Optics for Compton Spectrometer

K. Oide, based on suggestions by Nickolai Muchnoi, Alain Blondel30 Nov. 2017

XIth FCC-ee Energy Calibration and Polarization WG meeting

Inverse Compton Spectrometer for energy calibration

- The scattering parameters are estimated from the 2D distributions of the scattered photons and electrons.
- Does not relay on the BPM readings.
- Quadrupoles after the dipole are unfavorable.

Nickolai Muchnoi

Possible Location for the spectrometer

FCCee z 210 nosol 1.sad В 80 Exp. Inj. + Exp. + Exp. 70 √β_v $\sqrt{\beta_x}, \sqrt{\beta_y} (\sqrt{m})$ 60 4 km B,H F,L 50Ē -B-coll \rightarrow extraction 2.8 km 40 1.4 km 30Ē RF 20 Exp. ľ Н F G 10 0 400 <u>cheirerieire</u> illerhiller. ղ_x, ղ_y (mm) 200 Beam -0 Outer Arc Inner Arc η_x -200 η_y -400 -20 -5 -15 -10 5 10 15 20 km 0

The dispersion suppressor dipole (BDS): of the outgoing

Require that there is no quadrpole on the traje of the outgoing electrons of the lowest energy

BEND BDS =(L =24.119925292770883 ANGLE =.002134100603580931 E1 =.5 E2 =.5)

;

;

No quads after the dipole for 100 m.

The dispersion suppressor dipole (BDS):

; BEND BDS =(L =24.119925292770883 ANGLE =.002134100603580931 E1 =.5 E2 =.5) ;

The dispersion suppressor dipole (BDS):

; BEND BDS =(L =24.119925292770883 ANGLE =.002134100603580931 E1 =.5 E2 =.5); Asymmetric acceptance (ttbar)

 $\sigma_{\rm E0}$ = 0.00153, $\sigma_{\rm E}$ = 0.00193, Black line: Gauss with $\sigma_{\rm E}$ = 1.3 $\sigma_{\rm E0}$

Energy acceptance: 2.5% = 16.3 σ_{FO}

- The expected energy distribution of the beam has asymmetric tail due to beamstrahlung (D. Shatilov, as above).
- Thus the required momentum acceptance should be asymmetric: Wider aperture in the negative side.
- The aperture of the positive side can be expressed as the summation of damping and diffusion terms in a half synchrotron period:

$$A_{+} \approx -A_{-} \exp(-\alpha_{z}/2\nu_{s}) + 3\sigma_{\delta,\mathrm{BS}}\sqrt{1 - \exp(-\alpha_{z}/\nu_{s})}$$

with the longitudinal damping rate α_z .

Dynamic Aperture – looks OK for all energies

 $\begin{array}{l} \text{FCCee_h_211_nosol_11.sad: } \epsilon_x = .62 \text{ nm}, \ \epsilon_y/\epsilon_x = 0.16\%, \ \sigma_\epsilon = 0.098\%, \ \sigma_z = 3.2 \text{ nm}, \\ \beta_{x,y}^* = \{.3 \text{ m}, 1 \text{ nm}\}, \ \nu_{x,y,z} = \{ 389.1294, 389.1985, \ -0.0354 \}, \ \text{Crab Waist} = 85\% \\ 145 \text{ turns}, \ \text{Damping: each element}, \ \text{Touschek Lifetime: } 942357 \text{ sec } @ \text{ N} = 4 \times 10^{10} \end{array}$

FCCee_t_211_nosol.sad: $ε_x = 1.43$ nm, $ε_y/ε_x = 0.20\%$, $σ_ε = 0.149\%$, $σ_z = 2.5$ mm, $β_{x,y}^x = \{1 \text{ m}, 1.98 \text{ mm}\}$, $ν_{x,y,z} = \{389.1038, 389.1762, -0.0680\}$, Crab Waist = 50% 45 turns, Damping: each element, Touschek Lifetime: 9.49E7 sec @ N = 1x10¹⁰

Summary

- The optics of the inner ring of the short straight section B, H are modified to install the Compton spectrometer.
- Quadrupoles are removed after the dispersion suppressor dipole (BDS) for 100 m.
- Dynamic aperture looks OK at ttbar, and in progress for other energies.
- An optimization of DA with asymmetric momentum acceptance has been tried fo ttbar.