Heavy Neutrinos and (Safe) Jet Vetoes ¹ LanZhou

Richard Ruiz

Institute for Particle Physics Phenomenology, University of Durham, UK²

9 August 2018

R. Ruiz - IPPP

Heavy N and Jet Vetoes - LanZhou

a short history

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

2.5 years ago asked if possible to improve LHC searches for leptonic decays of heavy neutrinos, $N \rightarrow \ell_1 W \rightarrow \ell_1 \ell_2 \nu$

• "improve" \neq MVA or BDT but a qualitatively new search strategy

Why? new channels ($W\gamma$ fusion), new technology (automated NLO+PS), unclear lepton number-violating $\ell_1^{\pm}\ell_2^{\pm} + nj$ was viable

An idea: Global QCD activity in heavy N production different than backgrounds, e.g., fewer central, high- p_T jets.

The question: Can jet observables be used to improve heavy N searches?

R. Ruiz - IPPP

Motivation for new physics from ν physics

4 / 28

3

イロト イポト イヨト イヨト

In neutrino fixed-target expts, ν_{μ} beams from collimated π^{\pm} , then studied at near and far detectors (reminiscent of early SLAC DIS expts)

Deficit/disappearance of expected ν_{μ} (+apperance of ν_e/ν_{τ}) interpreted as $\nu_{\ell_1} \rightarrow \nu_{\text{mass}} \rightarrow \nu_{\ell_2}$ transitions/oscillations [E.g. NO ν A ν_{μ} disapp., 1701.05891]

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Heavy N and Jet Vetoes - LanZhou

So, neutrinos have masses $\lesssim \mathcal{O}(0.1)$ eV.

Is this a problem?

Yes.

э

<ロト < 四ト < 三ト < 三ト

Neutrinos Masses and New Physics

To generate Dirac masses for ν like other SM fermions, we need N_R

$$\mathcal{L}_{\nu \text{ Yuk.}} = -y_{\nu} \overline{L} \tilde{\Phi} N_{R} + H.c. = -y_{\nu} \left(\overline{\nu_{L}} \quad \overline{\ell_{L}} \right) \begin{pmatrix} \langle \Phi \rangle + h \\ 0 \end{pmatrix} N_{R} + H.c.$$
$$= \underbrace{-y_{\nu} \langle \Phi \rangle}_{=m_{D}} \overline{\nu_{L}} N_{R} + H.c. + \dots$$

However, N_R^i do not exist in the SM, implying $m_D = 0$

Significance of Neutrino Oscillations:

Neutrino masses \implies existence of physics beyond the SM!

R. Ruiz - IPPP	Heavy N and Jet Vetoes - LanZhou	7 / 28

Neutrinos Masses and New Particles?

Nonzero neutrino masses implies new degrees of freedom exist [Ma'98]:

m_{ν} + gauge inv. + renormalizability \implies new particles!

- No guarantee that new particles are N_R , e.g. Type II Seesaw
- New particles might be charged under new gauge symmetries, e.g., (N_R, e_R) form SU(2)_R doublet or Δ_L is scalar SU(2)_L triplet

Collider Connection to Neutrino Mass Models³

Neutrino mass models (aka Seesaw models) hypothesize new particles of all shapes, spins, charges, and color:

N (Type I),
$$T^{0,\pm}$$
 (Type III), Z_{B-L} , $H_R^{\pm,\pm\pm}$ (Type I+II), ...

Produced in *ee/ep/pp* collisions through gauge couplings and mixing:

$$\begin{aligned} \mathbf{DY} &: q\overline{q} \to \gamma^*/Z^* \to T^+T^- \quad \text{and} \quad q\overline{q'} \to W_R^{\pm} \to N\ell^{\pm} \\ \mathbf{VBF} &: W^{\pm}W^{\pm} \to H^{\pm\pm} \qquad \mathbf{GF} : gg \to h^*/Z^* \to N\nu_\ell \end{aligned}$$

Identification of Seesaw particles through decays to SM particles ³Review on ν mass models at colliders, Y. Cai, T. Li, T. Han, **RR** [1711.02180]

Heavy Neutrinos and Colliders

10 / 28

3

イロト イポト イヨト イヨト

(Heavy) Neutrino Mixing for Non-experts (1/2)

After EWSB, ν_{ℓ} and N_R have same quantum numbers \implies mixing!

Example: In a two-state system, mixing between chiral eigenstates and mass eigenstates is given by unitary transformation/rotation

Decompose chiral/interaction states into mass states using:

$$|
u_L
angle = \cos heta \underbrace{|
u_1
angle}_{light} + \sin heta \underbrace{|N_2
angle}_{heavy} \stackrel{ heta \ll 1}{pprox} (1 - \frac{1}{2} heta^2) |
u_1
angle + heta |N_2
angle$$

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

(Heavy) Neutrino Mixing for Non-experts (2/2)

Realistic neutrino mass models are much more complicated⁴. After diagonalizing mass matrix one gets two limits⁵:

• High-scale seesaw: $\mu_M \gg \langle \Phi_{SM} \rangle \implies m_{\nu} \sim m_D \left(\frac{m_D}{\mu_M} \right), \ m_N \sim \mu_M$

• Low-scale seesaw: $\mu_M \ll \langle \Phi_{SM} \rangle \implies m_{\nu} \sim \mu_M \left(\frac{m_D}{m_R} \right)^2$, $m_N \sim m_R$

For *discovery purposes*, no need to complicate life. Take agnostic/pheno. approach⁶ with generic $V_{\ell N}$ parametrization and one N mass eigenstate

• This requires modifying SM interactions with the following⁷:

$$\nu_{\ell L} = \sum_{m=1}^{3} U_{\ell m} \nu_m + V_{\ell m'=4} N_{m'=4}$$

⁴See for example, C. Weiland's thesis, [1311.5860]

⁵Kersten, Smirnov [0705.3221]; Moffat, Pascoli, Weiland [1712.07611]
 ⁶Appropriate since other Seesaws can mimic Type I pheno. See RR, [1703.04669]
 ⁷Atre, Han, Pascoli, Zhang [0901.3589]

R. Ruiz - IPPP

Heavy Neutrinos Couplings to EW Bosons

Consider left-handed (LH) $SU(2)_L$ doublets (gauge basis):

$$L_{aL} = \left(\begin{array}{c} \nu_a \\ l_a \end{array} \right)_L, \quad a = 1, 2, 3.$$

The SM W chiral coupling to leptons in flavor basis is given by

$$\mathcal{L}_{CC} = -\frac{g}{\sqrt{2}} W^+_{\mu} \sum_{\ell=e}^{\tau} \left[\overline{\nu_{\ell L}} \gamma^{\mu} P_L \ell^- \right] + H.c.$$

The SM W chiral coupling to **leptons** in the **mass basis**

$$\mathcal{L}_{CC} = -\frac{g}{\sqrt{2}} W^+_{\mu} \sum_{\ell=e}^{\tau} \left[\sum_{m=1}^{3} \overline{\nu_m} U^*_{m\ell} + \overline{N^c} V^*_{N\ell} \right] \gamma^{\mu} P_L \ell^- + H.c.$$

 \implies **N** is accessible through W/Z/h currents

R. Ruiz - IPPP

13 / 28

くぼう くほう くほう

Heavy Neutrino Production At Hadron Colliders

Heavy N can be produced through a variety of mechanisms in pp collisions

In fact, a resurgence of calculations in recent years⁸

• Clarity needed on (i) m_N, \sqrt{s} dependence and (ii) conflicting claims

 \implies more physical collider definitions + public tools [1602.06957]

⁸DY@NLO [*1509.06375]; GF [1408.0983, *1602.06957] @NNNLL [*1706.02298]; VBF [1308.2209, *1411.7305, *1602.06957]; DY,VBF Automation@NLO [*1602.06957]; For extensive details, see review: [*1711.02180]; (*) = Pittsburgh and/or IPPP $\equiv -0.000$

Across different colliders, wild interplay of PDF and matrix elements

Plotted: Normalized production rate $(\sigma/|V|^2)$ vs heavy N mass (m_N)

- For $\sqrt{s} \gtrsim 25 27$ TeV **GF** greater than **DY** due to *gg* luminosity
- For $m_N \gtrsim 1-2$ TeV, VBF dominant due to large Yukawa couplings

Note: For $m_N = 10$ TeV and $|V_{\ell N}|^2 \sim 10^{-3}$, then at 100 TeV, one has $\mathcal{O}(30)$ VBF events after 30 ab⁻¹! If BR× $\varepsilon \times \mathcal{A} \sim \frac{1}{3}$, then $\sqrt{N_{Obs}} > 3\sigma$

Heavy Neutrinos and Jet Vetoes:

The Difficulties of Jet Vetoes

< □ > < 同 >

16 / 28

★ ∃ ► < ∃ ►</p>

1. Sources of Jets

In pp collisions, hadronic activity has three sources:

- (a) Early, colorless, ultra-collinear/soft exchanges (suppressed)
- (b) Hard scattering (calculable)
- (c) Secondary/double/multi-parton scattering⁹ (...)
 - Can contaminate jets from (b)

⁹Extremely rich physics. See, e.g., Collins, "Foundations of pQCD" (2011) → 📳 🤊 ۹ (

R. Ruiz - IPPP

Heavy N and Jet Vetoes - LanZhou

2. & 3. Poor signal Efficiencies and Uncertainties

For Drell-Yan and other color-singlet processes, more/harder QCD radiation (jets!) for systems with larger masses $^{\rm 10}$

Paradox: Relax p_T^{Veto} for increasing m_N but top background jumps! 10 Eg., Sleptons: F. Tackmann, et al [1603.03052]; W': B. Fuks, **RR** [1701.05263] $\sim \propto \sim$ R. Ruiz - IPPPHeavy N and Jet Vetoes - LanZhou18 / 28

Heavy Neutrinos and Dynamical Jet Vetoes

A thought:¹¹ how about p_T of the leading charged lepton in the event? • For $pp \to N\ell \to 3\ell X$, $p_T^\ell \propto m_N \implies$ increases for larger m_N

¹¹Disclosure: discovered basis of idea in an unrelated CMS paper on WW = 0j = -9

Heavy Neutrinos and Dynamical Jet Vetoes

A thought:¹¹ how about p_T of the leading charged lepton in the event? • For $pp \to N\ell \to 3\ell X$, $p_T^\ell \propto m_N \implies$ increases for larger m_N

QCD uncertainties shrink since 2-scale problem converted into 1-scale

• less precise predictions, e.g., LL/parton shower, now more reliable

Question: What about backgrounds?

¹¹Disclosure: discovered basis of idea in an unrelated CMS paper on $WW = 0j = -\infty$

Top Quark Background vs Dynamical Jet Vetoes

 $pp \rightarrow t\overline{t}Z \rightarrow 1\mu + 3e + 2i_b + E_T$ candidate event [1509.05276] Classic kinematics: $-m_{ee} = 93 \text{ GeV}$ - $E_T = 57$ GeV Typically, • $p_T^{e_1} \sim \frac{m_t}{4} (1 + \frac{M_W^2}{m_c^2}) \sim 50 \text{ GeV}$ • $p_T^{e_3} \sim \frac{M_Z}{2} \sim 45$ GeV • $p_T^{b_1} \sim \frac{m_t}{2} (1 - \frac{M_W^2}{m^2}) \sim 60 \text{ GeV}$ $p_T^{b_1} > p_T^{\ell_1} \implies$ event vetoed!

Setting p_T^{Veto} on event-by-event basis to $p_T^{\ell_1}$ can eliminate top quark background *without b*-jet tagging!

R. Ruiz - IPPP

Jet Vetoes and SM Backgrounds

Associated Top Quark Production: $pp \rightarrow t\bar{t}\ell\ell$, $t\bar{t}\ell\nu$, $tq\ell\ell$

- Typical p_T of lepton from top: $p_T^\ell \sim \frac{m_t}{4}(1+\frac{M_W^2}{m_t^2})\sim 50$ GeV
- Typical p_T of **b** from top: $p_T^b \sim \frac{m_t}{2}(1-\frac{M_W^2}{m_t^2}) \sim 65$ GeV

• $p_T^\ell < p_T^b \implies$ top events vetoed without need of *b*-tagging

Jet Vetoes and SM Backgrounds

Associated Top Quark Production: $pp \rightarrow t\bar{t}\ell\ell$, $t\bar{t}\ell\nu$, $tq\ell\ell$

- Typical p_T of lepton from top: $p_T^\ell \sim \frac{m_t}{4}(1+\frac{M_W^2}{m_t^2})\sim 50$ GeV
- Typical p_T of **b** from top: $p_T^b \sim \frac{m_t}{2}(1-\frac{M_W^2}{m_t^2}) \sim 65$ GeV
- $p_T^\ell < p_T^b \implies$ top events vetoed without need of *b*-tagging

Fake Leptons:

- Low- p_T jet (in $t\bar{t}$ events) identified as e^{\pm} or τ^{\pm}
- Low- p_T charged ℓ^{\pm} from weak decays of hadrons (in $t\bar{t}$ events)
- Color conservation \implies second jet with comparable p_T likely exist

Jet Vetoes and SM Backgrounds

Associated Top Quark Production: $pp \rightarrow t\bar{t}\ell\ell$, $t\bar{t}\ell\nu$, $tq\ell\ell$

- Typical p_T of lepton from top: $p_T^\ell \sim rac{m_t}{4}(1+rac{M_W^2}{m_t^2})\sim 50$ GeV
- Typical p_T of **b** from top: $p_T^b \sim \frac{m_t}{2}(1-\frac{M_W^2}{m_t^2}) \sim 65$ GeV
- $p_T^\ell < p_T^b \implies$ top events vetoed without need of *b*-tagging

Fake Leptons:

- Low- p_T jet (in $t\overline{t}$ events) identified as e^{\pm} or τ^{\pm}
- Low- p_T charged ℓ^{\pm} from weak decays of hadrons (in $t\bar{t}$ events)
- Color conservation \implies second jet with comparable p_T likely exist

Electroweak Production: $pp \rightarrow 4\ell$, $3\ell\nu$, WWW, $WW\ell\ell$

- Jet veto \implies EW bosons at rest since no recoil
- Typical $S_T\equiv \sum_\ell |ec{p}_T^\ell|$ for 3W or WZ: $S_T\sim rac{3M_V}{2}\sim 120-130$ GeV
- Typical S_T for heavy N: $S_T \sim \frac{m_N}{3} + \frac{m_N}{2} + \frac{m_N}{4} = \frac{13m_N}{3}$

${\bf Results}^{12}$

¹²with Silvia Pascoli and Cedric Weiland [1805.09335, 180X.YYYY]

Heavy N and Jet Vetoes - LanZhou

Jet vetoes are nonstandard selection cuts and make MC generation tricky

- **Need**: reliable description of *leading* jet at all p_T for signal (color-singlet) and background
- Need: "jets" (resummation/parton shower + jet definition)
 ⇒ cannot apply veto at same time as other cuts
- **Need**: inclusive samples since bkg include ℓ^{\pm} outside fid. volume

Moto: "We start at NLO"

- Event Generation: HeavyN@NLO UFO¹³ + MadGraph5_aMC@NLO
 - ▶ Bare-bones gen-level cuts on leptons + MadSpin for decay
- Shower: Pythia8.2 (w/ QED shower + recoil + Monash* Tune)
- Particle-level Reco (lhe output)¹⁴: MadAnalysis5 + R = 1 anti- k_T
- Smearing + offline analysis: private ROOT code

¹³C. Degrande, O. Mattelaer, **RR**, J. Turner [1602.06957] Available from FeynRules database: feynrules.irmp.ucl.ac.be/wiki/HeavyN ¹⁴See W'+jet veto analysis, Fuks, **RR** [1701.05263] ← □ → ← ⑦ → ← ⑧ → ← ⑧ → ↓ ◎ → ∞ ∞

Flavor Hypothesis and Signal Definition

As a benchmark flavor mixing scenario we set:

$$|V_{e4}|=|V_{ au4}|
eq 0$$
 and $|V_{\mu4}|=0$

Two complementary¹⁵ signal processes ($\ell_X = e, \mu, \tau_h$):

Signal I: $pp \rightarrow \tau_h^+ \tau_h^- \ell_X + MET$ and **Signal II:** $pp \rightarrow \tau_h^\pm e^\mp \ell_X + MET$

Selection Cuts: Standard ID requirements and $m_{2\ell,3\ell}$ cuts **Nonstandard Cuts**:

- Require $p_T^{j_1} < p_T^{\ell_1}$ (jet veto) and $\mathcal{S}_T^\ell > 120~{
 m GeV}$
- Given m_N hypothesis, cut on closest multi-body transverse mass $ilde{M}$

$$\begin{split} \tilde{M}_{T,i}^2 \ &= \ \left[\sqrt{p_T^2(\ell^{\rm OS}) + m_{\ell^{\rm OS}}^2} + \sqrt{p_T^2(\ell_i^{\rm SS}, \vec{p}_T) + M_W^2} \right]^2 \\ &- \ \left[\vec{p}_T(\ell^{\rm OS}, \ell_i^{\rm SS}) + \ \vec{p}_T \right]^2, \quad i = 1, 2. \end{split}$$

 $^{15}{
m BR}(au/W o eX)$ are well-measured \implies can falsify no-LFV hypothesis if measured >

Results for 14 TeV LHC: $e\tau$ Scenario

Plotted: LHC 14 sensitivity to active-sterile neutrino mixing (coupling) vs heavy neutrino mass

- Dash = standard search¹⁶ with *b*-jet veto (13 TeV CMS for e/μ)
- Solid = "improved" analysis with special type of jet veto

Improved sensitivity up to $10 - 11 \times$ with $\mathcal{L} = 3 \text{ ab}^{-1}$. ¹⁶More aggressive cuts on charged leptons: e.g., $p_T^{\ell_1} > 55 \text{ GeV}_{\oplus} m_{3\ell} \ge 80 \text{ GeV} \ge 223 \text{ GeV}_{\oplus} m_{3\ell} \ge 80 \text{ GeV}_{\oplus} m_{3\ell} = 10 \text{ GeV}_{\oplus} m_{3\ell} = 10$

More at 14 TeV LHC: $e\mu$ Scenario

Benchmark flavor mixing scenario II:

 $|V_{e4}|=|V_{\mu4}|
eq 0$ and $|V_{ au4}|=0$

Two complementary signal processes $(\ell_X = e, \mu, \tau_h)$:

Signal I: $pp \rightarrow \mu^+ \mu^- \ell_X + MET$ and **Signal II:** $pp \rightarrow \mu^\pm e^\mp \ell_X + MET$

Again, improved sensitivity $> 10 \times$ with $\mathcal{L} = 3$ ab⁻¹₋₁,

R. Ruiz - IPPP

Summary

Heavy neutrinos remain one of the best (but not the only!) explanations for tiny neutrino masses

Idea: We have developed a new approach to searches for heavy N at pp colliders, one based on an unsual jet veto scheme $(p_T^{\text{Veto}} = p_T^{\ell_1})$

- New veto scheme reveals > 90 95% signal acceptance with little-to-no dependence on m_N (contrary to previous veto schemes)
- Substantial reduction in QCD theory uncertainty at NLO+NNLL(Veto) ⇒ less need for high-precision resummation
- Redesigned search analysis with better reduction of background \implies Improved LHC sensitivity by up to 10× over LHC's lifetime

Remember: "The LHC is planned to run over the next 20 years, with several stops scheduled for upgrades and maintenance work" [press.cern]

- \bullet High-Luminosity LHC and Belle II goals: 3-5 ab^{-1} and 50 ab^{-1}
- Premature to claim "nightmare scenario" (SM Higgs + nothing else)

28 / 28

æ

◆□ → ◆圖 → ◆臣 → ◆臣 → ○