WWH production and searches for heavy neutrinos arXiv:1712.07621

Cédric Weiland

with Julien Baglio and Silvia Pascoli

Institute for Particle Physics Phenomenology, Durham University¹

First International High Energy Physics School and Workshop in Western China Lanzhou University 09 August 2018

¹ Moving to the University of Pittsburgh, on September 1st

Cédric Weiland (IPPP Durham) **The Central Contract Contract**

Imass

ercl

つひひ

Neutrino phenomena

- Neutrino oscillations (best fit from nu-fit.org):
solar $\theta_{12} \approx 34^\circ$ $\Delta m_{21}^2 \approx 7.4 \times 10^{-5}$ $\theta_{12} \simeq 34^\circ$
 $\theta_{23} \simeq 47^\circ$ $^{2}_{21} \simeq 7.4 \times 10^{-5}$ eV² atmospheric
reactor $|\Delta m_{23}^2| \simeq 2.5 \times 10^{-3} \text{eV}^2$ reactor $\theta_{13} \simeq 8.5^\circ$
- Absolute mass scale: cosmology $\Sigma m_{\nu i} < 0.12$ eV [Planck, 2018] $β$ **decays** $m_{ν_e}$ < 2.05 eV [Mainz, 2005; Troitsk, 2011]
	- **•** Different mixing pattern from CKM, ν lightness $\stackrel{?}{\leftarrow}$ Majorana ν
- Neutrino nature (Dirac or Majorana): Neutrinoless double β decays $m_{2\beta} < 0.061 - 0.165 \text{ eV}$ [KamLAND-ZEN, 2016]

Massive neutrinos and New Physics

- Standard Model $L =$ $\binom{\nu_L}{\ell_L}$ $\phi = \left(\begin{matrix} H^{0*} \\ H^{-1} \end{matrix}\right)$ $H^ \ddot{}$
	- No right-handed neutrino $\nu_R \rightarrow$ No Dirac mass term

$$
\mathcal{L}_{\text{mass}} = -Y_{\nu} \bar{L} \tilde{\phi} \nu_R + \text{h.c.}
$$

• No Higgs triplet *T* \rightarrow No Majorana mass term

$$
\mathcal{L}_{\text{mass}} = -\frac{1}{2} f \overline{L} T L^c + \text{h.c.}
$$

- Necessary to go beyond the Standard Model for ν mass
	- **Radiative models**
	- **•** Extra-dimensions
	- R-parity violation in supersymmetry
	- \bullet Seesaw mechanisms $\rightarrow \nu$ mass at tree-level

+ BAU through leptogenesis

 Ω

Dirac neutrinos ?

• Add gauge singlet (sterile), right-handed neutrinos $\nu_R \rightarrow \nu = \nu_L + \nu_R$ $\mathcal{L}_{\text{mass}}^{\text{leptons}} = -Y_{\ell} \bar{L} \phi \ell_R - Y_{\nu} \bar{L} \tilde{\phi} \nu_R + \text{h.c.}$ \mathbf{a}^{\dagger}

After electroweak symmetry breaking $\langle \phi \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix}$ $\mathcal{L}_{\text{mass}}^{\text{leptons}} = -m_{\ell} \bar{\ell}_{L} \ell_{R} - m_{D} \bar{\nu}_{L} \nu_{R} + \text{h.c.}$

 \Rightarrow 3 light active neutrinos: $m_{\nu} \leq 0.1$ eV \Rightarrow $Y^{\nu} \leq 10^{-12}$

University of Durham

 $E|E \cap Q$

Majorana neutrinos ?

• Add gauge singlet (sterile), right-handed neutrinos $ν_R$ $\mathcal{L}_{\text{mass}}^{\text{leptons}} = -Y_{\ell}\bar{L}\phi\ell_R - Y_{\nu}\bar{L}\tilde{\phi}\nu_R - \frac{1}{2}M_R\overline{\nu_R}\nu_R^c + \text{h.c.}$

 \Rightarrow After electroweak symmetry breaking $\langle \phi \rangle = {0 \choose v}$ ˘ $\mathcal{L}^{\text{leptons}}_{\text{mass}} = -m_{\ell} \ell_{L} \ell_{R} - m_{D} \bar{\nu}_{L} \nu_{R} - \frac{1}{2} M_{R} \overline{\nu_{R}} \nu_{R}^{c} + \text{h.c.}$

 $3 \nu_R \Rightarrow 6$ mass eigenstates: $\nu = \nu^c$

- \bullet ν_R gauge singlets
	- \Rightarrow M_R not related to SM dynamics, not protected by symmetries
	- \Rightarrow M_R between 0 and M_P
- $M_R \overline{\nu_R} \nu_R^c$ violates lepton number conservation $\Delta L = 2$

 Ω

イロト イ母 トイラト イラト

The seesaw mechanisms

- Seesaw mechanism: new fields + lepton number violation \Rightarrow Generate m_{ν} in a renormalizable way and at tree-level
- \bullet 3 minimal tree-level seesaw models \Rightarrow 3 types of heavy fields
	- type I: right-handed neutrinos, SM gauge singlets
	- type II: scalar triplets
	- type III: fermionic triplets

Towards testable Type I variants

• m_{ν} suppressed by small active-sterile mixing m_D/M_R

 $m_{\nu} = 0$ equivalent to conserved lepton number for models with arbitrary number of ν_R [Moffat, Pascoli, CW, 2017]

 \Rightarrow Nearly conserved L symmetry \rightarrow Cancellation to get large m_D/M_R

- Explicitly realised in, e.g.
	- **low-scale type I** [\[Ilakovac and Pilaftsis, 1995\]](#page-21-0) and others
	- inverse seesaw [Mohapatra and Valle, 1986, Bernabéu et al., 1987]
	- linear seesaw [\[Akhmedov](#page-21-1) et al., 1996, [Barr, 2004, Malinsky](#page-21-0) et al., 2005]

 Ω

The inverse seesaw mechanism

- Lower seesaw scale from approximately conserved lepton number
- Add fermionic gauge singlets ν_R ($L = +1$) and X ($L = -1$)

[Mohapatra and Valle, 1986, Bernabéu et al., 1987]

$$
\mathcal{L}_{inverse} = -Y_{\nu}\overline{L}\widetilde{\phi}\nu_R - M_R\overline{\nu_R^c}X - \frac{1}{2}\mu_X\overline{X^c}X + \text{h.c.}
$$

with
$$
m_D = Y_{\nu}v
$$
, $M^{\nu} = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & 0 & M_R \\ 0 & M_R^T & \mu_X \end{pmatrix}$
\n $m_{\nu} \approx \frac{m_D^2}{M_R^2} \mu_X$
\n $m_{N_1,N_2} \approx \mp M_R + \frac{\mu_X}{2}$
\n μ_X
\n L
\n L
\n2 scales: μ_X and M_R

- Decouple neutrino mass generation from active-sterile mixing
- Inverse seesaw: $Y_v \sim \mathcal{O}(1)$ and $M_R \sim 1 \text{ TeV}$ \Rightarrow within reach of the LHC and low energy ex[per](#page-6-0)i[m](#page-8-0)[e](#page-6-0)[nts](#page-7-0)

Cédric Weiland (IPPP Durham) **The Central Contract Contract**

Using Higgs physics to probe neutrino mass models

Discovery of the Higgs boson give new ways to search for heavy neutrinos with $m_{\nu} > \mathcal{O}(1 \text{ TeV})$

- $H\bar{\ell}_i\ell_j$:
	- Contribution negligible in the SM \rightarrow evidence of new physics if observed
	- Large branching ratios are possible:

 ${\rm Br}(H\to\tau\mu)\sim 10^{-5}$ in ISS [Arganda, Herrero, Marcano, CW, 2015]

 $Br(H \to \tau \mu) \sim 1\%$ in SUSY-ISS [Arganda, Herrero, Marcano, CW, 2016]

- Sensitive to off-diagonal Yukawa couplings *Y*^ν
- *HHH*:
	- Useful to validate the Higgs mechanism as the origin of EWSB
	- One of the main motivations for future colliders
	- $-$ ISS: Deviations as large as 30% [Baglio, CW, 2017]
	- Sensitive to diagonal Yukawa couplings *Y*^ν

WWH production

- Overlooked channel for BSM searches
- $-$ t-channel process: different dependence on the heavy neutrino mass \sim

4 ロト 4 旬

– Sensitive to diagonal Yukawa couplings *Y*^ν

 Ω

경기 지금이

WWH production

 e^+

- **Idea:** Probe Y_{ν} at tree-level with off-shell $N \Rightarrow$ t-channel $e^+e^- \rightarrow W^+W^-H$
- Good detection prospects in SM [\[Baillargeon](#page-21-0) et al., 1994]
- SM contributions: $\bar{W}^ \rho^+$ W^+ ρ H γ/Z γ/Z W^+ Н
	- SM+ISS contributions:

SM electroweak corrections negligible for $\sqrt{s} > 600 \,\text{GeV}$ **[Mao et al., 2009]** \Rightarrow neglected in our analysis

Cédric Weiland (IPPP Durham) **The Central Cent**

 QQ

 W^-

Most relevant constraints for the ISS

 \bullet Accommodate low-energy neutrino data using μ_X -parametrization [Arganda, Herrero, Marcano, CW, 2015; Baglio, CW, 2017]

$$
\mu_X = M_R^T Y_{\nu}^{-1} U_{\text{PMNS}}^* m_{\nu} U_{\text{PMNS}}^\dagger Y_{\nu}^{T-1} M_R v^2
$$
 and beyond

- Charged lepton flavour violation \rightarrow For example: Br($\mu \rightarrow e \gamma$) < 4.2 × 10⁻¹³ [MEG, 2016]
- **Global fit to EWPO and lepton universality tests** [\[Fernandez-Martinez](#page-21-0) et al., 2016]
- Electric dipole moment: 0 with real PMNS and mass matrices
- Invisible Higgs decays: $M_R > m_H$, does not apply
- Yukawa perturbativity: $|\frac{Y_{\nu}^2}{4\pi}| < 1.5$

CoM energy dependence

- LO calculation, neglecting m_e
- \bullet Calculation done with FeynArts, FormCalc, BASES
- Deviation from the SM in the insert

• Polarized:
$$
P_{e^-} = -80\%, P_{e^+} = 0
$$

$$
\begin{aligned}\n\bullet \ \sigma(e^+e^- \to W^+W^-H)_{\text{pol}} \\
\sim 2\sigma(e^+e^- \to W^+W^-H)_{\text{unpol}}\n\end{aligned}
$$

•
$$
Y_{\nu} = \mathbb{1}, M_{R_1} = 3.6 \text{ TeV},
$$

\n $M_{R_2} = 8.6 \text{ TeV}, M_{R_3} = 2.4 \text{ TeV}$

4 0 F

- Destructive interference between SM and heavy neutrino contributions
- Maximal deviation of -38% close to 3 TeV

University of Durham

つひひ

Results in the ISS

- Maximal deviation of -38% , $\sigma_{\rm pol}^{\rm ISS} = 1.23$ fb \rightarrow ISS induces sizeable deviations in large part of the parameter space
- Provide a new probe of the $\mathcal{O}(10)$ TeV region \Rightarrow Complementary to existing observables

4 0 8 4

 Ω

Enhancing the deviations

• Stronger destructive interference from ISS for: - central production $-$ larger Higgs energy

• Cuts:
$$
|\eta_H| < 1
$$
, $|\eta_{W^\pm}| < 1$ and $E_H > 1$ TeV

4 ロト 4 旬

∋⇒

Comparison: the triple Higgs coupling

• Scalar potential before EWSB:

$$
V(\phi) = -\mu^2 |\phi|^2 + \lambda |\phi|^4
$$

After EWSB: $m_H^2 = 2\mu^2$, $v^2 = \mu^2/\lambda$

$$
\phi = \begin{pmatrix} 0\\ \frac{v+H}{\sqrt{2}} \end{pmatrix} \rightarrow V(H) = \frac{1}{2}m_H^2 H^2 + \frac{1}{3!} \lambda_{HHH} H^3 + \frac{1}{4!} \lambda_{HHHH} H^4
$$

and

$$
\lambda_{HHH}^{0} = -\frac{3m_{H}^{2}}{v}, \quad \lambda_{HHHH}^{0} = -\frac{3m_{H}^{2}}{v^{2}}
$$
\n
$$
\text{where, for each } v \in \mathbb{R} \text{ and } v \in \mathbb{R} \text{ is a given by of Duham}
$$

Comparison: λ_{HHH} in the ISS [JHEP04(2017)038]

- \bullet Diagonal Y_{ν} : full calculation in black, approximate formula in green
- Heavy ν effects at the limit of the ILC (10%) sensitivity
- Heavy ν effects clearly visible at the FCC-hh (5%)
- Sizeable deviation in a smaller part of the par[am](#page-14-0)[ete](#page-16-0)[r](#page-14-0) [sp](#page-15-0)[a](#page-16-0)[c](#page-13-0)[e](#page-14-0)

Conclusions

- \bullet ν oscillations \rightarrow New physics is needed to generate masses and mixing
- Higgs sector allows new measurement to probe neutrino mass models
- Corrections to W^+W^-H production as large as -66% after cuts
- Maximal for diagonal Y_ν and provide new probes of the $\mathcal{O}(10)$ TeV region
- Larger deviations than for λ_{HHH}
- Complementarity with flavour observables

Backup slides

 \rightarrow \equiv

 \mathbb{R}

重す \sim

←ロ ▶ ← (伊)

[Backup](#page-18-0)

Future sensitivities to the SM HHH coupling

- **At hadron colliders**
	- Production: *gg* dominates, VBF cleanest
	- FCC-hh: 8% per experiment with 3 ab⁻¹ using only $b\bar{b}\gamma\gamma$ [He et al.[, 2016\]](#page-21-0)
		- \sim 5% combining all channels
- At e^+e^- collider
	- Main production channels: Higgs-strahlung and VBF
	- ILC: 27 $\%$ at 500 GeV with 4 ab⁻¹ [Fujii et al.[, 2015\]](#page-21-0) 10% at 1 TeV with 5 ab⁻¹ [Fujii et al.[, 2015\]](#page-21-0)

 $Q \cap$

500

[Backup](#page-19-0)

Calculation in the ISS

- Generically: impact of new fermions coupling through the neutrino portal
- New 1-loop diagrams and new counterterms

 \rightarrow Evaluated with FeynArts, FormCalc and LoopTools

• OS renormalization scheme

Formulas for both Dirac and Majorana fermions coupling through the neutrino portal are available (see PRD94(2016)013002 as well)

Momentum dependence

$$
\bullet \ \Delta^{(1)}\lambda_{HHH} = \frac{1}{\lambda^0} \left(\lambda_{HHH}^{1r} - \lambda^0 \right)
$$

- Focus on 1 neutrino contribution, fixed mixing $B_{\tau_4} = 0.087$, $B_{e/\mu_4} = 0$
- \mathbf{m} Deviation from the SM correction in the insert

$$
max |(B^{\dagger}B)_{i4}|m_{n_4} = m_t
$$

\n→ m_{n_4} = 2.7 TeV
\ntight perturbativity of λ_{HHH} bound:
\n m_{n_4} = 7 TeV

width bound: $m_{n_4} = 9 \,\text{TeV}$

∢ □ ▶ ∢ [⊖]

- Largest positive correction at $q_H^* \simeq 500\,{\rm GeV}$, heavy ν decreases it
- Large negative correction at large q_H^* , heavy ν increases it

 Ω

Cédric Weiland (IPPP Durham) **WWH** production 09 August 2018 4/4

[Backup](#page-21-2)