Boosted Dark Matter at Large Volume Neutrino Detectors

Joshua Berger August 10, 2018

University of Pittsburgh

1st International High Energy Physics School and Workshop in Western China

Thermal relic dark matter is slow

Nucleus Kinetic Energy O(10 KeV)

Boosted DM: "Elastic" scattering

Nucleon Kinetic Energy O(100 MeV)

Boosted DM: Inelastic scattering

Simple BDM models exist

First benchmark: Axial Z'

• In addition to annihilation, there is a scattering process that allows for detection

$$egin{array}{lll} \mathcal{L} &\supset & - Q^{V,(\mathcal{A})}_{\chi} \, g_{Z'} \, Z'_{\mu} \, ar{\chi} \gamma^{\mu}(\gamma^5) \chi \ & - \sum_f Q^{V,(\mathcal{A})}_f \, g_{Z'} \, Z'_{\mu} \, ar{q}_f \gamma^{\mu}(\gamma^5) q_f \end{array}$$

• As a first benchmark, take

$$Q^V_i=0, \quad Q^A_\chi=1, \quad Q^A_{
ho, ext{eff}}=1$$

Simple parametrization for elastic case

Direct detection cross-section: $\sigma_{\rm DD} \equiv \sigma_{\chi,p}^{\nu \to 10^{-3}}$

- Semi-annihilation has just 2 dominant parameters: $m_{\chi}, \sigma_{\mathrm{DD}}, (m_{Z'})$
- Two component more complex, flexible:

$$m_A, m_B/m_A, \sigma_A, \sigma_B/\sigma_A, (m_{Z'}/m_A)$$

• Fermionic DM: $\sigma_{\chi,p} \propto v^0$ Scalar DM: $\sigma_{\chi,p} \propto v^2$

Rescattering

Hadron scattering

JB, Cui, Zhao, JCAP 1502 (2015) 005

Looking with water Čerenkov

Physical energy threshold: $E_{\rm K,recoil} = 480 {
m MeV}$

Hard to reconstruct inelastic

Experiments: Super-Kamiokande Hyper-Kamiokande

Water Čerenkov results

JB, Cui, Zhao: JCAP 1502 (2015) 005

A future in liquid argon TPCs

Threshold:
$$E_{
m K,recoil} \lesssim 50~{
m MeV}$$

Inelastic reconstruction possible

Experiments LArIAT ICARUS MicroBooNE DUNE

Yellow captions from talk by Luo

Checklist for DUNE

- ✓ Develop a Monte Carlo Based on GENIE neutrino MC Includes DIS and nuclear effects Merged into GENIE v3
- ✓ Simulate dark matter flux from sun
- $\checkmark\,$ Integrate into LArSoft detector simulation

Develop an analysis strategy & make projections

Theory: JB, Cui, Necib, Zhao Experiment: Petrillo, Tsai, MicroBooNE BSM group GENIE: Andreopoulos, Hatcher

Three different processes

χ χ Δ/N^* Ν N Resonant Dominated by Δ , N^* $M^* \in [1, 2]$ GeV Needs a model Rein & Sehgal: Ann.Phys.133, 79 (1981)

Deep Inelastic

Use standard parton model

DM beam?

Nuclear effects are important

Model large nucleus as Fermi gas with $p_F \sim 250 \text{ MeV}$

Fermi motion 3.0 2.5 2.0 $o_F \frac{dN}{dp_F}$ 1.5 Pauli blocking 1.0 0.5 0.0 0.2 0.0 0.4 0.6 0.8 1.0 1.2 p/pF $\frac{d\sigma}{dp'}
ightarrow \frac{d\sigma}{dp'} \theta(p' - p_F)$ Rescattering

Current Status of BDM in GENIE

- \checkmark 2 models: fermion or scalar DM, axial Z' coupling
- $\checkmark\,$ Elastic and Deep Inelastic scattering implemented
- \checkmark Framework mostly set for further models
- ✓ Integrated into GENIE v3

Next steps: Detector simulation

Courtesy of

Yun-Tse Tsai

• Include additional interaction models: more general quark charges and interaction structures

• Include resonant production of excited baryons

• Improve modeling of nuclear and hadronic physics

Conclusions

• Traditional direct detection continues to put pressure on minimal WIMP scenarios

• Boosted dark matter models are an alternative with signals at large volume neutrino detectors

• New Monte Carlo tools required to determine sensitivity to BSM at fixed target experiments