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Massive Neutrinos

Neutrino phenomena

Neutrino oscillations (best fit from nu-fit.org):
solar θ12 » 340 ∆m2

21 » 7.4ˆ 10´5eV2

atmospheric θ23 » 470 |∆m2
23| » 2.5ˆ 10´3eV2

reactor θ13 » 8.50

Absolute mass scale:
cosmology Σmνi ă 0.12 eV [Planck, 2018]

β decays mνe ă 2.05 eV [Mainz, 2005; Troitsk, 2011]

Different mixing pattern from CKM, ν lightness ?
ÐÝ Majorana ν

Neutrino nature (Dirac or Majorana):
Neutrinoless double β decays
m2β ă 0.061´ 0.165 eV [KamLAND-ZEN, 2016]
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Massive Neutrinos

Massive neutrinos and New Physics

Standard Model L “
`

νL
`L

˘

, φ̃ “
`H0˚

H´
˘

No right-handed neutrino
νR Ñ No Dirac mass term

Lmass “ ´Yν L̄φ̃νR ` h.c.

No Higgs triplet T
Ñ No Majorana mass term

Lmass “ ´
1
2

f LTLc
` h.c.

Necessary to go beyond the Standard Model for ν mass
Radiative models
Extra-dimensions
R-parity violation in supersymmetry
Seesaw mechanisms Ñ ν mass at tree-level
Seesaw mechanisms Ñ+ BAU through leptogenesis
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Massive Neutrinos

Dirac neutrinos ?

Add gauge singlet (sterile), right-handed neutrinos νR ñ ν “ νL ` νR

Lleptons
mass “ ´Y`L̄φ`R ´ Yν L̄φ̃νR ` h.c.

ñ After electroweak symmetry breaking xφy “
`0

v

˘

Lleptons
mass “ ´m` ¯̀L`R ´ mDν̄LνR ` h.c.

ñ 3 light active neutrinos: mν > 0.1eV ñ Yν > 10´12
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Massive Neutrinos

Majorana neutrinos ?

Add gauge singlet (sterile), right-handed neutrinos νR

Lleptons
mass “ ´Y`L̄φ`R ´ Yν L̄φ̃νR ´

1
2 MRνRν

c
R ` h.c.

ñ After electroweak symmetry breaking xφy “
`0

v

˘

Lleptons
mass “ ´m``L`R ´ mDν̄LνR ´

1
2 MRνRν

c
R ` h.c.

3 νR ñ 6 mass eigenstates: ν “ νc

νR gauge singlets
ñ MR not related to SM dynamics, not protected by symmetries
ñ MR between 0 and MP

MRνRν
c
R violates lepton number conservation ∆L “ 2
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Massive Neutrinos

The seesaw mechanisms

Seesaw mechanism: new fields + lepton number violation
ñ Generate mν in a renormalizable way and at tree-level
3 minimal tree-level seesaw models ñ 3 types of heavy fields

type I: right-handed neutrinos, SM gauge singlets
type II: scalar triplets
type III: fermionic triplets

νR νR

φ

L

φ

L

Yν Yν
MR

mν “ ´
1
2

Yν
v2

MR
YT
ν

∆

φ

L

φ

L
Y∆

µ∆

mν “ ´2Y∆v2 µ∆

M2
∆

Σ Σ

φ

L

φ

L

YΣ YΣ

MΣ

mν “ ´
1
2

YΣ
v2

MΣ
YT

Σ
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Massive Neutrinos

Towards testable Type I variants

νR νR

φ

L

φ

L

Yν Yν
MR

Taking MR " mD gives the “vanilla” type 1 seesaw

mν “ ´mDM´1
R mT

D

mν „ 0.1 eV ñ
ˇ

ˇ

ˇ

ˇ

Yν „ 1 and MR „ 1014 GeV
Yν „ 10´6 and MR „ 102 GeV

mν suppressed by small active-sterile mixing mD{MR

mν “ 0 equivalent to conserved lepton number for models
with arbitrary number of νR [Moffat, Pascoli, CW, 2017]

ñ Nearly conserved L symmetry Ñ Cancellation to get large mD{MR

Explicitly realised in, e.g.
– low-scale type I [Ilakovac and Pilaftsis, 1995] and others

– inverse seesaw [Mohapatra and Valle, 1986, Bernabéu et al., 1987]

– linear seesaw [Akhmedov et al., 1996, Barr, 2004, Malinsky et al., 2005]
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Massive Neutrinos

The inverse seesaw mechanism

Lower seesaw scale from approximately conserved lepton number
Add fermionic gauge singlets νR (L “ `1) and X (L “ ´1)
[Mohapatra and Valle, 1986, Bernabéu et al., 1987]

Linverse “ ´YνLφ̃νR ´MRν
c
RX ´

1
2
µXXcX ` h.c.

with mD “ Yνv ,Mν
“

¨

˝

0 mD 0
mT

D 0 MR

0 MT
R µX

˛

‚

mν «
m2

D

M2
R
µX

mN1,N2 « ¯MR `
µX

2

X X

νR νR

H

L

H

L

2 scales: µX and MR

Decouple neutrino mass generation from active-sterile mixing
Inverse seesaw: Yν „ Op1q and MR „ 1 TeV
ñ within reach of the LHC and low energy experiments
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WWH production

Using Higgs physics to probe neutrino mass models

Discovery of the Higgs boson give new ways to search for
heavy neutrinos with mν ą Op1 TeVq

H ¯̀i`j:
– Contribution negligible in the SM Ñ evidence of new physics if observed
– Large branching ratios are possible:

BrpH Ñ τµq „ 10´5 in ISS [Arganda, Herrero, Marcano, CW, 2015]

BrpH Ñ τµq „ 1% in SUSY-ISS [Arganda, Herrero, Marcano, CW, 2016]

– Sensitive to off-diagonal Yukawa couplings Yν

HHH:
– Useful to validate the Higgs mechanism as the origin of EWSB
– One of the main motivations for future colliders
– ISS: Deviations as large as 30% [Baglio, CW, 2017]

– Sensitive to diagonal Yukawa couplings Yν

WWH production
– Overlooked channel for BSM searches
– t-channel process: different dependence on the heavy neutrino mass
– Sensitive to diagonal Yukawa couplings Yν
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WWH production

WWH production

Idea: Probe Yν at tree-level with off-shell N ñ t-channel e`e´ Ñ W`W´H
Good detection prospects in SM [Baillargeon et al., 1994]

SM contributions:

SM+ISS contributions:

SM electroweak corrections negligible for
?

s ą 600 GeV [Mao et al., 2009]

ñ neglected in our analysis
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WWH production

Most relevant constraints for the ISS

Accommodate low-energy neutrino data using µX-parametrization [Arganda,

Herrero, Marcano, CW, 2015; Baglio, CW, 2017]

µX “ MT
R Y´1

ν U˚PMNSmνU:PMNS YT
ν
´1

MRv2 and beyond

Charged lepton flavour violation
Ñ For example: BrpµÑ eγq ă 4.2ˆ 10´13 [MEG, 2016]

Global fit to EWPO and lepton universality tests [Fernandez-Martinez et al., 2016]

Electric dipole moment: 0 with real PMNS and mass matrices

Invisible Higgs decays: MR ą mH, does not apply

Yukawa perturbativity: | Y
2
ν

4π | ă 1.5
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WWH production

CoM energy dependence
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Calculation done with FeynArts,
FormCalc, BASES

Deviation from the SM in the
insert

Polarized: Pe´ “ ´80%, Pe` “ 0

σpe`e´ Ñ W`W´Hqpol
„ 2σpe`e´ Ñ W`W´Hqunpol

Yν “ 1, MR1
“ 3.6 TeV,

MR2
“ 8.6 TeV, MR3

“ 2.4 TeV

Destructive interference between SM and heavy neutrino contributions

Maximal deviation of ´38% close to 3 TeV
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WWH production

Results in the ISS
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∆BSM “ pσISS ´ σSMq{σSM

Polarization Pe´ “ ´80%

AISS
approx “

p1 TeVq2

M2
R

TrpYνY:νq

ˆ

ˆ

17.07´
19.79 TeV2

M2
R

˙

∆BSM
approx “pAISS

approxq
2
´ 11.94AISS

approx

Fit agrees within 1% for
MR ą 3 TeV

Maximal deviation of ´38%, σISS
pol “ 1.23 fb

Ñ ISS induces sizeable deviations in large part of the parameter space

Provide a new probe of the Op10qTeV region
ñ Complementary to existing observables
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WWH production

Enhancing the deviations
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Stronger destructive interference from ISS for: – central production
Stronger destructive interference from ISS for: – larger Higgs energy
Cuts: |ηH| ă 1, |ηW˘ | ă 1 and EH ą 1 TeV

Before cuts After cuts
σSM (fb) 1.96 0.42
σISS (fb) 1.23 0.14
∆BSM

´38% ´66%

Cédric Weiland (IPPP Durham) WWH production 09 August 2018 14 / 17



Comparison to other Higgs observables

Comparison: the triple Higgs coupling

Scalar potential before EWSB:

Vpφq “ ´µ2|φ|2 ` λ|φ|4

After EWSB: m2
H “ 2µ2 , v2 “ µ2{λ

φ “

ˆ

0
v`H?

2

˙

Ñ VpHq “
1
2

m2
HH2 `

1
3!
λHHHH3 `

1
4!
λHHHHH4

and

λ0
HHH “ ´

3m2
H

v
, λ0

HHHH “ ´
3m2

H

v2
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Comparison to other Higgs observables

Comparison: λHHH in the ISS [JHEP04(2017)038]
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Diagonal Yν : full calculation in black, approximate formula in green

Heavy ν effects at the limit of the ILC (10%) sensitivity

Heavy ν effects clearly visible at the FCC-hh (5%)

Sizeable deviation in a smaller part of the parameter space
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Conclusion

Conclusions

ν oscillations Ñ New physics is needed to generate masses and mixing

Higgs sector allows new measurement to probe neutrino mass models

Corrections to W`W´H production as large as ´66% after cuts

Maximal for diagonal Yν and provide new probes of the Op10q TeV region

Larger deviations than for λHHH

Complementarity with flavour observables
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Backup

Backup slides
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Backup

Future sensitivities to the SM HHH coupling

[Contino et al., 2017] [Fujii et al., 2015]

At hadron colliders
Production: gg dominates, VBF cleanest

- FCC-hh: 8% per experiment with 3 ab´1 using only bb̄γγ [He et al., 2016]

FCC-hh: „ 5% combining all channels

At e`e´ collider
Main production channels: Higgs-strahlung and VBF

- ILC: 27% at 500 GeV with 4 ab´1 [Fujii et al., 2015]

ILC: 10% at 1 TeV with 5 ab´1 [Fujii et al., 2015]
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Backup

Calculation in the ISS

Generically: impact of new fermions
coupling through the neutrino portal

New 1-loop diagrams and new
counterterms
Ñ Evaluated with FeynArts, FormCalc
and LoopTools

OS renormalization scheme

Formulas for both Dirac and Majorana
fermions coupling through the neutrino
portal are available
(see PRD94(2016)013002 as well)
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Backup

Momentum dependence
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Focus on 1 neutrino contribution,
fixed mixing Bτ4 “ 0.087, Be{µ4 “ 0

Deviation from the SM correction in
the insert

max|pB:Bqi4|mn4 “ mt

Ñ mn4 “ 2.7 TeV
tight perturbativity of λHHH bound:
mn4 “ 7 TeV
width bound: mn4 “ 9 TeV

Largest positive correction at q˚H » 500 GeV, heavy ν decreases it

Large negative correction at large q˚H, heavy ν increases it
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