Finite mass sum rules for single and double diffraction dissociation

Taras Shevchenko National University, Kyiv, Ukraine
olha.schur@gmail.com
August 18, 2015

Diagrams

(1) Elastic scattering
(2) Single diffraction dissociation
(3) Double diffraction dissociation

Compilation of low-mass SD data form Fermilab experiments

High-mass DD

Figure: From SD to the triple Regge limit.

The double diffraction cross section for SD

$$
\begin{equation*}
\frac{d^{2} \sigma}{d t d M_{x}^{2}}=\frac{G_{13,2}^{\mathbb{P} P, \mathbb{P}(t)}}{16 \pi^{2} s_{0}^{2}}\left(\frac{s}{s_{0}}\right)^{2 \alpha_{\mathbb{P}}(t)-2}\left(\frac{M^{2}}{s_{0}}\right)^{\alpha_{\mathbb{P}}(0)-\alpha_{\mathbb{P}}(t)} \tag{1}
\end{equation*}
$$

References

L. L. Jenkovszky, O. E. Kuprash, J. W. Lamsa, V. K. Magas and // R. Orava, Phys. Rev. D83 (2011) 056014, arXiv:1011.0664 [hep-ph].R. Fiore, A. Flachi, L.L. Jenkovszky, A.I. Lengyel, and V.K. Magas, Phys. Rev. D 69 (2004) 014004, hep- ph/0308178.L. Jenkovszky, O. Shchur, M. Anosova, in preparation.

Model

Figure: Virtual photon+proton $\rightarrow M_{X}$ transition.

Model

Figure: Connection, through unitarity (generalized optical theorem) and Veneziano-duality, between the inelastic form factor and the sum of direct-channel resonances.

Model

The virtual photon-proton scattering total cross section

$$
\begin{equation*}
\sigma_{t}^{\gamma^{*} p}(s)=\operatorname{Im} A\left(s, Q^{2}\right) \tag{2}
\end{equation*}
$$

where scattering amplitude

$$
\begin{equation*}
\left[A\left(s, Q^{2}\right)\right]_{t=0}=N\left(\sum_{r, n} \frac{f_{r}^{2\left(n-n_{r}^{m i n}+1\right)}\left(Q^{2}\right)}{n-\alpha_{r}(s)}+\left[A\left(s, Q^{2}\right)\right]_{t=0}^{B G}\right) \tag{3}
\end{equation*}
$$

Model

The non-linear trajectory can be written as:

$$
\begin{equation*}
\alpha(s)=\alpha_{0}+\alpha_{1}(s)+\alpha_{2}\left(\sqrt{s_{0}}-\sqrt{s_{0}-s}\right) \tag{4}
\end{equation*}
$$

The threshold mass energy $s_{0}=\left(m_{\pi}+m_{p}\right)^{2}=1.14 \mathrm{GeV}^{2}$. The form factor $f(t)$ reads

$$
\begin{equation*}
f(t)=\left(1-t / t_{0}\right)^{-2} \tag{5}
\end{equation*}
$$

where $t_{0}=0.71 \mathrm{GeV}^{2}$.

Model

$$
\begin{equation*}
\left[A\left(s, Q^{2}\right)\right]_{t=0}^{B G}=\sum_{b=E, E^{\prime}} G_{b} \frac{c^{4}\left(Q_{b}\right)}{n_{b}-\alpha_{b}(s)} \tag{6}
\end{equation*}
$$

with dipole form factors, given by

$$
\begin{equation*}
c^{2}\left(Q_{b}\right)=\frac{Q_{b}^{2}}{Q^{2}+Q_{b}^{2}} \tag{7}
\end{equation*}
$$

The exotic trajectories are chosen in the form

$$
\begin{equation*}
\alpha_{b}(s)=\alpha_{b}(0)+\alpha_{1 b}\left(\sqrt{s_{0}}-\sqrt{s_{0}-s}\right) . \tag{8}
\end{equation*}
$$

Cross sections for $t=-0.035 \mathrm{GeV}^{2}$ and $t=-0.05 \mathrm{GeV}^{2}$

Cross section for $t=-0.035 \mathrm{GeV}^{2}$

