# Uyarilmıș u-kuarkın FCC ve SppC Çarpıştırıcilarında Araştırılması 

Mehmet Șahin

Ușak Üniversitesi<br>Fen Edebiyat Fakültesi, Fizik Bölümü

09.03.2018, TOBB ETÜ Fizik Çalıștayı

## Outline

(1) Excited Quarks, Future Circular Collider (FCC) and Super proton proton Collider (SppC)

Quarks and Excited Quarks
Mass Limits for excited Quarks
Future Circular Collider (FCC) and Super proton proton
Collider (SppC)
(2) Excited Quark Interaction Lagrangian

Interaction Lagrangian
Simulation Software
(3) Decay Widths and Cross Sections

Decay Widths and Cross Sections Plots
(4) Signal and Background Analysis

Transverse Momentum ( $P_{T}$ ), Rapidity $(\eta)$, Invariant Mass
( $M_{j j}$ )
$P_{T}, \eta$, Invariant Mass Cuts and Cone Radius of Jets Cuts
(5) Results
(6) Acknowledgments

## Outline

(1) Excited Quarks, Future Circular Collider (FCC) and Super proton proton Collider (SppC)

Quarks and Excited Quarks

## Mass Limits for excited Quarks

Future Circular Collider (FCC) and Super proton proton
Collider (SppC)
(2) Excited Quark Interaction Lagrangian

Interaction Lagrangian
Simulation Software
(3) Decay Widths and Cross Sections

Decay Widths and Cross Sections Plots
(4) Signal and Background Analysis

Transverse Momentum ( $P_{T}$ ), Rapidity $(\eta)$, Invariant Mass $\left(M_{j j}\right)$
$P_{T}, \eta$, Invariant Mass Cuts and Cone Radius of Jets Cuts
(5) Results
(6) Acknowledgments

## Excited Quarks

- Composite models predicts the existence of excited leptons and quarks. Excited quarks and leptons could have $1 / 2$ and 3/2 spin states.


## Excited Quarks

- Composite models predicts the existence of excited leptons and quarks. Excited quarks and leptons could have $1 / 2$ and 3/2 spin states.
- Standard Model (SM) quark families:

| $1^{s t}$ | $2^{n d}$ | $3^{r d}$ |
| :---: | :---: | :---: |
| u | c | t |
| d | s | b |

## Excited Quarks

- Composite models predicts the existence of excited leptons and quarks. Excited quarks and leptons could have $1 / 2$ and 3/2 spin states.
- Standard Model (SM) quark families:
- Excited quarks denotes by $q *$ like:

| $1^{s t}$ | $2^{n d}$ | $3^{r d}$ |
| :---: | :---: | :---: |
| u | c | t |
| d | s | b |
| $1^{s t}$ | $2^{n d}$ | $3^{r d}$ |
| $\mathrm{u}^{*}$ | $\mathrm{c}^{*}$ | $\mathrm{t}^{*}$ |
| $\mathrm{~d}^{*}$ | $\mathrm{~s}^{*}$ | $\mathrm{~b}^{*}$ |

## Excited Quarks

- Composite models predicts the existence of excited leptons and quarks. Excited quarks and leptons could have $1 / 2$ and 3/2 spin states.
- Standard Model (SM) quark families:
- Excited quarks denotes by $q *$ like:

| $1^{s t}$ | $2^{\text {nd }}$ | $3^{\text {rd }}$ |
| :---: | :---: | :---: |
| u | c | t |
| d | s | b |


| $1^{s t}$ | $2^{n d}$ | $3^{r d}$ |
| :---: | :---: | :---: |
| $\mathrm{u}^{*}$ | $\mathrm{c}^{*}$ | $\mathrm{t}^{*}$ |
| $\mathrm{~d}^{*}$ | $\mathrm{~s}^{*}$ | $\mathrm{~b}^{*}$ |

- In our analysis, we focused on $1^{\text {st }}$ family member spin-1/2 excited quark $u *$


## Outline

(1) Excited Quarks, Future Circular Collider (FCC) and Super proton proton Collider (SppC)

Quarks and Excited Quarks
Mass Limits for excited Quarks
Future Circular Collider (FCC) and Super proton proton
Collider (SppC)
(2) Excited Quark Interaction Lagrangian

Interaction Lagrangian
Simulation Software
(3) Decay Widths and Cross Sections

Decay Widths and Cross Sections Plots
(4) Signal and Background Analysis

Transverse Momentum ( $P_{T}$ ), Rapidity $(\eta)$, Invariant Mass
$\left(M_{i j}\right)$
$P_{T}, \eta$, Invariant Mass Cuts and Cone Radius of Jets Cuts
(5) Results
(6) Acknowledgments

## Mass Limits

- We investigated excited quarks that are decay into dijet. So, we checked ATLAS and CMS results on dijet for spin-1/2 excited quarks.
- In ATLAS dijets papers, ATLAS Collaboration put 6.0TeV mass limits on spin-1/2 excited quark mass (Center of Mass 13 TeV and $L_{i n t}=37 \mathrm{fb}^{-1}$ ).
- In CMS dijets papers, CMS Collaboration put 5.4 TeV mass limits on spin-1/2 excited quark mass (Center of Mass 13 TeV and $L_{i n t}=12.9 \mathrm{fb}^{-1}$ ).
- Therefore we have used $M_{u *}=6000 \mathrm{GeV}$ starting mass point for spin-1/2 excited quark in our calculation.


## Outline

(1) Excited Quarks, Future Circular Collider (FCC) and Super proton proton Collider (SppC)

Quarks and Excited Quarks
Mass Limits for excited Quarks
Future Circular Collider (FCC) and Super proton proton
Collider (SppC)
(2) Excited Quark Interaction Lagrangian

Interaction Lagrangian
Simulation Software
(3) Decay Widths and Cross Sections

Decay Widths and Cross Sections Plots
(4) Signal and Background Analysis

Transverse Momentum ( $P_{T}$ ), Rapidity $(\eta)$, Invariant Mass $\left(M_{j j}\right)$
$P_{T}, \eta$, Invariant Mass Cuts and Cone Radius of Jets Cuts
(5) Results
(6) Acknowledgments


- When the LHC life time is over, one of the new option for high energy physics is Future Circular Collider (FCC).

- When the LHC life time is over, one of the new option for high energy physics is Future Circular Collider (FCC).

| FCC | $L_{\text {int }}\left(\mathrm{fb}^{-1}\right)$ | Operating Time |
| :---: | :---: | :---: |
| Phase I | $250 /$ year | $2500 \mathrm{fb}^{-1}$ within 10 Years |
| Phase II | $1000 /$ year | $15000 \mathrm{fb}^{-1}$ within 10 Years |
| Total | 17500 | 25 Years |

- FCC is planned to be established at CERN in years 2030 .


## SppC



When the LHC life time is over, the other new option for high energy physics is
Super proton proton Collider (SppC).

## SppC



When the LHC life time is over, the other new option for high energy physics is Super proton proton Collider (SppC).

| SppC | $L_{\text {int }}\left(\mathrm{fb}^{-1}\right)$ | Operating Time |
| :---: | :---: | :---: |
| run | $1500 /$ years | $22500 \mathrm{fb}^{-1}$ within 15 Years |

- SppC is planned to be established at China in years 2042.


## Outline

(1) Excited Quarks, Future Circular Collider (FCC) and Super proton proton Collider (SppC)

Quarks and Excited Quarks
Mass Limits for excited Quarks
Future Circular Collider (FCC) and Super proton proton
Collider (SppC)
(2) Excited Quark Interaction Lagrangian

Interaction Lagrangian
Simulation Software
(3) Decay Widths and Cross Sections

Decay Widths and Cross Sections Plots
(4) Signal and Background Analysis

Transverse Momentum ( $P_{T}$ ), Rapidity $(\eta$ ), Invariant Mass
$\left(M_{i j}\right)$
$P_{T}, \eta$, Invariant Mass Cuts and Cone Radius of Jets Cuts
(5) Results
(6) Acknowledgments

## Interaction Lagrangian \& Simulation Softwares

## Spin-1/2 Excited Quarks Effective Lagrangian

$$
L_{\text {eff }}=\frac{1}{2 \Lambda} \bar{q}^{*} \sigma^{\mu \nu}\left[g_{s} f_{s} \frac{\lambda^{2}}{2} F_{\mu \nu}^{a}+g f \frac{\vec{\tau}}{2} \vec{W}_{\mu \nu}+g^{\prime} f^{\prime} \frac{Y}{2} B_{\mu \nu}\right] q_{L}+\text { h.c. }
$$

- : Compositeness Scale
- $q^{*}$ : Excited Quark
- $q_{L}$ : Lefthanded ground state Quark
- $F_{\mu \nu}^{a}, \vec{W}_{\mu \nu}, B_{\mu \nu}$ : Field strength tensors for gluon, $\mathrm{SU}(2)$ and $\mathrm{U}(1)$.
- $\lambda^{a}$ : Gell-Mann matrices.
- $\vec{\tau}$ : Pauli Spin Matrices
- $Y=1 / 3$ : Weak hypercharge
- $g_{s}, g, g^{\prime}$ : Gauge coupling constants
- $f_{s}, f, f^{\prime}$ are free parameters
- We took $f_{s}=f=f^{\prime}=1$ in our calculations.


## Outline

(1) Excited Quarks, Future Circular Collider (FCC) and Super proton proton Collider (SppC)

Quarks and Excited Quarks
Mass Limits for excited Quarks
Future Circular Collider (FCC) and Super proton proton
Collider (SppC)
(2) Excited Quark Interaction Lagrangian

Interaction Lagrangian
Simulation Software
(3) Decay Widths and Cross Sections

Decay Widths and Cross Sections Plots
(4) Signal and Background Analysis

Transverse Momentum $\left(P_{T}\right)$, Rapidity $(\eta)$, Invariant Mass
( $M_{i j}$ )
$P_{T}, \eta$, Invariant Mass Cuts and Cone Radius of Jets Cuts
(5) Results
6) Acknowledgments

HEP Calculation Software CalcHEP.

- One of the popularly used softwares to calculate particle cross-section, decay width, etc. is CalcHEP.
- For the numerical calculation we implemented spin-1/2 excited quark effective Lagrangian via LanHEP to CalcHEP.


## Feynman Diagrams

Signal and background processes as:

$$
\begin{gathered}
p+p \rightarrow u^{*}+X \rightarrow g+u+X \\
p+p \rightarrow j+j+X
\end{gathered}
$$

where $j: u, \bar{u}, d, \bar{d}, c, \bar{c}, s, \bar{s}, b, \bar{b}, g$
Signal diagrams that include excited quark as:


## Outline

(1) Excited Quarks, Future Circular Collider (FCC) and Super proton proton Collider (SppC)

Quarks and Excited Quarks
Mass Limits for excited Quarks
Future Circular Collider (FCC) and Super proton proton
Collider (SppC)
2 Excited Quark Interaction Lagrangian
Interaction Lagrangian
Simulation Software
(3) Decay Widths and Cross Sections

Decay Widths and Cross Sections Plots
(4) Signal and Background Analysis

Transverse Momentum ( $P_{T}$ ), Rapidity $(\eta)$, Invariant Mass
$\left(M_{i j}\right)$
$P_{T}, \eta$, Invariant Mass Cuts and Cone Radius of Jets Cuts
(5) Results
(6) Acknowledgments

## Decay Widths Plot



These decay width values are plotted for 2 compositeness scale options.

## Cross Sections Plots



Cross Sections values of $u^{*}$ are also plotted with respect to 2 different compositeness scales at the FCC $(\sqrt{s}=100 \mathrm{TeV})$ and $\operatorname{SppC}(\sqrt{s}=136$ TeV )

## Outline

Excited Quarks, Future Circular Collider (FCC) and Super proton proton Collider (SppC)

Quarks and Excited Quarks
Mass Limits for excited Quarks
Future Circular Collider (FCC) and Super proton proton
Collider (SppC)
(2) Excited Quark Interaction Lagrangian

Interaction Lagrangian
Simulation Software
(3) Decay Widths and Cross Sections

Decay Widths and Cross Sections Plots
4) Signal and Background Analysis

Transverse Momentum $\left(P_{T}\right)$, Rapidity $(\eta)$, Invariant Mass
( $M_{i j}$ )
$P_{T}, \eta$, Invariant Mass Cuts and Cone Radius of Jets Cuts
(5) Results
6. Acknowledgments

## FCC 100 TeV Center of Mass




- We do simulations for 4 different mass values and draw $P_{T}, \eta$, invariant mass distribution plots.
- We determine $P_{T}$ cuts 2000 GeV from the $P_{T}$ distributions and $\eta$ cut was selected between -2.5 and 2.5 by using ATLAS and CMS detector parameters.


## SppC 136 TeV Center of Mass




- We do simulations for 4 different mass values and draw $P_{T}, \eta$, invariant mass distrubution plots.
- We determine $P_{T}$ cuts 2000 GeV from the $P_{T}$ distributions and $\eta$ cut was selected between -2.5 and 2.5 by using ATLAS and CMS detector parameters.


## Outline

(1) Excited Quarks, Future Circular Collider (FCC) and Super proton proton Collider (SppC)

Quarks and Excited Quarks
Mass Limits for excited Quarks
Future Circular Collider (FCC) and Super proton proton
Collider (SppC)
2 Excited Quark Interaction Lagrangian
Interaction Lagrangian
Simulation Software
(3) Decay Widths and Cross Sections

Decay Widths and Cross Sections Plots
(4) Signal and Background Analysis

Transverse Momentum ( $P_{T}$ ), Rapidity $(\eta)$, Invariant Mass $\left(M_{i j}\right)$
$P_{T}, \eta$, Invariant Mass Cuts and Cone Radius of Jets Cuts
(5) Results
(6) Acknowledgments

## $P_{T}, \eta$, Invariant Mass and Cone Radius of Jets Cuts

- Applying $P_{T}$ and $\eta$ cuts which mentioned before.
- We apply Invariant mass cuts by using decay rates that correspond to each mass values scanned.
- Invariant Mass Cut: $M_{u^{*}} \pm 2 * \Gamma_{u *}$
- Finally we apply cone of radius of jets: $\Delta R=0.5$.
- Then, we scanned all mass values for signal and background to calculate significances.
- Significance Calculation:

$$
\sigma_{S}=\frac{S}{\sqrt{S+B}} * \sqrt{L}
$$

S: Signal Cross Section
B: Background Cross Section
L: Integrated Luminosity

## FCC Results



We scanned all luminosity ranges with respect to $u^{*}$ mass which are planned to be achieved at FCC with $\Lambda=M_{u^{*}}$ for Phase I (250-2500 $\mathrm{fb}^{-1}$ ) in 10 years and Phase II $\left(2500-17500 \mathrm{fb}^{-1}\right)$ in 15 years.

| Future Circular Collider $(\sqrt{s}=100 \mathrm{TeV})$ |  |  |  |  |
| :---: | :---: | :---: | :--- | :--- |
| $\wedge(\mathrm{TeV})$ | $L_{\text {int }}\left(f b^{-1}\right)$ | $\mathrm{M}_{u^{*}}(\mathrm{TeV})$ |  |  |
|  |  | $2 \sigma$ | $3 \sigma$ | $5 \sigma$ |
| 100 | 250 | 29.6 | 26.4 | 22.5 |
|  | 2500 | 38.3 | 35.2 | 31.4 |
|  | 17500 | 45.2 | 42.4 | 38.7 |
| $\mathrm{M}_{u^{*}}$ | 250 | 36.8 | 34.3 | 31.2 |
|  | 2500 | 43.8 | 41.3 | 38.2 |
|  | 17500 | 49.5 | 47.1 | 44.1 |

## FCC Results



We scanned compositeness versus $M_{u^{*}}$ for 25 years.

|  | $\Lambda(\mathrm{TeV})$ |  |  |
| :---: | :---: | :---: | :---: |
| $M_{u^{*}}(\mathrm{TeV})$ | $5 \sigma$ | $3 \sigma$ | $2 \sigma$ |
| 6 | 13455.7 | 22426.2 | 33639.3 |
| 10 | 6209.63 | 10349.4 | 15524.1 |
| 20 | 1195.12 | 1991.86 | 2987.79 |
| 30 | 310.559 | 517.598 | 776.397 |

## SppC Results



We scanned all luminosity ranges with respect to $u^{*}$ mass which are planned to be achieved at $\operatorname{SppC}$ with $\Lambda=M_{u^{*}}$ for 1500-22500 $\mathrm{fb}^{-1}$ in 15 (1)
years. years.

## SppC Results

| Super proton proton Colliders $(\sqrt{s}=136 \mathrm{TeV})$ |  |  |  |  |
| :---: | :---: | :---: | :--- | :--- |
| $\wedge(\mathrm{TeV})$ | $L_{\text {int }}\left({\left.f b^{-1}\right)}^{2}\right.$ | $\mathrm{M}_{u^{*}}(\mathrm{TeV})$ |  |  |
|  |  | $2 \sigma$ | $3 \sigma$ | $5 \sigma$ |
| 100 | 22500 | 62.2 | 58.3 | 53.8 |
| $\mathrm{M}_{u^{*}}$ | 22500 | 65.7 | 62.5 | 58.3 |

## SppC Results



We scanned compositeness versus $M_{u^{*}}$ for 15 years.

## SppC Results

|  | $\wedge(\mathrm{TeV})$ |  |  |
| :---: | :---: | :---: | :---: |
| $M_{u^{*}}(\mathrm{TeV})$ | $5 \sigma$ | $3 \sigma$ | $2 \sigma$ |
| 6 | 19206.1 | 32010.1 | 48015.2 |
| 10 | 10058.4 | 16763.9 | 25145.9 |
| 20 | 2682.99 | 4471.66 | 6707.49 |
| 30 | 992.979 | 1654.97 | 2482.45 |

## ACKNOWLEDGMENTS

This study is supported by TUBITAK under the grant No 114F337.

## References I

R A. Belyaev, N. Christensen, A. Pukhov.
CalcHEP 3.4 for collider physics within and beyond the Standard Model.
Computer Physics Communications 184 (2013), pp. 1729-1769.
R A. Semenov.
LanHEP - a package for automatic generation of Feynman rules from the Lagrangian. Updated version 3.2
arXiv:1412.5016 [physics.comp-ph].
围 U. Baur.
Excited Quark Production at Hadron Colliders. Fermilab Conf-87/102T, MAT/PH/354:LBL23645, June 1987.
© U. Baur, M. Spira. and P. M. Zerwas.
Excited-quark and -lepton production at hadron colliders. Physical Review D 42, 815, 1 August 1990.

## References II

囯 CMS Collaboration.
Search for dijet resonances in proton-proton collisions at $\sqrt{s}=$ 13 TeV and constraints on dark matter and other models.
Physics Letters B, 769,520-542, 10 June 2017.
ATLAS Collaboration.
Search for new phenomena in dijet events using $37 \mathrm{fb}^{-1}$ of $p p$ collision data collected at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector.
arXiv:1703.09127, March 2017.
R M. Benedikt.
Future circular collider study.
Technical report, FCC-DRAFT-MGMT-2016-008, 2014.

## References III

围 M. Benedikt and F. Zimmermann.
Future circular colliders.
Technical report, FCC-DRAFT-ACC-2015- 032, 2015.
(R) O. Cakir, R. Mehdiyev, Excited quark production at the CERN LHC. Pysical Review D60, 034004, 22 June 1999.
O. Cakir, C. Leroy, and R. Mehdiyev

Search for excited quarks with the ATLAS experiment at the CERN LHC: Double jets channel.
Pysical Review D 62, 114018, 7 November 2000.

## BackUp Slides

Spin-1/2 particle propagator:

$$
S_{F}(p)=\frac{\gamma^{\mu} p_{\mu}+m}{p^{2}-m^{2}+i \varepsilon}
$$

Spin-3/2 particle propagator:

$$
S_{F}\left(p^{\mu \nu}\right)=\frac{1}{p^{2}-M^{2}}\left[-(p p+M)\left(\eta^{\mu \nu}-\frac{p^{\mu} p^{\nu}}{M^{2}}\right)-\frac{1}{3}\left(\gamma^{\mu}+\frac{p^{\mu}}{M}\right)(p p-M)\left(\gamma^{\nu}+\frac{p^{\nu}}{M}\right)\right]
$$

