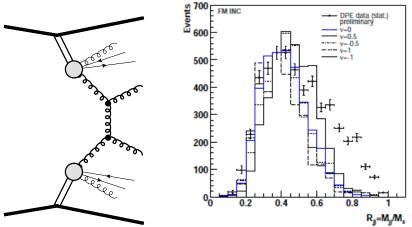
Exclusive Jet Production at the LHC Feasibility Studies

Maciej Trzebiński

Institute of Nuclear Physics Polish Academy of Sciences

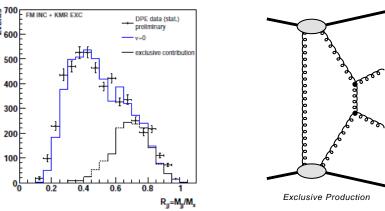

International Wilhelm and Else Heraeus Physics School

Diffractive and electromagnetic processes at high energies

Bad Honnef, 17th August 2015

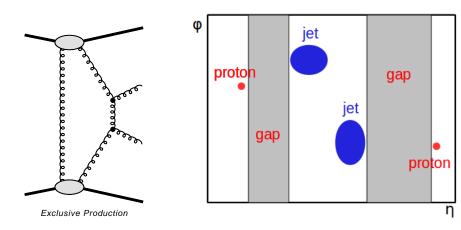
Tevatron – Analysis of the DPE Jet Production

 $\label{eq:DPE-Double-Pomeron-Exchange} \mbox{Signature: two jets in central region} + \mbox{two intact protons.}$



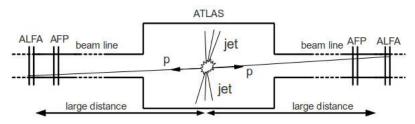
Goal: to probe the Pomeron Density Function.

Too much events in the high mass ratio (M_{jj}) region. Mass ratio is defined as the ratio of mass of the dijet system to missing mass.


Exclusive Jet Production at the Tevatron

Signature: two jets in central region + two intact protons + gap in rapidity between jet and proton (no remnants).

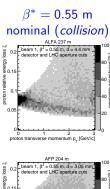
KMR model explains additional contribution in high mass ratio region. In such process there are no Pomeron remnants (in theory ratio = 1, smearing due to the detector effects).

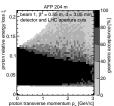

Detection Methods

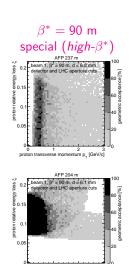
- 1. Gaps between jets and outgoing protons.
- 2. Intact proton tagging.

Forward Detectors

Intact protons – natural diffractive signature.

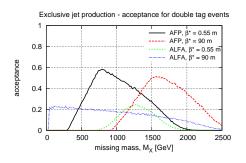


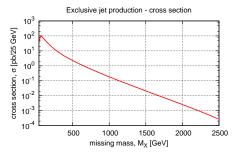

ALFA


- exists, 240 m from ATLAS IP
- elastic scattering
- special runs (high β^* optics)
- position detectors
- vertically inserted Roman Pots
- soft events, pile-up background

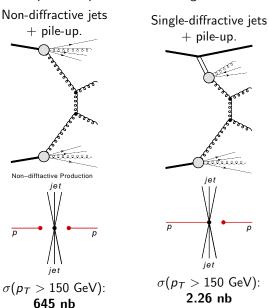
AFP

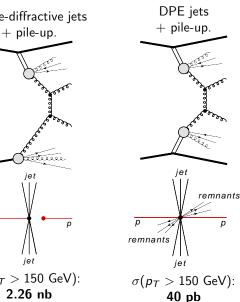
- planned, 210 m from ATLAS IP
- hard diffraction
- nominal runs (collision optics)
- position and timing detectors
- horizontally inserted RP
- proton detector for hard events





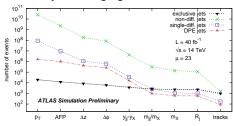
proton transverse momentum p_ [GeV/c]

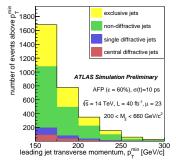

Mass Acceptance

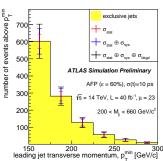


Background

Pile-up – multiple collisions during one bunch crossing (mostly min-bias).

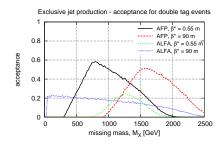


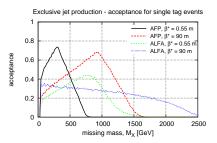

Double Tagged Events

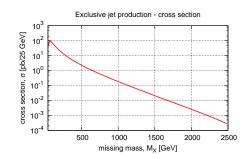

Exclusive Jet Production with Forward Proton Tagging
ATL-PHYS-PUB-2015-003

Number of Events ($\mu = 23$)

large masses \rightarrow high p_T jets \rightarrow smaller cross sections \rightarrow large pile-up \rightarrow very challenging measurement

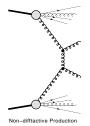



Single Tagged Events

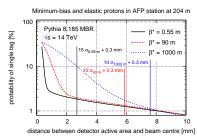

On the Possibility of Measuring the Single-tagged Exclusive Jets at the LHC

Eur. Phys. J. C 75 (2015) 320; arXiv:1503.00699

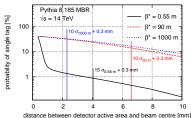
Motivation



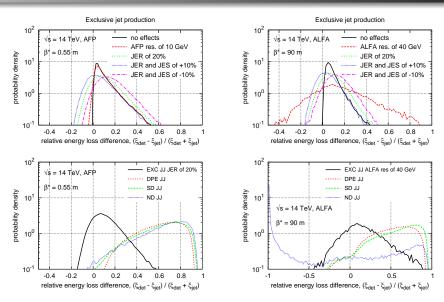
Non-diffractive Backgrounds

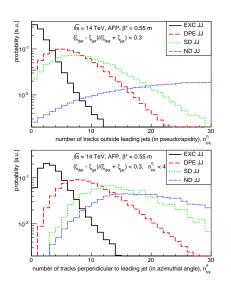

Non-diffractive jets + pile-up

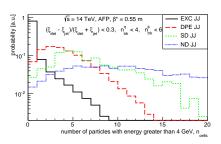



Cuts:

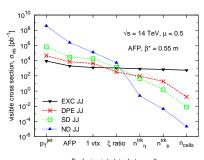
- proton in AFP/ALFA,
- one reconstructed vertex.

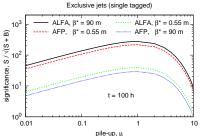

Soft single tag probability

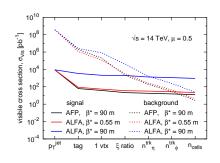



Relative Energy Loss Difference

$$\xi^{jet} = \exp(\pm y_{jj}) \frac{M_{jj}}{\sqrt{s}}$$


Veto on Additional Activity





- number of tracks outside jet system (in η): $n_{trk} < 4$,
- number of tracks perpendicular to the leading jet (in ϕ): $n_{phi} < 6$,
- number of particles with energy greater than 4 GeV, $n_{cells} < 2$.

Purity and statistical significance

- Top: cutflow.
- Bottom: statistical significance $(\frac{S}{\sqrt{S+B}})$ for 100 hours.

Summary

Double tagged events.

- Measurement of the exclusive jet production will be possible in the ATLAS detector during normal runs (low beta, high pile-up) using the AFP detectors.
- Very challenging measurement difference of six orders of magnitude between signal and background cross-sections (impossible to measure without AFP)!
- Results published in: ATL-PHY-PUB-2015-003

Single tagged events.

- \bullet Smaller masses \to larger cross sections \to smaller pile-up \to cleaner events.
- High signal-to-background ratio (between 5 and 10 000, depending on the settings).
- High significance.
- Results published in: Eur. Phys. J. C 75 (2015) 320; arXiv:1503.00699.