

Institute of Physics & Technology Mongolian Academy of Sciences

Higgs Pair Production

First International HEP School & Conference in Western China 2018,Lanzhou, PRC Enkhbat Tsedenbaljir Nuclear Research Center, NUM & Institute of Physics & Technology, MAS

Overview

- Introduction :
 - Experimental results
- Higgs pair production in SM & beyond
- Single & Pair Higgs productions at the LHC
 - General Potential
 - Scalar and Vector Octets
- Conclusions

2012 discovery of a Higgs particle

G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716 (2012) 1 S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716 (2012) 30

Parameter value

Parameter value

2012 discovery of a Higgs particle

G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716 (2012) 1

- 1. Scalar particle **h** for
 - 1. EW symmetry breaking(?)
- 2. Substantially couples to top quark
 - Yukawa New, 5th force of nature (gg->h, h->ZZ* h->ττ)
 - 2. Particle mass generation
- 3. Is it a probe to new physics at TeV scale
 - 1. via portal interactions?
 - 2. via scalar potential?

2012 discovery of a Higgs particle

G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716 (2012) 1

2012 discovery of a Higgs particle

G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716 (2012) 1

2012 discovery of a Higgs particle

G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716 (2012) 1

Models with modified Higgs interactions

Modified Higgs Potential

- Extension of the Higgs potential
- Extra Higgses
- Higher-Dim. terms in the Potential
- General potential beyond renormalizibility

F. Boudjeama & E. Chopin Z. Phys. 73 (1996) R. S. Chivukulla & V. Koulovasilopoulos PLB 309 (1993), PRD 50 (1994) H.-J. He et al, PLB 554 (2003), PRD 67 (2003)

N. Haba e tal, PRD 89 (2014)

Recent works on Higgs pair

M. Carena PRD 97 (2018) C.-W. Chiang etal, PRD 97 (2018) Z. Kang, PLB 89 (2017) G. Buchalla et al,arXiv:1806.05162....

Higgs coupling to new particles

- Extra Higgses (doubly charged), singlets, dilaton, GUT remnants, colored particles: SUSY, LQs, Extra family, composite particles
 - A.V. Manohar, M.B. Wise PLB 786 (2006)
 - M. I. Gresham & M. B. Wise PRD 76 (2007)
 - D. Lopez-Val, J. Sola PRD 81 (2010)
 - R. Boughezal,
 - E.Asakawa etal, PRD 82 (2010)
 - B. A. Dobrescu etal, PLB 670 (2008)
 - G. Kribbs, A. Martin
 - J. Alwall etal PRD 86 (2012)

Higgs pair production via gluon fusion at LHC

- Distractive interference which makes the rate very small
 ~30-40fb at 14 TeV
- ♦ Very high luminosity required
- > Sensitive to new physics

Higgs pair production in the SM

O. J. P. Eboli et al, Phys. Lett. B 197, 269 (1987).

E. W. N. Glover and J. J. van der Bij, Nucl. Phys. B 309, 282 (1988)

D. A. Dicus, C. Kao and S. S. D. Willenbrock, Phys. Lett. B 203, 457 (1988)

G.V. Jikia Nucl. Phys. B 412 (1994)

A. Djouadi, W. Kilian, P.M. Zerwas, EPJ C10 (1999) 45-49

QCD corrections

S. Dawson, S. Dittmaier, M. Spira, Phys.Rev. D58 (1998) 115012

T. Plehn, M. Spira, P.M. Zerwas, Nucl. Phys. B479 (1996) 46-64

Many recent works on NLO & NNLO...

D. de Florian et al, JHEP 1609 (2016), 1710 (2018) M.Grazzini, JHEP 1805 (2018).....

Higgs pair production via gluon fusion at LHC

- Distractive interference which makes the rate very small
 ~30-40fb at 14 TeV
- \diamond Very high luminosity required
- ♦ Sensitive to new physics

Higgs pair production in the SM

K. Hagiwara and H. Murayama, PRD 41 (1990)

$$\mathcal{L}_{eff} = \frac{\alpha_s}{12\pi} \log(h/v) G^{\mu\nu} G_{\mu\nu} \simeq \frac{\alpha_s}{12\pi} \left(\frac{h}{v} - \frac{h^2}{2v^2} + \dots \right)$$
$$\mathcal{M}_{gg \to hh} = \frac{\alpha_s}{3\pi v^2} \left(1 - \frac{3m_h^2}{s - m_h^2} \right)$$

processes in this subsection restricting ourselves to the case of the

ICHEP July 2018 : CMS on Higgs pair production

General Potential for Higgs

Higgs potential as a general function of |H|^2=x

$$V = V(|H|^2) \qquad \qquad |H|^2 = \frac{v^2}{2} + vh + \frac{h^2}{2}$$

Expansion around minimum

$$V = V\left(\frac{v^2}{2}\right) + V'\left(\frac{v^2}{2}\right)\left(vh + \frac{h^2}{2}\right) + \frac{1}{2}V''\left(\frac{v^2}{2}\right)\left(vh + \frac{h^2}{2}\right)^2 + \frac{1}{6}V'''\left(\frac{v^2}{2}\right)\left(vh + \frac{h^2}{2}\right)^3 + \cdots$$

The Minimum and the Higgs mass

$$V'(v^2/2) = 0$$
$$m_h^2 = v^2 V''\left(\frac{v^2}{2}\right)$$

Trilinear and Quartic interactions $V''(v^2/2)$ -tree level $V'''(v^2/2)$ -quantum correction

 $C_h < 0$

Example: Non-perturbative potential

N. Haba e tal, PRD 89 (2014) 015018

Non-canonic kinetic term

Non canonical kinetic terms appear in several models with strong dynamics:

$$\mathcal{L}_{\text{kkin}} = F\left(\left(\frac{|\mathcal{H}|^2}{v^2 \sqrt{2}}\right) \mathcal{D}_{\mu} \mathcal{H}^{\dagger} \mathcal{D}^{\mu} \mathcal{H} \right) \qquad F(x) = 1 \quad \text{for the SM.}$$

R. S. Chivukula and V. Koulovassilopoulos, Phys. Lett. B 309, 371 (1993); Phys. Rev. D 50, 3218 (1994).

Example: Non-perturbative potential

I. Aflleck, M. Dine & N. Seiberg , PRL 51 (1983) 1026, NP B 241 (1984) 493

SUSY QCD:
$$SU(N) \times SU(N_f)_L \times SU(N_f)_R \times U(1)_B$$
 $Q: (N, N_f, 1), \quad \bar{Q}: (\bar{N}, 1, N_f)$ Instanton induced Superpotential $W_{np} = \frac{\Lambda_0^{3+\frac{2N_f}{N-N_f}}}{(\det \bar{Q}Q)^{\frac{1}{N-N_f}}}$ N. Haba e tal, PRD 89 (2014) 015018 $N_f=2$ $C_h = -\frac{5}{3} - \frac{4}{3}\kappa$. where $\kappa = 1/(N-2)$. $C_2^Z = 2$ $C_2^W = 8/9$ 2 Higgs case

$pp \to hhX$

Higgs pair production @LHC

 $-i6\left[\frac{1}{2}vV'' + \frac{1}{6}v^3V''\right]$

0

 C_h

Δ

4

19

processes in this subsection restricting ourselves to the case of the

Higgs pair via VB fusion pp->hhjj @LHC

23

Higgs pair via VB fusion ee->hhvv @ILC

Figure 4: The contour plots of the ratio of the cross section, $\sigma(C_h, C_2)/\sigma(C_h = C_2 = 0)$ of $e^+e^- \rightarrow hh\nu\bar{\nu}$. Left ($\sqrt{s} = 500 \text{ GeV}$), and right ($\sqrt{s} = 1 \text{ TeV}$).

Higgs pair via Higgsstrahlung ee->Zhh @ILC

Figure 5: The count our plots of the ratio of the cross section, $\sigma(C_h, C_2)/\sigma(C_h = C_2 = 0)$ of $e^+e^- \rightarrow Zhh$. Left ($\sqrt{s} = 500 \text{ GeV}$), and right ($\sqrt{s} = 1 \text{ TeV}$).

Figure 6: The differential cross section (in fb) of $e^+e^- \to Zhh$. Left ($\sqrt{s} = 500$ GeV), and right ($\sqrt{s} = 1$ TeV). x_Z is a scaled energy of Z boson in the final state : $x_Z = 2E_Z/\sqrt{s}$. (C_h, C_2) = (0,0), (-2,2), (0,2) from below to top in each graph.

$$-\mathcal{L} \supset \frac{m_h^2}{2v} (1+C_h)h^3 + \left(M_W^2 W^+ W^- + \frac{M_Z^2}{2} ZZ\right) \left((1+C_1)\frac{2h}{v} + (1+C_2)\frac{h^2}{v^2}\right)$$

Color-octet vector & scalar particles

Lagrangian $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}(S, V)_{kin} + \mathcal{L}(S, V)_{int} - \lambda_S |S|^2 |H|^2 + \lambda_V V_\mu V^{\mu*} |H|^2$ Complex $-\frac{\lambda_S}{2}S^2|H|^2 + \frac{\lambda_V}{2}V_{\mu}V^{\mu}|H|^2$ Real $\sum_{k=1}^{N} \sum_{i=1}^{N} \sum_{\lambda_{S}v} \sum_{i=1}^{N} \sum_{\lambda_{V}v} \sum_{i=1}^{N} \sum_{i=1$ Odd operators in S & V \rightarrow Prompt decay $V^{\mu}\bar{q}\gamma_{\mu}q, S^{3}, V^{\mu}SD\mu S, V^{\mu}V_{\mu}S$ $SV^{\mu}g_{\mu}, \ \epsilon_{\mu\nu\sigma\rho}V^{\mu}\partial^{\rho}S\partial^{\sigma}W^{\nu}, \ S\partial_{\mu}V_{\nu}\partial^{\nu}W^{\mu}\dots$

Higgs productions Color-octet vector & scalar particles

$$\begin{split} \sigma_{gg \to h} &= \frac{G_F \alpha_s^2}{126\sqrt{2\pi}} \left| \frac{1}{2} A_{\frac{1}{2}}(x_t) + C_s \frac{\lambda_S v^2}{4m_S^2} A_0(x_S) + C_v \frac{\lambda_V v^2}{4m_V^2} A_1(x_V) \right|^2 \\ A_1(x) &= -(2 + 3x + 3x(2 - x)f(x)), \\ A_{1/2} &= 2x \left(1 + (1 - x)f(x) \right), \\ A_0 &= -x \left(1 - xf(x) \right), \\ A_0 &= -x \left(1 - xf(x) \right), \\ f(x) &= \begin{cases} \arctan^2 \left(1/\sqrt{x} \right), & \text{if } x \ge 1 \\ -\frac{1}{4} \left(\log \frac{1 + \sqrt{1 - x}}{1 - \sqrt{1 - x}} - i\pi \right)^2, & \text{if } x < 1 \end{cases} \\ \frac{A_1(x)}{A_2(x)} \sim -19 \qquad \text{for} \qquad x = \frac{4m^2}{m_h^2} \gtrsim 4 \end{split}$$

Higgs pair production in the SM

E. W. N. Glover and J. J. van der Bij, Nucl. Phys. B 309, 282 (1988) T. Plehn, M. Spira and P. M. Zerwas, Nucl. Phys. B 479, 46 (1996)

$$\begin{split} F_{tri} &= \frac{2m_t^2}{s} \left(2 + \left(4m_t^2 - s \right) C_{AB} \right), \\ F_{box} &= \frac{2m_t^2}{s} \left(2 + 4m_t^2 C_{AB} - \left(s + 2m_h^2 - 8m_t^2 \right) m_t^2 \left(D_{ABC} + D_{BAC} + D_{ACB} \right) \right) \\ &+ \frac{m_h^2 - 4m_t^2}{s} \left(\left(t - m_h^2 \right) \left(C_{AC} + C_{BD} \right) + \left(u - m_h^2 \right) \left(C_{BC} + C_{AD} \right) \right) \\ &- \left(tu - m_h^4 \right) D_{ACB} \right) \right) \\ G_{box} &= \frac{m_t^4}{s(tu - m_h^4)} \left(\frac{\left(t^2 + m_h^4 - 8tm_t^2 \right)}{m_t^2} \left(sC_{AB} + \left(t - m_h^2 \right) \left(C_{AC} + C_{BD} \right) - stD_{BAC} \right) \right) \\ &+ \frac{\left(u^2 + m_h^4 - 8um_t^2 \right)}{m_t^2} \left(sC_{AB} + \left(u - m_h^2 \right) \left(C_{BC} + C_{AD} \right) - suD_{ABC} \right) \\ &- \frac{\left(t^2 + u^2 - 2m_h^4 \right) \left(t + u - 8m_t^2 \right)}{m_t^2} C_{CD} \\ &- 2\left(t + u - 8m_t^2 \right) \left(tu - m_h^4 \right) \left(D_{ABC} + D_{BAC} + D_{ACB} \right) \right) \end{split}$$

Contributions from colored scalars

A. Belyaev et al, Phys. Rev. D 60, 075008 (1999) for MSSM
E. Asakawa et al, Phys. Rev. D 82, 115002 (2010) for LQ
G. D. Kribs and A. Martin, Phys. Rev. D 86, 095023 (2012) for Octet scalar

$$\begin{split} F_{tri}^{S} &= -\frac{\lambda_{S}C_{s}v^{2}}{m_{S}^{2}}(2m_{S}^{2}C_{AB}+1), \\ F_{box}^{S} &= -\frac{\lambda_{S}C_{s}v^{2}}{m_{S}^{2}}(2m_{S}^{2}C_{AB}+1) - \frac{2C_{s}(\lambda_{S}v^{2})^{2}}{s}\left(m_{S}^{2}\left(D_{ABC}+D_{BAC}+D_{ACB}\right)\right. \\ &- \frac{t-m_{h}^{2}}{s}C_{AC} - \frac{u-m_{h}^{2}}{s}C_{BC} + \frac{ut-m_{h}^{4}}{2s}D_{ACB}\right), \end{split}$$

$$G_{box}^{S} = -\frac{2C_{s}(\lambda_{S}v^{2})^{2}}{s} (m_{S}^{2} (D_{ABC} + D_{BAC} + D_{ACB}) - C_{CD} + \frac{1}{2(tu - m_{h}^{4})} (st^{2}D_{BAC} + su^{2}D_{ABC} + s(s - 2m_{h}^{2})C_{AB} + s(s - 4m_{h}^{2})C_{CD} + s(s - 2m_{h}^{2})C_{AC} - 2u(u - m_{h}^{2})C_{BC}))$$

Contributions from colored vectors

G. V. Jikia, Nucl.Phys. B412 (1994) 57-75

$$F_{tri}^{V} = \frac{s + 2m_{h}^{2}}{s - m_{h}^{2}} \frac{C_{v}\lambda_{v}v^{2}}{m^{2}} \left(8sC_{AB} + (6m^{2} + m_{h}^{2})\left(1 + 2m^{2}C_{AB}\right)\right)$$

$$F_{box}^{V} = C_{v} \left(\frac{\lambda_{v} v^{2}}{m^{2}}\right)^{2} \frac{m^{2}}{2s} \left(4sm^{2} \left(D_{abc} + D_{bac} + D_{acb}\right) - 4sC_{AB}\right) + \frac{m_{h}^{4} - 2m_{h}^{2}m^{2} + 12m^{4}}{2sm^{2}} \left((t - m_{h}^{2})m^{2}C_{ac} + (u - m_{h}^{2})C_{bc} - (tu - m_{h}^{4})D_{acb}\right) - 2sm^{2} \left(D_{abc} + D_{bac} + D_{acb}\right)$$

$$\begin{split} G_{box}^{V} &= -C_{v} \left(\frac{\lambda_{v} v^{2}}{m^{2}}\right)^{2} \frac{m^{2}}{2s} \left(2(tu-m_{h}^{4})\left(D_{abc}+D_{bac}+D_{acb}\right)-4sC_{ab}\right. \\ & \left. \frac{1}{2m^{2}(tu-m_{h}^{4})} \left((4m^{2}(t-m_{h}^{2})^{2}-M^{4}t)(2(t-m_{h}^{2})C_{ac}+(t-m_{h}^{2})^{2}D_{bac}\right) \right. \\ & \left. (4m^{2}(u-m_{h}^{2})^{2}-M^{4}t)(2(u-m_{h}^{2})C_{ac}+(u-m_{h}^{2})^{2}D_{abc})\right) \right. \\ & \left. + \frac{M^{4}+4m^{2}s}{2m^{2}} \left(\frac{s}{tu-m_{h}^{4}}((s-2m_{h}^{2})m^{2}C_{ab}+(s-4m_{h}^{2})C_{cd}) \right. \\ & \left. -(t-2m_{h}^{2})D_{bac}-(u-2m^{2})D_{abc}+2m^{2}D_{acb}-2C_{cd}\right)\right) \end{split}$$

Calculation: Higgs pair production via gluon fusion at LHC

Higgs pair production in the presence of colored scalars and vectors are implemented in MG5

 \diamond The rate was calculated scanning over the masses

 $m_s \& m_v$ and their portal couplings

 $\lambda_s \& \lambda_v$ of the color octet scalar & vector

particles for three cases:

- Real S & V
- Complex S & V
- Real V & complex S
- The constraints of the single Higgs production via gluon gluon fusion from ATLAS & CMS are put on these parameters

Scan over vector & scalar octet masses:

 $R(gg \rightarrow h)$

Scan over vector & scalar octet masses: Complex S & V $R(gg \rightarrow hh)$

Scan over vector & scalar octet masses: Complex S & V

Scan over vector & scalar octet masses: Complex S & V

Scan over vector & scalar octet masses: Real V & Complex S

Scan over vector & scalar octet masses: Real V & Complex S

Scan over vector & scalar octet masses: Real V & Complex S

Scan over portal couplings: Complex V & S

Scan over portal couplings: Real V & Complex S

Example Model of Octet V & S

K. Ishiwata & M. B. Wise, PRD 83 (2011) 074015
T. E, W-S. Hou & H. Yokoya, PRD 84 (2011) 094013
J. Alwall, T. E., W-S. Hou & H. Yokoya, PRD 86 (2012) 074029
A. Idilbi et al, PRD 82 (2010) 075017

 \Rightarrow SU(2)-singlet SU(3)-octet vector ω_8 , SU(2)-triplet SU(3)-octet scalar π_8

 $\omega_8 \rightarrow W \pi_8 (Z \pi_8) \rightarrow WWg (ZZg)$

Experimental signals for color octets

 \diamond CMS Collaboration, JHEP 09 (2015)

 ω_8 -> W π_8 (Z π_8)->WWg (ZZg) 50%+bb 50% 45

Example Model of Octet V & S

K. Ishiwata & M. B. Wise, PRD 83 (2011) 074015
T. E, W-S. Hou & H. Yokoya, PRD 84 (2011) 094013
J. Alwall, T. E., W-S. Hou & H. Yokoya, PRD 86 (2012) 074029
A. Idilbi et al, PRD 82 (2010) 075017

 \Rightarrow SU(2)-singlet SU(3)-octet vector ω_8 , SU(2)-triplet SU(3)-octet scalar π_8

Conclusion

- ♦ The Higgs pair production is studied for general potential and in the presence of Scalar and Vector octets for LHC.
- Single Higgs production constraint on the effective operator & Scalar & Vector octet masses and portal couplings have been studied by scanning over them.
- ♦ Several set of parameters & portal couplings are chosen which are consistent with the current data.
- ♦ They have been found to be affected for some values even the single Higgs production receives moderate correction.

Thank you for your Attention! Thank you, organizers!

Jet tagged W channel

95% CL_s limit for $\sigma^*BR(\omega_8 \rightarrow \pi_8W/Z)$ at 8 TeV LHC with 20 fb⁻¹

Hard leptonic W channel

95% CL_s limit for $\sigma^*BR(\omega_s \rightarrow \pi_s W/Z)$ at 8 TeV LHC with 20 fb-1

Scan over vector & scalar octet masses: Real S & V

Scan over portal couplings: Real V & S

