kinematics and Phase Space, Collider Detectors

Exercise 2.1: Show that the phase space element d~p/2p0 is Lorentz invariant.

Exercise 2.2: (challenging problem) A particle of mass M decays to two particles

isotropically in its rest frame. What does the momentum distribution look like in a frame

in which the particle is moving with a speed βz? Compare the result with your expectation

for the shape change for a basket ball.

Exercise 2.3: Consider a 2 → 2 scattering process pa + pb → p1 + p2. Assume that

ma = m1 and mb = m2. Show that

t = −2p2cm(1− cos θ∗a1),

u = −2p2cm(1 + cos θ∗a1) +
(m2

1 −m2
2)

2

s
,

pcm = λ1/2(s,m2
1, m

2
2)/2

√
s is the momentum magnitude in the c.m. frame.

Note: t is negative definite; t → 0 in the collinear limit, that could be singular for massless-

exchange. Comment on the u-channel.

Exercise 2.4: (challenging problem) A particle of mass M decays to three particles

M → abc. Show that the phase space element can be expressed as

dPS3 =
1

27π3
M2dxadxb.

xi =
2Ei

M
, (i = a, b, c,

∑

i

xi = 2).

where the integration limits for ma = mb = mc = 0 are

0 ≤ xa ≤ 1, 1− xa ≤ xb ≤ 1.

Note: For the decay in the M-rest frame, three of the four angular variables can be trivially

integrated out (ignoring the spins of the particles).

Exercise 2.5: For a π0, µ−, or a τ− respectively, calculate its decay length if the particle

has an energy E = 10 GeV.
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Lecture 3: High Energy Colliders

(Lepton Colliders)

Exercise 3.1: For a resonant production e+e− → V ∗ with a mass MV and total width ΓV ,

derive the Breit-Wigner formula (If you find it too challenging for the calculation,

you may skip this part and move on to the next line.)

σ(e+e− → V ∗ → X) =
4π(2j + 1)Γ(V → e+e−)Γ(V → X)

(s−M2
V )

2 + Γ2
VM

2
V

s

M2
V

,

Consider a beam energy spread ∆ in Gaussian distribution

dL

d
√
ŝ
=

1√
2π ∆

exp[
−(

√
ŝ−√

s)2

2∆2
],

obtain the appropriate cross section formulas for (a) ∆ ≪ ΓV (resonance line-shape) and

(b) ∆ ≫ ΓV (narrow-width approximation).

Exercise 3.2: An event was identified to have a µ+ and a µ− along with some missing

energy. What can you say about the kinematics of the system of the missing particles?

Consider for both an e+e− and a hadron collider.

Exercise 3.3 (challenging problem): Derive the Weizsäcker-Williams spectrum for a

photon with an energy xE off an electron with an energy E

Pγ/e(x) ≈
α

2π

1 + (1− x)2

x
ln

E2

m2
e

.

Note that this procedure is the direct analog to deriving the DGLAP q → q′g splitting in

QCD.
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(Hadron Colliders)

Exercise 3.4: For a four-momentum p ≡ pµ = (E, ~p), define

ET =
√

p2T +m2, p2T = p2x + p2y, y =
1

2
ln

E + pz
E − pz

,

then show pµ = (ET cosh y, pT cosφ, pT sin φ, ET sinh y),

and,
d3~p

E
= pTdpTdφ dy = ETdETdφ dy.

Due to the random boost between the Lab-frame (O) and the c.m. frame (O′) for every

event,

y′ =
1

2
ln

E ′ + p′z
E ′ − p′z

=
1

2
ln

(1− βcm)(E + pz)

(1 + βcm)(E − pz)
= y − ycm,

where βcm and ycm are the speed and rapidity of the c.m. frame w.r.t. the lab frame.

In the massless limit, the rapidity y defines the pseudo-rapidity:

y → η =
1

2
ln

1 + cos θ

1− cos θ
= ln cot

θ

2
.

Exercise 3.5: For a two-body massless final state with an invariant mass squared s, show

that

dσ̂

dpT
=

4pT

s
√

1− 4p2T/s

dσ̂

d cos θ∗
.

where pT = p sin θ∗ is the transverse momentum and θ∗ is the polar angle in the c.m. frame.

Comment on the apparent singularity at p2T = s/4.
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Solution and keys to the exercises:

Sol. to Exercise 1.1:

At high energies, the mass of the beam particles e± is totally negligible, which implies

E± = |~p±|. Thus the c.m. energy for a head-on collision is

√
s =

√

(E− + E+)2 − (~p− + ~p+)2 =
√

(E− + E+)2 − (E− − E+)2 =
√

4E−E+ = 10.57 GeV.

This energy value is right on the resonance mass of bb̄ bound state Υ(4S), and the asymmetry

provide the boost factor γ = 11.5/10.57 ≈ 1.09 for the system.

Sol. to Exercise 1.2:

Assuming this formula gives its total decay width (accurate to a QCD-factor of 0.9), the

partial decay width is

Γt =
GFm

3
t

8π
√
2
(1− m2

W

m2
t

)2(1 + 2
m2

W

m2
t

) ≈ 1.76 · 0.792 · 1.42 ≈ 1.6 GeV.

Thus, the life-time is τt = 1/Γt ≈ (6.6/1.6)× 10−25s=0.41 yocto-second!

For the QCD scale ΛQCD ≈ 200 MeV, the time-scale would be 8 times longer comparing

with the top-quark life-time. This implies that top quark will undergo the EW decay into

Wb before forming any color singlet top hadron.

The b-quark life-time is of the order 10−12s, about 10 orders of magnitude longer than

the top decay. This is due to three factors: a much lighter b-mass (mb/mt)
3 ≈ (1/35)3 ≈

2.5 × 10−5; an off-shell W -propagator (2mb/v)
2 ≈ (1/25)2 ≈ 1.6 × 10−3; and the b → c

transition Vcb ≈ 4× 10−3. All of these effects leads to a factor of ∼ 1.6× 10−10.

Sol. to Exercise 1.3: Unitarity bound on Higgs boson mass (see the inserted page.)

Sol. to Exercise 1.4:

(To estimate the event rates and understand the background issue.)

Event rate from the cross section and an integrated luminosity: N = Lσ. For mh = 125

GeV at the 14 TeV LHC, σ(gg → h) ≈ 20 pb. With the anticipated (low) luminosity at

1033/cm2/s ⇒ 10 fb−1/yr, then Nbb̄(h) = 2 · 105/yr, about one SM Higgs boson produced

every two minutes! A lot produced.

The SM h largely decays to bb̄ final state, with about 80% branching fraction, leading to

about 160K bb̄ events/yr. However, the rate for the QCD processes of bb̄ production via gg
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(and to a smaller extent the qq̄) is overwhelming, σ(bb̄) ≈ O(1 µb), even after a selection of

pTb > 30 GeV. This yields that Nbb̄(QCD)= 1010 !

This is why one will have to look for other “cleaner” channels like h → γγ, ZZ∗,WW ∗

and ττ .

Sol. to Exercise 2.1: Lorentz invariant phase space element (see the inserted page.)

Sol. to Exercise 2.2:

(To compare the “Lorentz contraction” for space-like (x) and time-like (p) vectors.)

For a frame O′ moving w.r.t. a rest frame O at a speed βcm, the four-momentum vector

transforms as






E ′

p′z





 =







γ −γ βcm

−γ βcm γ













E

pz







We then obtain their energy/momenum

∆E ′ = γ∆E − γβ∆pz,

∆p′z = −γβ∆E + γ∆pz.

Knowing the inputs, the lengths ∆p′x = ∆p′y = M in both frames, and ∆p′z = E ′ =

M, ∆E ′ = 0, then ∆E = β∆pz, M = ∆p′z = γ(∆pz − β∆E), where β > 0 in this frame

setting. Thus ∆p′z = γ(1− β2)∆pz = ∆pz/γ. Re-written as

∆pz = γ∆p′z = γM,

∆E = βγM.

Opposite to the “space contraction”, the momentum extends to a long (cigar) shape.

What about the shape beyond the z direction? An isotropic distribution in O′ is given

by

p′2x + p′2y + p′2z = E ′2 = M2/4,

which results in

p2x + p2y + γ(p2z − βE) = M2/4.

Substituting E by the equation involving E ′ = M/2, one has

p2T
(M/2)2

+
(pz − βγM/2)2

(γM/2)2
= 1.
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(i). The cigar shape is transparent: tan θ = (pT/pz)|axes = γ−1.

(ii). There exists a dead zone: no events with pz < βγM/2.

Sol. to Exercise 2.3:

In general, for a process a+ b → 1 + 2,

t = (pa − p1)
2 = (pb − p2)

2 = m2
a +m2

1 − 2(EaE1 − pap1 cos θa1),

u = (pa − p2)
2 = (pb − p1)

2 = m2
a +m2

2 − 2(EaE2 − pap2 cos θa2).

In the c.m. frame,

~pa = −~pb, ~p1 = −~p2, p2 =
λ(s,m2

1, m
2
2)

4s
, Ei =

s+m2
i −m2

j

2
√
s

.

With ma = m1, mb = m2, then

t = −2(E1 −m2
1 − p21 cos θa1) = −2p2(1− cos θa1),

u = −2p2(1 + cos θa1) + (m2
1 −m2

2)
2/s.

It is only negative-definite if m1 = m2.

Sol. to Exercise 2.4:

(To derive a very useful three-body phase space formula.)

In general,

dPS3 ≡ 1

(2π)5
δ4 (P − p1 − p2 − p3)

d3~p1
2E1

d3~p2
2E2

d3~p3
2E3

.
=

1

(2π)5
d3~p1
2E1

d3~p2
2E2

δ (E −E1 − E2 −E3)

2E3

.
=

1

(2π)5
|~p1| dE1 dΩ1

2

|~p2| dE2 dΩ2

2

δ (E −E1 − E2 − E3)

2E3

.

For an unpolarized process, the squared matrix element can only be a function of the

invariant products of the momenta pi ·pj . Furthermore, for a decay process in its c.m. frame,

only the energies of final state particles are non-trivial variables. This follows from, in our

process under consideration, that

M2 = (pa + pb + pc)
2,

2pa · pb = M2(1 +
m2

c

M2
− m2

a

M2
− m2

b

M2
− 2Ec

M
).
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Thus the independent angles are trivial, dΩ1 = 4π, dΩ1 = 2πd cos θab, where

|~pc|2 = |~pa|2 + |~pb|2 + 2|~pa||~pb| cos θab, d cos θab =
EcdEc

|~pa||~pb|
.

Thus, we reach

dPS3
.
=

1

25π3
δ (M − Ea − Eb − Ec) dEa dEb dEc,

.
=

1

27π3
M2 dxa dxb, xi =

2Ei

M
, (i = a, b, c,

∑

i

xi = 2).

The kinematical region for xa,b,c can be complicated in a general form of a Dalitz plot.

Let’s consider the simplest case where ma = mb = mc = 0. One of the three massless

particles may have minimum energy of zero, or maximum energy M/2 (in balancing the

other two in parallel). Thus the integration limits for ma = mb = mc = 0 are

0 ≤ xa ≤ 1, 1− xa ≤ xb ≤ 1.

Sol. to Exercise 2.5:

(To learn the “stable/unstable” particles in detectors in terms of their lifetimes.)

Decay length in the lab frame l = (cβ) γ τ0, where β = p/E ≈ 1, γ = E/m.

τ0 cτ0 γ ℓ remarks:

π0 8.4× 10−17 s 25 nm 74 2µm prompt decay

µ± 2.2 × 10−6 s 659 m 95 63 km (quasi) stable

τ± 2.9× 10−13 s 87µm 5.6 nm 500µm prompt decay, secondary vertex

Sol. to Exercise 3.1:

(First derive a common formula for resonant production, and then understand the signal

after convoluting with a realistic beam energy distribution.)

(1). For the process e+e− → V ∗ → X , the transition matrix element may be written as

−iM(e+e− → V ∗ → X) =
Jµ
ee gµν Jν

X

(s−M2
V ) + iΓVMV

=
−ΣαJee · ǫαV JX · ǫα∗V
(s−M2

V ) + iΓVMV

.

Thus, the cross section is

σ(e+e− → V ∗ → X) =
Σspin|ΣαJee · ǫαV JX · ǫα∗V |2

(s−M2
V )

2 + Γ2
VM

2
V

dPSX

2s
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=
ΣspinΣ

α,α′

Jee · ǫαV JX · ǫα∗V J†
ee · ǫα

′∗
V J†

X · ǫα′

V

(s−M2
V )

2 + Γ2
VM

2
V

dPSX

2s

=
ΣspinΣ

α,α′

(Jee · ǫαV J†
ee · ǫα

′∗
V ) (JX · ǫα∗V J†

X · ǫα′

V )

(s−M2
V )

2 + Γ2
VM

2
V

dPSX

2s

Like in the case of top decay, ignore the spin correlation of V ∗,

Σα,α′

(Jee · ǫαV J†
ee · ǫα

′∗
V ) (JX · ǫα∗V J†

X · ǫα′

V ) ≈ Σα(Jee · ǫαV J†
ee · ǫα∗V ) Σ

α′

(JX · ǫα′∗
V J†

X · ǫα′

V )

= (2j + 1)Σ
α
(Jee · ǫαV J†

ee · ǫα∗V ) Σ
α′

(JX · ǫα′∗
V J†

X · ǫα′

V ).

Using 2-body phase space volume dPS2
.
= 1/8π,

Γ(V ∗ → e+e−) =
1

2
√
s
Σ

α
spin|Jee · ǫαV |2 dPS2

⇒ Σ
α
spin|Jee · ǫαV |2 = 16π

√
s Γ(V ∗ → e+e−).

and

Γ(V ∗ → X) =
1

2
√
s
Σ

α′

spin|JX · ǫα′

V |2 dPSX ,

one obtains

σ(e+e− → V ∗ → X) =
1

2s

2j + 1

2λe + 1

16π
√
sΓ(V ∗ → e+e−) 2

√
sΓ(V ∗ → X)

(s−M2
V )

2 + Γ2
VM

2
V

=
4π(2j + 1)Γ(V → e+e−)Γ(V → X)

(s−M2
V )

2 + Γ2
VM

2
V

s

M2
V

,

where the factor s/M2
V is from the V ∗ → V conversion.

(2). In reality, the beam energy always has a spread ∆, approximately in Gaussian distri-

bution around the designed energy
√
s:

dL

d
√
ŝ
=

1√
2π ∆

exp[
−(

√
ŝ−√

s)2

2∆2
].

(a) If ∆ ≪ ΓV ,

dL

d
√
ŝ
≈ δ(

√
ŝ−

√
s),

thus

σ =
∫

σ(ŝ)
dL

d
√
ŝ
d
√
ŝ = σ(s).

10



With such a good resolution, a detailed resonance line-shape mapped out.

(b) ∆ ≫ ΓV , the Breit-Wigner shape dominant and the narrow-width approximation valid:

1

(s−M2
V )

2 + Γ2
VM

2
V

→ π

ΓWMV

δ(s−M2
V ).

Then,

σ =
∫

σ(ŝ)
dL

d
√
ŝ
d
√
ŝ = 2π2(2j + 1) Γ(V → e+e−) BR(V → X)

1

M2
V

dL

d
√
ŝ
|ŝ=M2

V

.

Sol. to Exercise 3.2:

(To learn a missing particle system in a well-constrained e+e− collider and in a less-

constrained hadron collider.)

For a process

e+(p1)e
−(p2) → f+(q1)f

−(q2) + Emiss
T ,

The four-energy momentum conservation reads

p1µ + p2µ = q1µ + q2µ + Emiss
Tµ . (1)

(a). Thus, in e+e− collisions, the our-momentum of the missing particle system is fully

determined. In particular, the system mass is also known as

m2
miss. = (p1 + p2 − q1 + q2)

2 = E2
cm +m2

ff − 2EcmEff . (2)

(b). In hadronic collisions however, the longitudinal components of the initial momenta

p1z, p2z and Ecm are unknown. Thus only the two transverse components are fixed by

measurements:

(p1 + p2)x,y = 0; (q1 + q2)x,y = Emiss
x,y . (3)

Sol. to Exercise 3.3:

(Derive the very useful Weizsäcker-Williams spectrum, and understand the behavior.)

To obtain the photon distribution function in the collinear radiation e−(p) → e−(p′)γ∗(q),

write the full matrix element as

−iM =
ue′(−ieγµ)ue (iAµ)

q2
=

Jµ
e Aµ

q2
=

−∑α Je · ǫα A · ǫα
q2

.
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The full e− a scattering is written as

σ(e−(p)a → e−(p′)X) =
1

2S
Σ|M|2 d~p′

(2π)32E ′
dPSX ≡

∫

dx Pγ/e(x) σ(γa),

where Pγ/e(x) is defined to be the probability distribution of finding a photon with an energy

xE off an electron with an energy E. To find this function, we need to work on the factors

on both sides of the identity.

First, for a polarized on-shell photon, the squared matrix element for the full process

reads

|Mα|2 = e2
|ue′ /ǫ

αue|2 |A · ǫα|2
(q2)2

.

Using the subprocess cross section

σ(γαa) =
1

2xS
|A · ǫα|2 dPSX,

we have

σ(e−a → e−X)α = 4παemx
|ue′ /ǫ

αue|2
(q2)2

d~p′

(2π)32E ′
σ(γαa).

Dynamics:

Σspin|ue′ /ǫ
αue|2 =

1

2
Tr(/p′γµ/pγν) ǫαµǫ

α
ν = 2(2p′ · ǫαp · ǫα − p′ · p ǫα · ǫα). (4)

Kinematics:

p = (E, 0, 0, E), p′ = (E ′, E ′ sin θ, 0, E ′ cos θ), E ′ = (1− x)E,

q = p− p′ = (E − E ′,−E ′ sin θ, 0, E − E ′ cos θ) = (xE,−E(1 − x) sin θ, 0, E(1− (1− x) cos θ)),

q2 = −2p · p′ = −2EE ′(1− cos θ) ≈ −EE ′θ
′2, qT = qx, |~q|2 = E2 + E

′2 − 2EE ′ cos θ.

Physical polarizations for the photon (α = x, y):

ǫx = (|~q|qT )−1 (0, qxqz, qyqz,−q2T ) = |~q|−1 (0, qz, 0,−qx),

ǫy = q−1
T (0,−qy, qx, 0) = (0, 0, 1, 0), ǫα · ǫα′

= −δαα′ .
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Thus the matrix element factor leads to

Σspin|ue′ /ǫ
αue|2 = 4p′ · ǫαp · ǫα − q2δαα′

= 4
E2E

′2 sin2 θ

|~q|2 − q2 (α = x), or − q2 (α = y).

Thus the summed matrix element over α is

Σ
α
spin|ue′ /ǫ

xue|2 = 4EE ′

(

EE ′ sin2 θ

|~q|2 + (1− cos θ)

)

= 4EE ′(1− cos θ)

(

EE ′(1 + cos θ)

E2 + E ′2 − 2EE ′ cos θ
+ 1

)

.

Note this 1 − cos θ factor keeps the collinear divergence logarithmic, which is due to the

vector coupling, not there for a scalar coupling.

Phase space integral:

d~p′

(2π)32E ′
=

|~p′|2d~p′ dΩ′

(2π)32E ′
=

E ′dE ′ d cos θ

2(2π)2
=

EE ′dx d cos θ|1−δ
const.

8π2
.

Under collinear approximation and take the dominant contribution near cos θ = 1 − δ,

expressed with the dimensionless quantity δ ≈ m2
e/E

2, we have

Σ
α
spin|ue′ /ǫ

xue|2
(q2)2

= 4EE ′(1− cos θ)

(

EE ′(1 + cos θ)

E2 + E ′2 − 2EE ′ cos θ
+ 1

)

/4E2E
′2(1− cos θ)2

=

(

EE ′(1 + cos θ)

E2 + E ′2 − 2EE ′ cos θ
+ 1

)

1

EE ′(1− cos θ)

≈
(

2

(E − E ′)2
+

1

EE ′

)

1

(1− cos θ)
.

Putting everything together, the cross section for the full process summing over the trans-

verse photos (α = 1, 2) reads

σ(e−a → e−X) = 4παem

x Σ
α
spin|ue′ /ǫ

αue|2
(q2)2

d~p′

(2π)32E ′
σ(γαa)

=
αem

2π

d cos θ|1−δ
const.

1− cos θ

(

2EE ′

(E − E ′)2
+ 1

)

xdx σ(γαa)

≈ αem

2π
ln

E2

m2
e

(

2(1− x)

x2
+ 1

)

xdx σ(γαa).

The final answer for the photo spectrum as a distribution function is

Pγ/e(x) ≈ α

2π

x2 + 2(1− x)

x
ln

E2

m2
e

=
α

2π

1 + (1− x)2

x
ln

E2

m2
e

.
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Sol. to Exercise 4.1:

(To get familiar with the commonly used kinematical variables at hadron colliders.)

For a four-momentum p ≡ pµ = (E, ~p), define

ET =
√

p2T +m2, p2T = p2x + p2y, y =
1

2
ln

E + pz
E − pz

.

Then

sinh y =
ey − e−y

2
=

1

2

[
√

E + pz
E − pz

−
√

E − pz
E + pz

]

=
pz
ET

, cosh y =
E

ET
,

and we have

pµ = (ET cosh y, pT cosφ, pT sinφ, ET sinh y),

d3~p

E
= pTdpTdφ dy = ETdETdφ dy.

Due to the random boost between the Lab-frame (O) and the c.m. frame (O′) for every

event,

y′ =
1

2
ln

E ′ + p′z
E ′ − p′z

=
1

2
ln

E − βcmpz + pz − βcmE

E − βcmpz − pz + βcmE
=

1

2
ln

(1− βcm)(E + pz)

(1 + βcm)(E − pz)
= y − ycm,

where βcm = Pz/Ecm and ycm are the speed and rapidity of the c.m. frame w.r.t. the lab

frame (see next problem for more).

In the massless limit, the rapidity y defines the pseudo-rapidity:

y → η =
1

2
ln

1 + cos θ

1− cos θ
= ln cot

θ

2
.

Sol. to Exercise 4.2:

(To understand the Jacobian keep in pT distribution.)

Let pT = p sin θ, then dpT = pd cos θ. Or

dpT = p
cos θ

sin θ
d cos θ = p

√

1− p2T/p
2

pT/p
d cos θ.

For a two-body massless final state with an invariant mass squared s, we have s = 4p2. Thus

dpT =
p2
√

1− p2T/p
2

pT
d cos θ.

dσ̂

dpT
=

4pT

s
√

1− 4p2T/s

dσ̂

d cos θ
.

The integrand is singular at pT =
√
s/2, but the integration is finite. Also, the sharp

singularity will be smeared by the finite width of the resonant particle around M2 ≈ s.
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