Electroweak and Higgs physics

Shinya KANEMURA ^{兼村 晋哉} くう 大阪大学

OSAKA UNIVERSITY

Plan of the Lectures

- **1 EW Symmetry Breaking in the Standard Model (SM)**
- **2** Physics of non-Minimal Higgs sectors
- **3** Higgs as a Probe of New Physics

Plan of the Lectures

- **1 EW Symmetry Breaking in the Standard Model (SM)**
- **2** Physics of non-Minimal Higgs sectors
 - **2-1:** Motivation
 - 2-2: Two Higgs doublet models
 - **2-3: Other Models**
 - **2-4: Fingerprinting Higgs models**
 - **2-5: Decoupling/Non-decoupling**
 - **2-6: Radiative Corrections to Higgs couplings**
- **3** Higgs as a Probe of New Physics

2 Physics of non-minimal Higgs Sectors

2-1 Motivation

Extended Higgs Sector

The "SM-like" does not necessarily mean the SM. Every extended Higgs sector can contain the SM-like Higgs boson *h* in its decoupling regime.

General Extended Higgs models

Multiplet Structure

 Φ_{SM} +Singlet, Φ_{SM} +Doublet (2HDM), Φ_{SM} +Triplet, ...

Additional Symmetry

Discrete or Continuous? Exact or Softly broken?

Interaction

Weakly coupled or Strongly Coupled ? Decoupling or Non-decoupling?

Multiplet Structure

If the Higgs sector contains more than one scalar bosons, possibility would be

- SM + extra Singlets (NMSSM, B-L Higgs, 1st OPT, ...)
- SM + extra Doublets (MSSM, CPV, EW Baryogenesis, 1st OPT, Neutrino mass, ...)
- SM + extra Triplets (Type II seesaw, LR models....)

Basic data which strongly constrain the shape of extended Higgs sectors

- Electroweak rho parameter

....

- Flavor Changing Neutral Current (FCNC)

EW rho parameter

$$\rho_{exp} = 1.0004^{+0.0003}_{-0.0004}$$

$$Q = I_3 + Y/2$$

 $\rho \equiv \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = \frac{\sum_i \left[4T_i(T_i + 1) - Y_i^2 \right] \left| v_i \right|^2 C_i}{\sum_i 2Y_i^2 \left| v_i \right|^2} \qquad \begin{array}{c} T_i : \mathrm{SU}(2)_{\mathrm{L}} \text{ isospin} \\ Y_i : \text{hypercharge} \\ v_i : v. e. v. \\ c_i : 1 \text{ for complex representation} \\ 1/2 \text{ for real representation} \end{array}$

N=1 SM Higgs doublet Φ (T=1/2, Y=1) $\rho = 1!$

N=2 What kind of (2 field) extended Higgs sector $\Phi + X(T_X, Y_X)$ can satisfy $\rho = 1$?

EW rho parameter

 $\rho_{exp} = 1.0004^{+0.0003}_{-0.0004}$

Possibility

1. $\rho=1$ at tree SM + doublets (ϕ) (+ singlets(S)), ...

2.
$$\rho \approx 1$$
 at tree SM + Triplets(Δ)
a) $v_{\Delta} \ll v_{\varphi}$
 $\rho_{\text{tree}} = \frac{1 + \frac{2v_{\Delta}^2}{v_{\Phi}^2}}{1 + \frac{4v_{\Delta}^2}{v_{\Phi}^2}} \simeq 1 - \frac{2v_{\Delta}^2}{v_{\Phi}^2}$

b) Combination of several representations [(ex) Georgi-Machasek Model]

 $V_{\Delta} \approx V_{\varphi}$

Multi-doublets (+singlets) seem the most natural choice?

2-2 Two Higgs doublet models

$$\begin{array}{c} \textbf{Simplest extension} \\ \textbf{additional bosons} \\ \textbf{additional bosons} \\ \textbf{build for the vertex} \\ \textbf{c} \\$$

2 Higgs Doublet Model

$$V_{\mathsf{THDM}} = +m_1^2 |\Phi_1|^2 + m_2^2 |\Phi_2|^2 - \frac{m_3^2 \left(\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1\right)}{\left(\Phi_1^{\dagger} \Phi_1\right)^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2} + \lambda_4 \left|\Phi_1^{\dagger} \Phi_2\right|^2 + \frac{\lambda_5}{2} \left[\left(\Phi_1^{\dagger} \Phi_2\right)^2 + (\text{h.c.})\right]$$

$$\Phi_i = \begin{bmatrix} w_i^+ \\ \frac{1}{\sqrt{2}}(h_i + v_i + ia_i) \end{bmatrix} \quad (i = 1, 2)$$

Diagonalization

. . .

 Φ_1 and $\Phi_2 \Rightarrow h$, H, A^0 , $H^\pm \oplus$ Goldstone bosons \uparrow \uparrow \uparrow chargedCPeven CPodd

$$\begin{split} m_h^2 &= v^2 \left(\lambda_1 \cos^4\beta + \lambda_2 \sin^4\beta + \frac{\lambda}{2} \sin^2 2\beta\right) + \mathcal{O}(\frac{v^2}{M_{\text{soft}}^2}), \\ m_H^2 &= M_{\text{soft}}^2 + v^2 \left(\lambda_1 + \lambda_2 - 2\lambda\right) \sin^2\beta \cos^2\beta + \mathcal{O}(\frac{v^2}{M_{\text{soft}}^2}), \end{split}$$

$$egin{aligned} m_{H\pm}^2 &= M_{ ext{soft}}^2 - rac{\lambda_4 + \lambda_5}{2} v^2, \ m_A^2 &= M_{ ext{soft}}^2 - \lambda_5 v^2. \end{aligned}$$

breaking scale

$$\begin{bmatrix} h_1 \\ h_2 \end{bmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} H \\ h \end{bmatrix} \begin{bmatrix} z_1^0 \\ z_2^0 \end{bmatrix} = \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix} \begin{bmatrix} z^0 \\ A^0 \end{bmatrix}$$
$$\begin{bmatrix} w_1^{\pm} \\ w_2^{\pm} \end{bmatrix} = \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix} \begin{bmatrix} w^{\pm} \\ H^{\pm} \end{bmatrix}$$
$$\frac{v_2}{v_1} \equiv \tan \beta$$
$$\frac{v_2}{v_1} = \tan \beta$$

soft-breaking scale of the discrete symm.

Two Possibilities

Non-decoupling effect 14

Gauge Couplings hVV

 $L = g_{hVV} \sin(\beta - \alpha) hVV + g_{HVV} \cos(\beta - \alpha) HVV$

- Changed by mixing with the other scalars
- Sum-rule for a multi-doublet structure $g_{hVV}^2 + g_{HVV}^2 = g_V^2$ SM-like case

 $\sin^2(\beta - \alpha) < 1 \Leftrightarrow \kappa_V^2 = (g_{hVV}/g_{hVV}^{SM})^2 < 1$

• Higgs sector with an exotic representation

 $\kappa_V^2 > 1$ is also possible!

Higgs triplet model Georgi-Machasek model Models with a septet field, ...

sin²(β-α)≈1

 $\frac{g_{hVV}}{q_{NV}^{SM}} = \sin(\beta - \alpha)$

Yukawa Coupling in Extended Higgs Sectors

Multi-Higgs model: FCNC appears via Higgs mediation

2 Higgs doublet models:

to avoid FCNC, give different charges to Φ_1 and Φ_2 Discrete sym. $\Phi_1 \rightarrow + \Phi_{1,} \quad \Phi_2 = -\Phi_2$ Each quark or lepton couples only one Higgs doublet No FCNC at tree level

Type2-2HDM (MSSM) Higgs couplings							
Higgs mixing	VEV's	: $v_1^2 + v_2^2 = v^2 \simeq (246 \text{ GeV})^2$					
$\begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} H \\ h \end{pmatrix}$		$\tan\beta=\frac{v_2}{v_1}$					
SM	2HDM Type2						
Gauge coupling:	hVV	HVV					
$\phi VV (V = Z, W) \Rightarrow $	$\sin(\beta-\alpha)$, $\cos(\beta - \alpha)$					
	$hb\overline{b}$	$Hb\overline{b}$					
Yukawa Coupling: $db\overline{b}$	$\frac{\sin \alpha}{2}$	$\frac{\cos \alpha}{2}$					
$\varphi_{00} \rightarrow$	$\cos\beta$	$\cos\beta$					
$\phi t \overline{t}$	htt	Htt					
′ →	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$,					

SM-like regime

$$\begin{array}{ll} hVV & HVV\\ \sin(\beta - \alpha) & \cos(\beta - \alpha) \end{array}$$

Type-II 2HDM

 $\sin(\beta - \alpha) \simeq 1$

Only the lightest Higgs h couples to weak gauge bosons

h behaves like the SM Higgs

 $\begin{array}{ll} g_{hVV} \rightarrow g_{\phi VV}^{\mathsf{SM}} & g_{HVV} \rightarrow 0 \\ \\ y_{ht\bar{t}} \rightarrow y_{\phi t\bar{t}}^{\mathsf{SM}} & y_{Ht\bar{t}} \rightarrow y_{\phi t\bar{t}}^{\mathsf{SM}} \cot \beta \\ \\ y_{hb\bar{b}} \rightarrow y_{\phi b\bar{b}}^{\mathsf{SM}} & y_{Hb\bar{b}} \rightarrow y_{\phi b\bar{b}}^{\mathsf{SM}} \tan \beta \\ \\ y_{h\tau\tau} \rightarrow y_{\phi\tau\tau}^{\mathsf{SM}} & y_{H\tau\tau} \rightarrow y_{\phi\tau\tau}^{\mathsf{SM}} \tan \beta \end{array} \right]$

Theoretical Constraints on extended Higgs sectors

• Unitarity bound

• Vacuum Stability bound

• Triviality bound

• Wrong vacuum condition (singlet model)

Many λ couplings \rightarrow mass prediction changed

Lightest Higgs mass

$$m_h^2 = \lambda v^2$$

Additional Higgs masses

$$m_{\Phi}^2 \simeq M^2 + \lambda' v^2$$

$$16\pi^2 \mu \frac{d}{d\mu} \lambda = 24\lambda^2 - 6y_t^2 + A(\lambda', \lambda'', ...)$$

phenomena behave like the SM in the low energy.

1999

Higgs singlet extension (HSM)

$$V_0 = -\mu_{\Phi}^2 |\Phi|^2 + \lambda_{\Phi} |\Phi|^4 + \mu_{\Phi S} |\Phi|^2 S + \frac{\lambda_{\Phi S}}{2} |\Phi|^2 S^2 + \mu_S^3 S + \frac{m_S^2}{2} S^2 + \frac{\mu_S'}{3} S^3 + \frac{\lambda_S}{4} S^4$$

$$\Phi = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(v_{\Phi} + \phi_1 + iG^0) \end{pmatrix}, \quad S = v_S + \phi_2$$

Mass eigenstates and mixing angle

$$(\phi_1, \phi_2) \rightarrow (h, H)$$
 with θ

125GeV Higgs boson

Fingerprinting

Direct search and indirect tests

- Direct searches of additional Higgs bosons
 - h(125), H, A, H⁺, H⁺⁺, ...

 Machine for discovery!

 Hadron Collider (LHC)

 Run1
 7-8 TeV
 20fb⁻¹

 Run 2,3
 13-14 TeV
 300fb⁻¹

 HL-LHC
 13-14 TeV
 3000fb⁻¹

Indirect test by finding deviations from SM

EW parameters m_w , S, T, U, Zff, Wff', WWV, ...Couplings of h(125)hWW, hZZ, $h\gamma\gamma$, hff, hhh, ...

Precision measurements!

Advantage for lepton colliders Future International Collider (ILC), CEPC, FCCee, *E* = 240-250 GeV, (500GeV, 1 TeV, ...)

Coupling Measurements

Higgs Precision at HL-LHC, ILC250, ...

[K. Fujii, et al., arXiv:1710.07621]

Future lepton colliders ILC, CEPC, FCCee, CLIC, ... 27

Deviation = New Physics scale

Scaling factor κ_i : factor of deviation from the SM value

m_H(GeV)

Precision test has the similar power to the direct search

Cooling footors		Mixing factor				
JCal	ing racions		ξ_u	ξ_d	ξ_e	
$\kappa_{x} = \frac{g_{hxx}^{EX}}{g_{hxx}^{SM}}$		Type-I	$\cot eta$	\coteta	$\cot eta$	
	<u>AA' OILAA</u>	Type-II	\coteta	$-\tan\beta$	$-\tan\beta$	
ZHDIVI :		Type-X	$\cot eta$	\coteta	$-\tan\beta$	
$\kappa = \sin(\beta - \alpha)$		Type-Y	$\cot eta$	$-\tan\beta$	$\cot eta$	
$\kappa_V - 1$	$\sin(p - u)$					
$\kappa_f = \sin(\beta - \alpha) + \xi_f \cos(\beta - \alpha)$						
HSM :		$\Gamma(h$	$\rightarrow V$	$(V^*)_{EX.}$	2	
	$\kappa_V = \cos \alpha$	$\overline{\Gamma(h)}$	$\rightarrow V$	$V^*)_{SM}$	$\sim \kappa_V$	
	$\kappa_f = \cos \alpha$	$\frac{\Gamma(h)}{\Gamma(h)}$	$\frac{n \to f}{h \to f}$	$(f)_{EX.}$ $(f)_{SM}$	$\sim \kappa_f^2$	

Pattern of deviations

We can fingerprint extended Higgs models from the pattern of deviation in Higgs couplings

SK, K. Tsumura, K. Yagyu, H. Yokoya, 2014

Fingerprinting the 2HDM

$$\begin{bmatrix} \kappa_V \equiv \frac{g_{hVV(2HDM)}}{g_{hVV(SM)}} = \sin(\beta - \alpha) \\ x = \cos(\beta - \alpha) & \text{SM-like: } |x| <<1 \\ \kappa_V = 1 - (1/2) x^2 + \dots \end{bmatrix}$$

When a Fermion couples to ϕ_1 $\kappa_f = 1 + \cot\beta \times + \cdots$ and if it couples to ϕ_2

 $\kappa_f = 1 - \tan\beta x + \cdots$

If deviation in κ^2_{V} can be large enough to be detected at future collider

4-models can be separated by looking at deviations in Yukawa couplings K_{τ} , K_b , $K_{c,}$ SK, K. Tsumura, K. Yagyu, H. Yokoya, 2014

Radiative Correction Decoupling/Non-decoupling

Higgs discovery in 2012

The mass is 125 GeV

Spin/Parity O⁺

It couples to γγ, ZZ, WW, bb, ττ, ...

This is really a Higgs!

Measured couplings look consistent with the SM Higgs within the current errors

Radiative Corrections

Rho parameter (unity in the SM)

$$\rho_{exp} = 1.0008 + 0.0017 - 0.0007$$

$$\rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} \left(=1\right)$$

Loop corrections

$$\Delta \rho = 4\sqrt{2}G_F \left[\Pi_T^{33}(p^2 = 0) - \Pi_T^{11}(p^2 = 0)\right]$$

Loop effect of m_t and m_H

$$\Delta \rho \simeq \frac{3G_F}{8\sqrt{2}\pi^2} \left(m_t^2 - M_Z^2 \sin^2 \theta_W \ln \frac{m_H^2}{m_W^2} \right)$$

Quadratic

Logarithmic

We knew the mass before discovery!

Case of the top quark

- Quadratic mass dep. in p parameter (T parameter)
- Forget about *m_H* because it is only logarismic
- LEP1 says m_t=150-200GeV
- Discovery at Tevatron (about 175GeV)

Hagiwara, et al

$$\Delta \rho \simeq \frac{3G_F}{8\sqrt{2}\pi^2} \left(m_t^2 - M_Z^2 \sin^2 \theta_W \ln \frac{m_H^2}{m_W^2} \right)$$

Decoupling Theorem and its breaking

Ex) GUT scale (10¹⁶ GeV) physics does not affect TeV scale physics

Ex) Seesaw Mechanism (Dim 5) at the tree-level

$$\mathcal{L} = \frac{c}{\Lambda} (\Phi^T \overline{\nu_L^c}) (\nu_L \Phi) \qquad \underbrace{*}_{\nu_L \dots \nu_R} * \qquad m_\nu \sim \frac{v^2}{M_{N_R}}$$

QED Example of decoupling theorem

One-loop contributions to the two point functions

$$\mathcal{M}_{tree} \sim Qe \frac{1}{k^2} eQ' = \frac{QQ'}{\frac{1}{e^2}k^2}$$
$$\mathcal{M} \sim \frac{QQ'}{\frac{1}{e^2}k^2 - \Pi_{\text{new}}(k^2)}$$

Self-Energy $\Pi_{new}(k^2)$ has dim. 2, so that it can have M^2 or $\ln M$ dependence from power counting (non-decoupling effects)

$$\Pi_{\text{new}}(k^2) = \Pi_{\text{new}}(0) + k^2 \Pi'_{\text{new}}(0) + \cdots$$

However from U(1) gauge symmetry $\Pi_{new}(0)=0$, and $\Pi'_{new}(0)$ is absorbed by renormalization

$$\mathcal{M} \sim \frac{QQ'}{\left(\frac{1}{e^2} - \Pi'(0)_{\text{New}}\right)k^2 - \frac{(k^2)^2}{2}\Pi''_{\text{new}}(k^2)} = \frac{QQ'}{\frac{1}{e_R^2}k^2 - \frac{(k^2)^2}{2}\Pi''_{\text{new}}(0) + \cdots}$$

Remaining $\Pi''_{new}(0)$ is dim. -2, so that at most $1/M^2$ (Decouple!)

QED with spontaneously broken U(1)

$$\mathcal{M}_{tree} \sim Qe \frac{1}{k^2 - m_A^2} eQ' = \frac{QQ'}{\frac{1}{e^2}k^2 - v^2}$$
$$\frac{QQ'}{\frac{1}{e^2}k^2 - v^2 - \Pi_{\text{new}}(k^2)}$$

Self-Energy $\Pi_{new}(k^2)$ has dim. 2, so that it can have M^2 or $\ln M$ dependence from power counting (non-decoupling effects)

$$\Pi_{\text{new}}(k^2) = \Pi_{\text{new}}(0) + k^2 \Pi'_{\text{new}}(0) + \cdots$$

This time, U(1) is spontaneously broken, so that $\Pi_{\text{new}}(0)$ is non-zero. But this time, $\Pi_{\text{new}}(0)$ and $\Pi'_{\text{new}}(0)$ are absorbed by v (or m_A) and e

$$\mathcal{M} \sim \frac{QQ'}{\left(\frac{1}{e^2} - \Pi'_{\text{new}}(0)\right)k^2 - \left(v^2 + \Pi_{\text{new}}(0)\right) - \frac{(k^2)^2}{2}\Pi''_{\text{new}}(0) + \cdots} = \frac{QQ'}{\frac{1}{e_R^2}k^2 - v_R^2 - \frac{(k^2)^2}{2}\Pi''_{\text{new}}(0) + \cdots}$$

Remaining $\Pi''_{new}(0)$ is dim(-2), so that at most $1/M^2$

(Decouple!)

SM: Electroweak Theory with SSB

Two point functions 6 nondec. d.o.f.

$$\underset{\sim}{}^{W} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{Z} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{Z} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}} + \cdots$$

$$\underset{\sim}{}^{V} = M_{New}^{2} + p^{2} \ln \frac{M_{New}^{2}}{p^{2}$$

3 of 6 non-decoupling effects. Still, there remain 3 non-vanishing

non-decoupling effects

S, T, U (Peskin-Takeuchi)

$$\begin{split} S &= 16\pi \left[\overline{\Pi}_T^{3Q'}(p^2 = 0) - \overline{\Pi}_T^{33'}(p^2 = 0) \right], \\ T &= \frac{4\sqrt{2}G_F}{\alpha_{\rm EM}} \left[\overline{\Pi}_T^{33}(p^2 = 0) - \overline{\Pi}_T^{11}(p^2 = 0) \right], \\ U &= 16\pi \left[\overline{\Pi}_T^{33'}(p^2 = 0) - \overline{\Pi}_T^{11'}(p^2 = 0) \right], \end{split}$$

Non-decoupling effects

Non-decoupling effects on electroweak parameters Γ_Z , $\sin\theta_w$, m_W , ρ , ... are all described by *S*, *T*, *U* (at the leading level)

$$\begin{split} S &= 16\pi \big[\overline{\Pi}_T^{3Q'}(p^2 = 0) - \overline{\Pi}_T^{33'}(p^2 = 0) \big], \\ T &= \frac{4\sqrt{2}G_F}{\alpha_{\rm EM}} \big[\overline{\Pi}_T^{33}(p^2 = 0) - \overline{\Pi}_T^{11}(p^2 = 0) \big], \\ U &= 16\pi \big[\overline{\Pi}_T^{33'}(p^2 = 0) - \overline{\Pi}_T^{11'}(p^2 = 0) \big], \end{split}$$

Ex)

$$\Delta \rho \equiv \rho - 1 = \alpha T$$

$$m_W^2 = m_W^2 (\text{ref}) + \frac{\alpha c^2}{c^2 - s^2} \left(-\frac{1}{2}S + c^2 T + \frac{c^2 - s^2}{4s^2} U \right)$$

40

Non-decoupling effects

What kind of new physics can produce large non-decoupling effects?

Chiral Fermion Loop

 $m_f = 0 \rightarrow m_f = y_f v$

Higgs Loop

 $m_h^2 = 2 \lambda v^2$

• Scalar Loop

 $m_S^2 = \lambda v^2 + M_{inv}^2$

SU(2) doublet (N,E), hypercharge Y, masses m_N , m_E

$$S = \frac{1}{6\pi} \left[1 - Y \ln \frac{m_N^2}{m_E^2} \right]$$

$$T = \frac{1}{16\pi s^2 c^2 m_Z^2} \left[m_N^2 + m_E^2 - \frac{2m_N^2 m_E^2}{m_N^2 - m_E^2} \ln \frac{m_N^2}{m_E^2} \right]$$

$$U = \frac{1}{6\pi} \left[-\frac{5m_N^4 - 22m_N^2 m_E^2 + 5m_E^4}{3(m_N^2 - m_E^2)^2} + \frac{m_N^6 - 3m_N^4 m_E^2 - 3m_N^2 m_E^4 + m_E^6}{(m_N^2 - m_E^2)^3} \ln \frac{m_N^2}{m_E^2} \right]$$

$$\Delta m = |m_N - m_E| \ll m_N, m_E \qquad S = \frac{1}{6\pi}$$
$$T = \frac{1}{12\pi s^2 c^2} \frac{(\Delta m)^2}{m_Z^2}$$
$$U = \frac{2}{15\pi} \frac{(\Delta m)^2}{m_N^2}$$

 $m_N = m_E \rightarrow T = U = 0$ Custodial Symmetric O(4) = SU(2)_L × SU(2)_R

Effect of additional scalars in 2HDM

Radiative corrections to the Higgs boson couplings

All SM parameters are found

Next target is new physics!

- Importance of Radiative Correction calculation
- Future precision measurements
 - *S*, *T*, *U* (Giga Z, Mega W)
 - Top (e.g. ttZ) couplings
 - Couplings of the discovered Higgs

hgg, hγγ, hWW, hZZ, htt, hbb, hττ, hμμ, hcc, ..., hhh

At ILC, we may be able to distinguish models by detecting a pattern of deviations in the *h(125)* couplings from the SM values!

Fingerprinting new physics models

Higgs Precision at HL-LHC, ILC250, ...

[K. Fujii, et al., arXiv:1710.07621]

Future lepton colliders ILC, CEPC, FCCee, CLIC, ...

46

Radiative Corrections

Higgs couplings hγγ, hgg, hWW, hZZ, hττ, hbb, htt, ...

will be measured thoroughly in the future

Analyses with radiative corrections are

necessary

H-COUP Project SK, Kikuchi, Sakurai, Yagyu (2017)

Full set of Fortran codes to systematically calculate quantum corrections to Higgs couplings in various extended Higgs models Program H-COUP ver. 1 completed and released [Manual arXiv: 1710.04603] Additional Singlet
2HDM (I)
2HDM (II)
2HDM (X)
2HDM (Y)
Inert doublet/singlet
Triplet model,
GM model

Models

Non-decoupling effect on the Higgs couplings

Top-loop contribution in the SM

How about the new physics loop contributions?

For example: renormailzed htt coupling

Scale Factors (1-loop level) in 2HDM

Mixing parameter $\mathbf{x} = \cos(\beta - \alpha) \left[\sin(\beta - \alpha) = 1 - \frac{x^2}{2} \right]$ **SM-like**

Scale Factor of the *hVV* Couplings

$$\begin{split} \Delta \kappa_{X} &= \kappa_{X} - 1 \\ \Delta \hat{\kappa}_{V} \simeq -\frac{1}{2}x^{2} - \frac{A(m_{\Phi}^{2}, M^{2})}{\log} \\ & \text{mixing} \quad \text{loop} \end{split}$$

Loop Effect

$$A(m_{\Phi}, M) = \frac{1}{16\pi^{2}} \frac{1}{6} \sum_{\Phi} c_{\Phi} \frac{m_{\Phi}^{2}}{v^{2}} \left(1 - \frac{M^{2}}{m_{\Phi}^{2}} \right)^{2} \qquad \begin{array}{c} m_{\Phi}^{2} = M^{2} + \lambda_{i} v^{2} \\ \left(\Phi = H^{2} + \lambda_{i} H \right) \end{array}$$
where
$$m_{\Phi}^{2} \left(1 - \frac{M^{2}}{m_{\Phi}^{2}} \right)^{2} \left\{ \begin{array}{c} \propto & \frac{1}{m_{\Phi}^{2}} \\ \propto & m_{\Phi}^{2} \end{array} \right. (M \gg v) \qquad \begin{array}{c} \text{Decoupling} \\ \text{Comparison} \end{array}$$

- -> C 🛈 www-het.phys.sci.osaka-u.ac.jp/~kanemu/HCOUP_HP1013/HCOUP_HP.html

х

Website of H-COUP

You can download the program and the manual

H-COUP is a calculation tool composed of a set of Fortran codes to compute the renormalized Higgs boson couplings with radiative corrections in various non-minimal Higgs models, such as the Higgs singlet model, four types of two Higgs doublet models and the inert doublet model. The impolved on-shell renormalization scheme is adopted, where the gauge dependence is eliminated.

Authors: Shinya Kanemura, Mariko Kikuchi, Kodai Sakurai and Kei Yagyu

The manual for H-COUP version 1.0 can be taken on arXiv:1710.04603 [hep-ph].

Downloads

素 H-COUP

H-COUP version 1.0 : [HCOUP-1.0.zip] [The manual is here]

In order to run H-COUP version 1.0, you need to install LoopTools (www.feynarts.de/looptools/).

History

A

Q ☆ :

8/13

Example for the application of H-COUP

H-COUP:

provides the EW (and Higgs) one-loop correction to the Higgs vertex functions in various extended Higgs sectors

Using H-COUP,

the decay rates of the SM-like Higgs boson with EW (Higgs) and QCD corrections are Calculated in the HSM and 2HDM (type I, II, X, Y)

 $\Gamma(h \to f\overline{f}), \ \Gamma(h \to ZZ^* \to Zf\overline{f}), \ \Gamma(h \to \gamma\gamma), \ \Gamma(h \to Z\gamma), \ \Gamma(h \to gg)$

Full set of 1-loop corrections (EW + QCD + Higgs) to the decay rates in various Higgs sectors and future precision measurements at ILC250 make us possible to fingerprint models and also to get information of inner parameters such as mass of the second Higgs boson

By Production and Decay

- Several possible choices for model parameters allowed to account for SM deviations in combinations
- Ratios of cross sections and branching ratios cancel out some uncertainties

Another example of nondecoupling effects Higgs potential

Self-Coupling Constant

It is very important to know *hhh* coupling to reconstruct the Higgs potential

v

$$\begin{split} \overline{V_{\text{Higgs}}} &= \frac{1}{2} \underline{m_h^2} h^2 + \frac{1}{3!} \underline{\lambda_{hhh}} h^3 + \frac{1}{4!} \lambda_{hhhh} h^4 + \cdots \end{split}$$
Effective Potential
$$V_{\text{eff}}(\varphi) &= -\frac{\mu_0^2}{2} \varphi^2 + \frac{\lambda_0}{4} \varphi^4 + \sum_f \frac{(-1)^{2s_f} N_{C_f} N_{S_f}}{64\pi^2} m_f(\varphi)^4 \left[\ln \frac{m_f(\varphi)^2}{Q^2} - \frac{3}{2} \right]$$
Renoramalization
$$\frac{\partial V_{\text{eff}}}{\partial \varphi} \Big|_{\varphi=v} = 0, \quad \frac{\partial^2 V_{\text{eff}}}{\partial \varphi^2} \Big|_{\varphi=v} = m_h^2, \quad \frac{\partial^3 V_{\text{eff}}}{\partial \varphi^3} \Big|_{\varphi=v} = \lambda_{hhh}$$

$$\int_{hhh}}^{h_h} \varphi = \int_{\varphi=v}^{h_h} \frac{\partial^2 V_{\text{eff}}}{\partial \varphi^2} \Big|_{\varphi=v} + \frac{\partial^2 V_{\text{eff}}}{\partial \varphi^3} \Big|_{\varphi=v} = \lambda_{hhh}$$
Top loop Effect
$$\lambda_{hhh}^{\text{SMloop}} \sim \frac{3m_h^2}{v} \left(1 - \frac{N_c m_t^4}{3\pi^2 v^2 m_h^2} + \cdots \right)$$

Non-decoupling effect

Tree level coupling

$$\lambda_{hhh} = \frac{3m_h^2}{v_0}$$

Effective Potential

$$V_{\rm eff}(\varphi) = V_{\rm tree}(\varphi) + \frac{1}{64\pi^2} N_{c_i} N_{s_i} (-1)^{2s_i} (M_i(\varphi))^4 \left[\ln\left(\frac{(M_i(\varphi))^2}{Q^2} - \frac{3}{2}\right) \right]$$

12 10 Top quark effect M_q

$$\varphi = \frac{y_t \varphi}{\sqrt{2}}$$

Expand the V_{eff} by $h \qquad \varphi = v_0 + h$

$$V_{\text{eff}} = -\frac{\mu^2}{2}(v_0 + h) + \frac{1}{4}\tilde{\lambda}(v_0 + h)^4 - \frac{N_c}{16\pi^2}\frac{y_t^4}{2}v_0^4\left(\frac{h}{v_0} + \frac{7}{2}\frac{h^2}{v_0^2} + \frac{13}{3}\frac{h^3}{v_0^3} + \cdots\right)$$
$$\tilde{\lambda} = \lambda - \frac{N_c}{16\pi^2}y_t^4\left(\ln\frac{y_t^2v_0^2}{2Q^2} - \frac{3}{2}\right)$$

Renormalization
$$\frac{\partial V}{\partial \varphi}\Big|_{\varphi=v} = 0, \qquad \frac{\partial^2 V}{\partial h^2}\Big|_{\varphi=v} = m_h^2, \qquad \frac{\partial^3 V}{\partial h^3}\Big|_{\varphi=v} = \lambda_{hhh}^R$$

$$\begin{aligned} \frac{\partial V_{\text{eff}}}{\partial h} &= -\mu^2 v_0 + \tilde{\lambda} v_0^3 - \frac{1}{2} A v_0^3 = 0, \\ \frac{\partial^2 V_{\text{eff}}}{\partial^2 h} &= -\mu^2 + 3 \tilde{\lambda} v_0^2 - \frac{7}{2} A v_0^2 = m_h^2, \qquad A = \frac{N_c y_t^4}{16\pi^2} \\ \frac{\partial^3 V_{\text{eff}}}{\partial^3 h} &= 6 \tilde{\lambda} v_0 - 13 A v_0 = \lambda_{hhh}^R, \end{aligned}$$

Eliminating
$$\mu^2$$
 and $\tilde{\lambda}$, and using $y_t = rac{\sqrt{2}m_t}{v_0}$

$$\lambda_{hhh}^{R} = \frac{3m_{h}^{2}}{v_{0}} \left(1 - \frac{N_{c}}{3\pi^{2}} \frac{m_{t}^{4}}{v_{0}^{2}m_{h}^{2}} \right)$$

Case of Non-SUSY 2HDM

- Consider when the lightest *h* is SM-like
 [sin(β-α)=1]
- At tree, the *hhh* coupling takes the same form as in the SM
- At 1-loop, non-decoupling effect m⁴ (If M < v)
 K, Kiyoura, Okada, Senaha, Yuan, PLB558 (2003)

 $\Phi = H, A, H^{\pm}$

Part II Summary

- A Higgs boson was found, but the Higgs sector remains unknown
- Possibility of Extended Higgs sectors
- Direct Searches at LHC
- Indirect test of the Higgs sector via precision measurements for couplings of h(125) at future lepton colliders (ILC, CEPC, FCCee, CLIC, ...)
- Study with radiative corrections is important

Numerical calculations

We discuss a possibility of discrimination among various extended Higgs models with the deviations from the SM in the decay width.

Model

HSM, THDM Type-I, THDM Type-II, THDM Type-X, THDM Type-Y

Scan region of input parameter in the THDMs

Constraint

Pertabative unitarity, Vacuum stability,

Wrong vacuum condition (for HSM),

S, T parameters

Unitarity in Non-SUSY 2HDM

In Higgs Singlet model (Φ+S)

Comparison of 1. 2HDM-I 2. Doublet-Singlet Model (HSM) 3. Inert Doublet Model (IDM)

Scan of inner parameters (mass, mixing angles) under the theoretical conditions of Perturbative unitarity Vacuum stability Condition for avoiding wrong vacuum (HSM)

These models may be distinguished, as long as a deviation in κ_z is detected

Ellipse, $\pm 1\sigma$ at LHC3000 and ILC500

Fingerprinting SUSY model and Composite Higgs models

Fingerprinting models by precision study at ILC

Complementarity

SK, Tsumura, Yagyu, Yokoya, 2014

Complementarity

SK, Tsumura, Yagyu, Yokoya, 2014

Fingerptinting the model (Exotics)

SK, K. Tsumura, K. Yagyu, H. Yokoya 2014

Universal Fermion Coupling (κ_F) VS hVV coupling (κ_V)

Exotic models predict $\kappa_V > 1$

We can discriminate Exotic models

Ellipse = 68.27% CL

It was repeated for Higgs at LEP2

Case of Higgs boson

- Now we know top mass
- Rho is a funcution of only m_H
- Precision measurement at LEP2
- 114GeV< mH <150 GeV!
- LHC found new boson at 126GeV (Higgs boson!)

Victory of precision measurements and theory calculations (VIVA! SM)

Deviation in *hff*

MCHM5

 $\Delta \kappa_{\rm u} = -(3/2) \, {\rm x}^2, \quad \Delta \kappa_{\rm d} = -(3/2) \, {\rm x}^2, \quad \Delta \kappa_{\rm \tau} = -(3/2) \, {\rm x}^2 \qquad {\rm O}(1) \, \%$