Review diffractive and electromagnetic processes in TOTEM

Mario Deile on behalf of the TOTEM Collaboration

Outline

1. The TOTEM Experiment at the LHC: Physics objectives and detector apparatus
2. Some Results from LHC Run 1:
a. Elastic pp Scattering
b. Diffraction
3. Detector Upgrade and Physics Plans for Run 2

The TOTEM Experiment at the LHC

Diffractive and Electromagnetic Processes

Diffractive
Elastic Scattering (ES), $\approx 25 \mathrm{mb}$

Single Diffraction (SD), $\approx 10 \mathrm{mb}$

Double Diffraction (DD), $\approx 5 \mathrm{mb}$

Central Diffraction (CD), $\approx 1 \mathrm{mb}$

pure QED

Photoproduction

Experimental Setup at IP5

[Ref.: JINST 3 (2008) S08007]

Roman Pots: elastic \& diffractive protons close to outgoing beams \rightarrow Proton Trigger

Roman Pots

Roman Pot = movable box inside the beam pipe, housing silicon detectors.
Detectors can approach the beam centre to $<1 \mathrm{~mm}$ when the beams are stable.

Roman Pot Detector Packages

Detector housing

Hybrid board with silicon detector and read-out chips

"edgeless" silicon sensor (full efficiency at $\sim 50 \mu \mathrm{~m}$ from cut edge)

Proton Transport and Reconstruction via Beam Optics

($\mathrm{x}^{*}, \mathrm{y}^{*}$): vertex position
$\left(\theta_{\mathrm{x}}{ }^{*}, \theta_{\mathrm{y}}{ }^{*}\right)$: emission angle: $\mathrm{t} \approx-\mathrm{p}^{2}\left(\theta_{\mathrm{x}}{ }^{* 2}+\theta_{\mathrm{y}}{ }^{* 2}\right)$
$\xi=\Delta \mathrm{p} / \mathrm{p}$: momentum loss (elastic case: $\xi=0$)
Measured in RP $\left(\begin{array}{c}x \\ \Theta_{x} \\ y \\ \Theta_{y} \\ \Delta p / p\end{array}\right)=\underbrace{\left(\begin{array}{ccccc}v_{x} & L_{x} & 0 & 0 & D_{x} \\ v_{x}^{\prime} & L_{x}^{\prime} & 0 & 0 & D_{x}^{\prime} \\ 0 & 0 & v_{y} & L_{y} & 0 \\ 0 & 0 & v_{y}^{\prime} & L_{y}^{\prime} & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)}_{\mathbf{R P}}\left(\begin{array}{c}x^{*} \\ \Theta_{x}^{*} \\ y^{*} \\ \Theta_{y}^{*} \\ \Delta p / p\end{array}\right)$ Values at IP5 to be reconstructed
Product of all lattice element matrices

$$
\begin{array}{|lll}
\hline x_{R P}=L_{x} \Theta_{x}^{*}+v_{x} x^{*}+D_{x} \xi & \begin{array}{l}
\mathrm{L}_{x}, \mathrm{~L}_{\mathrm{y}}: \\
\mathrm{v}_{x}, \mathrm{v}_{\mathrm{y}}:
\end{array} & \text { effective lengths (sensitivity to scattering angle) } \\
\mathrm{D}_{\mathrm{x}}: & \text { dispersion (sensitivity to momentum loss); } \mathrm{D}_{\mathrm{y}} \sim 0
\end{array}
$$

Reconstruction of proton kinematics $=$ inversion of transport equation

Excellent beam optics understanding needed.

TOTEM method: optics calibration using proton tracks [New J. Phys. 16 (2014) 103041]

Different LHC Optics

Hit maps of simulated diffractive events for 2 optics configurations (labelled by β^{*} = betatron function at the interaction point)
$\beta^{*}=0.55 \mathrm{~m}$ (low $\beta^{*}=$ standard at LHC)

$$
\mathrm{L}_{\mathrm{x}}=1.7 \mathrm{~m}, \mathrm{~L}_{\mathrm{y}}=14 \mathrm{~m}, \mathrm{D}_{\mathrm{x}}=8 \mathrm{~cm}
$$

$\beta^{*}=90 \mathrm{~m}$ (special development for RP runs)

$$
\mathrm{L}_{\mathrm{x}}=0, \mathrm{~L}_{\mathrm{y}}=260 \mathrm{~m}, \mathrm{v}_{\mathrm{y}}=0, \mathrm{D}_{\mathrm{x}}=4 \mathrm{~cm}
$$

LHC Optics and TOTEM Running Scenario

Acceptance for diffractive protons:

$\mathrm{t} \approx-\mathrm{p}^{2} \Theta^{* 2}$: four-momentum transfer squared; $\xi=\Delta \mathrm{p} / \mathrm{p}$: fractional momentum loss elastic scattering: special case for $\xi=0$

Diffraction:
$\xi>\sim 0.01$
low cross-section processes (hard diffraction)
Elastic scattering: large |t|

Diffraction:
all ξ if $|t|>\sim 10^{-2} \mathrm{GeV}^{2}$
Elastic scattering: low to mid $|\mathrm{t}|$

Elastic scattering: very low |t| Coulomb-Nuclear Interference

pp Elastic Scattering

7 TeV 8 TeV

Elastic scattering - from ISR to Tevatron

- Minimum in pp, shoulder in $\bar{p} p$ \rightarrow different mix of processes
- Minimum / shoulder moves to lower |t| with increasing s
\rightarrow interaction region grows (as also seen from $\sigma_{\text {tot }}$)

Elastic Scattering: TOTEM Data Collection

Several data sets at different conditions to cover wide $|t|$ range and 3 energies

E (TeV)	β^{*} $(\mathrm{~m})$	RP approach	$\mathcal{L}_{\text {int }}$ $\left(\mu \mathrm{b}^{-1}\right)$	t range $\left(\mathrm{GeV}^{2}\right)$	Elastic events
7	90	$4.8-6.5 \sigma$	83	$7 \cdot 10^{-3}-0.5$	1 M
	90	10σ	1.7	$0.02-0.4$	14 k
	3.5	7σ	0.07	$0.36-3$	66 k
	3.5	18σ	2.3	$2-3.5$	10 k
8	90	$6-9 \sigma$	60	$0.01-1$	7 M
	1000	3σ	20	$6 \cdot 10^{-4}-0.2$	0.4 M
2.76	11	$5-13 \sigma$		$0.05-0.6$	45 k

[EPL 101 (2013) 21002]
[EPL 96 (2011) 21002]
[EPL 95 (2011) 41001]

Model Comparisons

At the time of the TOTEM publication:
No theoretical / phenomenological model described the TOTEM data completely.

Some Lessons on Hadronic Elastic pp Scattering

At low $|t|$: nearly exponential decrease:

$$
\begin{gathered}
\mathrm{B}_{7 \mathrm{TeV}}=(19.89 \pm 0.27) \mathrm{GeV}^{-2} \\
\mathrm{~B}_{8 \mathrm{TeV}}=(19.90 \pm 0.30) \mathrm{GeV}^{-2}
\end{gathered}
$$

Extrapolation to $\mathrm{t}=0 \rightarrow \sigma_{\text {tot }}$ via optical theorem:

$$
\sigma_{\mathrm{tot}}^{2}=\left.\frac{16 \pi}{1+\rho^{2}} \frac{\mathrm{~d} \sigma_{e l}}{\mathrm{~d} t}\right|_{t=0}
$$

Old trends for increasing s are confirmed:

- "shrinkage of the forward peak": minimum moves to lower $|t|$
- forward exponential slope B increases

Non-Exponential Elastic pp Differential Cross-Section

High statistics data set ($\beta^{*}=90 \mathrm{~m}, 2012$): 7 M elastic events $0.027 \mathrm{GeV}^{2}<|\mathrm{t}|<0.2 \mathrm{GeV}^{2}$, i.e. Coulomb effects negligible

Quite exponential at the first glance, but a closer look reveals ...

Non-Exponential Elastic pp Differential Cross-Section

Plotting relative deviation from exponential and fitting
$\mathrm{d} \sigma / \mathrm{dt}=\mathrm{A} \mathrm{e}{ }^{-B(t)|t|}$, with $B(t)=b_{0} \quad$ or $B(t)=b_{0}+b_{1} t \quad$ or $B(t)=b_{0}+b_{1} t+b_{2} t^{2}$

Or: fit simple exponentials in 2 subranges:

Exponential slopes of subranges inconsistent at 7.8σ significance.

Pure exponential form ($\mathrm{N}_{\mathrm{b}}=1$) excluded at 7.2σ significance.

Elastic Scattering in the Coulomb-Nuclear Interference Region

Measure elastic scattering at $|t|$ as low as $6 \times 10^{-4} \mathrm{GeV}^{2}$:

- $\beta^{*}=1000 \mathrm{~m}$ optics: specially developed for measurements at very low $|t|$
- RP approach to 3σ from the beam centre

Elastic Scattering in the Coulomb-Nuclear Interference Region

Simplified West-Yennie (SWY) formula (standard in the past):

- constant slope $\mathrm{B}(\mathrm{t})=\mathrm{b}_{0} \quad \rightarrow$ already excluded by 90 m data at higher $|\mathrm{t}| \rightarrow$ SWY incompatible with data !
- constant hadronic phase $\arg \left(\mathrm{F}^{\mathrm{H}}\right)=\mathrm{p}_{0}$
- $\Psi(\mathrm{t})$ acts as real interference phase

Kundrát-Lokajíček (KL) formula:

- any slope $B(t)$
- any hadronic phase $\arg \left(\mathrm{F}^{\mathrm{H}}\right)$
- complex $\Psi(\mathrm{t})$!

Elastic Scattering in the Coulomb-Nuclear Interference Region

Different options for the unknown nuclear phase:
"central phase": profile function in impact parameter picture:
Elastic scattering preferentially central
$\arg F(t)=\frac{\pi}{2}-\operatorname{atan} \frac{\cot p_{0}}{1-\frac{t}{t_{d}}}$

> constant phase:
also central behaviour

$$
\arg F(t)=p_{0}
$$ profile function in impact parameter picture:

Elastic scattering preferentially peripheral

Result for $\quad \rho=\frac{\mathfrak{R} F^{H}(0)}{\mathfrak{J} F^{H}(0)}=\cot \arg F^{H}(0)=\cot p_{0} \quad$ is model dependent

New: Joint analysis of data at very low $|\mathrm{t}|\left(\beta^{*}=1000 \mathrm{~m}\right)$ and higher $|\mathrm{t}|\left(\beta^{*}=90 \mathrm{~m}\right)$ scrutinising the effects of the choices for $\mathrm{B}(\mathrm{t})$ and phase model.

Analysis of the CNI Region

Fit models retained for final analysis:

Analysis of the CNI Region

Best fit method retained: 2-stage fit:

Fit 1: only $\beta^{*}=1000 \mathrm{~m}$ data (very low $|t|$): all parameters free \rightarrow determines ρ
Fit 2: combined $\beta^{\star}=1000 \mathrm{~m}$ and 90 m data with fixed ρ
Results coming soon
Example: Parabolic exp. slope, peripheral phase with fixed shape

Skipped:
 Inelastic and Total pp Cross-Section Measurements 7 TeV 8 TeV

First measurements of the total proton-proton cross section at the LHC energy of $\sqrt{s}^{s}=7 \mathrm{TeV}$ [EPL 96 (2011) 21002]

Measurement of proton-proton elastic scattering and total cross-section at $\sqrt{s}=7 \mathrm{TeV}$ [EPL 101 (2013) 21002]
Measurement of proton-proton inelastic scattering cross-section at $V_{s}=7 \mathrm{TeV}$ [EPL 101 (2013) 21003]

Luminosity-independent measurements of total, elastic and inelastic cross-sections at $\sqrt{ } \mathrm{s}=7 \mathrm{TeV}$ [EPL 101 (2013) 21004]
A luminosity-independent measurement of the proton-proton total cross-section at $\sqrt{s}^{s}=8 \mathrm{TeV}$ [Phys. Rev. Lett. 111, 012001 (2013)]

pp Cross-Section Measurements

Diffractive Processes: Standalone and Common Runs with CMS

- Overview -

Single Diffraction

analysis in progress (7 and 8 TeV)
hard SD (e.g. dijet: $\sigma \sim O(10 \mathrm{nb})$)

analysis in progress with CMS (also SD J/ Ψ production)

Double Diffraction

Central Diffraction ("Double Pomeron Exchange")

- both protons survive with momentum losses ξ_{1}, ξ_{2}

- diffractive mass M in the centre
- 2 rapidity gaps $\Delta \eta_{1}, \Delta \eta_{2}$
soft (inclusive) CD: $\sigma \sim 1 \mathrm{mb}$

kinematic redundancy between protons and central diffractive system

$$
\mathrm{M}_{\mathrm{CMS}}=\mathrm{M}_{\text {TOTEM }}(\mathrm{pp}) \text { ? }
$$

Perspectives for Run 2
11 Nov 14

Central Production (with CMS)

Central Exclusive Particle or Dijet Production:

also $\gamma \gamma$ fusion \& γ Pomeron fusion

- Exchange of colour singlets with vacuum quantum numbers
\rightarrow selection rules for system $\mathrm{X}: \mathrm{JPC}^{\mathrm{PC}}=0^{++}, 2^{++}, \ldots$
- Tagging with double-arm proton detection: mass reach and luminosity depending on optics
- Event selection via comparison of central system with proton kinematics:
$M(p p)=$? M (central), $\quad p_{T, Z}(p p)=? p_{T, Z}($ central $), \quad$ vertex $(p p)=$? vertex(central)
- Prediction of rapidity gap from proton $\xi: \Delta \eta_{1,2}=-\ln \xi_{1,2}$

Examples:

- Exclusive dijets: mainly gg (CMS+TOTEM selection, $\mathrm{p}^{\top}>30 \mathrm{GeV}: \sigma_{\mathrm{gg}} \sim 100 \mathrm{pb}$)
- Studies of glueball candidates
- Exclusive $\chi_{\mathrm{c} 1,2,3}$ and J / Ψ production: $\mathrm{O}(10 \mathrm{pb}-10 \mathrm{nb})$
- Search for missing mass signals of $\mathrm{O}(\mathrm{pb}) \rightarrow$ SUSY searches

Longitudinal Vertex Reconstruction by Time Measurement

Pileup problem:
High luminosity \rightarrow multiple events in 1 bunch collision!

- CMS tracker can separate multiple vertices longitudinally,
- leading proton tracks have angles in μ rad range \rightarrow insufficient vertex precision
\rightarrow for double-arm events (CD) reconstruct vertex from time-of-flight difference

Position of Collision 1 $\sim \Delta \boldsymbol{t}_{\text {Collision\#1,Stopwatch\#1 }}-\Delta \boldsymbol{t}_{\text {Collision\#1,Stopwatch\#2 }}$

Two Upgrade Projects

Glueball Studies at $\beta^{*}=90 \mathrm{~m}$

Pomeron ~ colourless gluon pair/ladder \rightarrow Pomeron fusion likely to produce glueballs CD: $\mathrm{x} \sim 10^{-3}-10^{-4}$ gluons \rightarrow pure gluon pair gives $\mathrm{M}_{\mathrm{x}} \sim 1-4 \mathrm{GeV}$
Candidates for 0^{++}glueball: $\mathrm{f}_{0}(1500)$ or $\mathrm{f}_{0}(1710)$: the other one belongs to the $1^{3} \mathrm{P}_{0}$ meson nonett
Decays and branching ratios of $f_{0}(1710)$ poorly explored (unlike $f_{0}(1500)$)
\rightarrow Goal: characterise $\mathrm{f}_{0}(1710)$ and compare with known $\mathrm{f}_{0}(1500)$
CMS+TOTEM data from 2012: ($\mathcal{L}=3 \mathrm{nb}^{-1}$ of double arm RP trigger) may show sensitivity to using CMS particle ID (dE/dx) and $\sigma(\mathrm{M}) \sim 20-30 \mathrm{MeV}$ [common analysis note in progress]

Simulation of signal and non-resonant $\rho^{0} \rho^{0}$ background [DIME MC] with CMS tracker performance:

Glueball Studies at $\beta^{*}=90 \mathrm{~m}$

Spin analysis of $\mathrm{f}_{0}(1710) \rightarrow \rho^{0} \rho^{0} \rightarrow 4 \pi$ to determine $\mathrm{J}=0$ or 2 :

- Angular correlations between leading protons
- Distribution of polar angles $\theta_{\pi+}$ of $\pi^{+} \pi^{-}$pairs
- Distribution of polar and azimuthal angle differences between the $2 \pi^{+} \pi^{-}$pairs

Example:

Distinction from neighbouring resonances and non-resonant background: spin analysis in mass bins $<40 \mathrm{MeV} \rightarrow$ needs $\sim 5 \mathrm{pb}^{-1}$

Missing mass \& momentum events

new physics that escaped standard searches (e.g. due to special Pomeron coupling)?

preliminary search for such events performed on existing data samples ($0.05 \mathrm{pb}^{-1}$):

- several topologies investigated for violations of predicted rapidity gap (no signal found)

with $p_{\text {central }}\left(\right.$ particle flow) $\neq p_{p p} \& M_{\text {central }}$ (particle flow $\left.+p_{\text {missing }}\right) \leq M_{p p}$ events with $p_{\text {missing }}$ in the instrumented region (\& requiring $|\eta|>6.5$ to be forbidden by $\xi_{1,2}$ measurements)
- search for missing mass in $150<M_{\text {missing }}<600 \mathrm{GeV}$ at 13 TeV some candidates with missing mass up to 400 GeV found but limited statistics doesn't allow accurate modeling of background

SD processes

Single diffractive processes: study rapidity gap survival probability Triggered using CMS lepton \& jet triggers Visible σ estimate at $\sqrt{ } s=13 \mathrm{TeV}$ (both proton + central object)

CMS PAS FSQ-14-001, TOTEM-NOTE-2014-002

- J/ ψ production (POMPYT): $\mu^{+} \mu^{-}$ $3.05<M_{\mu \mu}<3.15 \mathrm{GeV}$, $5 \mathrm{pb}^{-1}: 1540 \pm 45$ events
- W production (POMWIG): $\mu^{ \pm} / e^{ \pm}$
($p_{T}>20 \mathrm{GeV}$), $60<\mathrm{M}_{\mathrm{T}}<110 \mathrm{GeV}$ $5 \mathrm{pb}^{-1}: 170 \pm 5$ events
- Z production (POMWIG): $\mu^{+} \mu^{-} / \mathrm{e}^{+} \mathrm{e}^{-}$, $\left(p_{T}>20 \mathrm{GeV}\right), 60<\mathrm{M}_{\|}<110 \mathrm{GeV}$ $5 \mathrm{pb}^{-1}: 15 \pm 1$ events
- SD jet production: $\mathrm{p}_{\mathrm{T}, \mathrm{jet}}>30 \mathrm{GeV}$ $5 \mathrm{pb}^{-1}$: O(100k) events

Background removal demonstrated on common CMS+TOTEM $\beta^{*}=90 \mathrm{~m}$ data at $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}$ (SD dijets)

Outlook

2015:

-Next week: Van der Meer run ($\beta^{*}=19 \mathrm{~m}$): medium pileup ($\mu=0.4$)
\rightarrow large |t| elastic, jets in single diff. and central diff.
\bullet Dedicated run (~ 2 days) at $\beta^{*}=90 \mathrm{~m}$:
$\sim 1 \mathrm{pb}^{-1}$ of data for low-mass central diffractive spectroscopy,
elastic and total cross-section at $V_{\mathrm{s}}=13 \mathrm{TeV}$
-Ongoing: RP test insertions in normal low β^{*} fills for CT-PPS high-lumi operation
-Finalisation and installation of timing detectors:

- Diamond for timing in vertical pots ($\beta^{*}=90 \mathrm{~m}$)
- Quartz Cherenkov for timing in horizontal pots for CT-PPS (low β^{*})

2016:

\bullet Runs at $\beta^{*}=90 \mathrm{~m}$ and low β^{*} (CT-PPS project) for diffraction with timing detectors
\bullet Runs at $\beta^{*} \sim 2500 \mathrm{~m}$ for more studies of Coulomb-nuclear interference

The End

Appendix on Run 2

Timing Detector Development for Medium Pileup ($\beta^{*}=90 \mathrm{~m}$ Runs)

Objective:

- 4 timing detectors per arm in vertical RPs
- Detector installation foreseen later in 2015
- 50 ps resolution per arm (100 ps per detector) enough since at 90m the pileup $\mu<0.6$

Development of Diamond Detectors:

Test beams to characterise different detector and front-end configurations: at PS, SPS, DESY

Diamond Detector Layout and Prototype Time Resolution

Segmentation followst the diffractive hit distribution.

Test Hybrid 1: 1 large pixel ($\mathrm{C}=2 \mathrm{pF}$)
Test Hybrid 2: 4 small strip pixels ($\mathrm{C}=0.29-0.6 \mathrm{pF}$)

Efficiency measured > 98\%

Exclusive jet production

. $\mathrm{J}_{2}=0$ selection rule: $\mathrm{gg} \rightarrow \mathrm{q} \bar{q}, \mathrm{~b} \overline{\mathrm{~b}}$ suppressed by a factor $10^{2}-10^{3}$

- unique possibility to observe enhanced gluon jets at LHC
\Rightarrow clean probe of properties of gluon jets (multiplicity, particle correlations...).
- cross-sections extremely sensitive to important \& subtle QCD effects:
- generalized gluon PDFs, rapidity gap survival probabilities, "Sudakov" factors.
- test model predictions:
- study proton azimuthal_correlations \& 3-jet topologies

Durham model: $\mathrm{gg} \rightarrow \mathrm{gqq}$ (more Mercedes-like) $\& \mathrm{gg} \rightarrow \mathrm{ggg}$ (more "back-to-back").

Durham model predictions for CMS-TOTEM selection:
L.Harland-Lang

Central: $\left|\eta_{j}\right|<4.4,\left|p_{\perp}^{j}\right|>30 \mathrm{GeV}$ (jets)
Protons: $\left|p_{\perp}^{y}\right|>0.1 \mathrm{GeV}, p_{1 \perp}^{y} * p_{2 \perp}^{y}>0$

$$
\Rightarrow \sigma(g g) \approx 100 \mathrm{pb}
$$

at LHC Working Group on
Forward Physics and Diffraction, Trento'14

Key: jet trigger threshold \& cleaness

Backup

Experimental Setup: T1

- telescope of 5 planes on each side of IP5

Experimental Setup: T2

From the Elastic to the Total Cross-Section

Optical Theorem: $\sigma_{\text {tot }}^{2} \propto\left[\mathfrak{J} F_{\text {el, had }}(t=0)\right]^{2}=\frac{1}{1+\rho^{2}}\left|F_{\mathrm{el}, \text { had }}(t=0)\right|^{2} \quad$ with $\rho=\left.\frac{\mathfrak{R} F_{\mathrm{el}, \text { had }}}{\mathfrak{J} F_{\mathrm{el}, \text { had }}}\right|_{t=0}$

$$
\sigma_{\mathrm{tot}}^{2}=\left.\frac{16 \pi}{1+\rho^{2}} \frac{\mathrm{~d} \sigma_{e l}}{\mathrm{~d} t}\right|_{t=0}
$$

7 TeV

elastic observables only:

$$
\sigma_{\text {tot }}^{2}=\left.\frac{16 \pi}{1+\varrho^{2}} \frac{1}{\mathcal{L}} \frac{\mathrm{~d} N_{\mathrm{el}}}{\mathrm{~d} t}\right|_{0} \quad(\rho=0.14 \text { [COMPETE extrapol.] })
$$

$$
\text { June } 2011 \text { (EPL96): } \sigma_{\text {tot }}=(98.3 \pm 2.8) \mathrm{mb}
$$

$$
\text { Oct. } 2011 \text { (EPL101): } \sigma_{\mathrm{tot}}=(98.6 \pm 2.2) \mathrm{mb}
$$

different beam intensities !
@ independent:
 luminosity independent:

$$
\begin{aligned}
& \sigma_{\mathrm{tot}}=\frac{1}{\mathcal{L}}\left(N_{\mathrm{el}}+N_{\mathrm{inel}}\right) \\
& \sigma_{\mathrm{tot}}=(99.1 \pm 4.3) \mathrm{mb}
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{\mathrm{tot}} & =\frac{16 \pi}{1+\varrho^{2}} \frac{\mathrm{~d} N_{\mathrm{el}} /\left.\mathrm{d} t\right|_{0}}{N_{\mathrm{el}}+N_{\text {inel }}} \\
\sigma_{\mathrm{tot}} & =(98.0 \pm 2.5) \mathrm{mb}
\end{aligned}
$$

Excellent agreement between cross-section measurements at 7 TeV using

- runs with different beam intensities,
- different methods with different external inputs.

Soft Single Diffraction (SD)

-1 proton breaks up
\rightarrow diffractive mass M
-1 proton survives with momentum loss ξ -rapidity gap $\Delta \eta$ between proton and M

$$
\Delta \eta=-\ln \xi, \quad M^{2}=\xi s
$$

$\begin{array}{llllll}\text { RP } & \text { T2 } & \text { T1 CMS T1 } & \text { T2 } & \text { RP }\end{array}$

Trigger on T 2 , require 1 proton

2 ways for measuring ξ :

1. via the proton trajectory (RP): $x_{R P}=L_{x} \Theta_{x}^{*}+v_{x} x^{*}+D_{x} \xi$ resolution at $\beta^{*}=90 \mathrm{~m}$:
$\delta \xi \sim 0.004-0.01$
(dependent on t, ξ)
2. via the rapidity gap (T1, T2)

Note: $\eta_{\max , \mathrm{T} 2}=6.5 \quad \Leftrightarrow \quad \mathrm{M}_{\min }=3.4 \mathrm{GeV}$
$\delta \xi \sim \xi$
Full differential cross-section: $\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \xi \mathrm{~d} t}$

SD Topologies for Different Mass Ranges

SD for Different Mass Ranges (7 TeV Data)

$\begin{aligned} & M= \\ & 3.4-7 \mathrm{GeV} \end{aligned}$	$2 \times 10^{-7}<\xi<1 \times 10^{-6}$	
$\begin{aligned} & \mathrm{M}= \\ & 7-350 \mathrm{GeV} \end{aligned}$	$1 \times 10^{-6}<\xi<2.5 \times 10^{-3}$	
$\begin{aligned} & \mathrm{M}= \\ & 0.35-1.1 \mathrm{TeV} \end{aligned}$	$2.5 \times 10^{-3}<\xi<2.5 \times 10^{-2}$	
$\mathrm{M}>1.1 \mathrm{TeV}$	$\xi>2.5 \times 10^{-2}$	in progress

Work in progress ! Some corrections still missing!
estimated uncertainty: $\delta \mathrm{B} / \mathrm{B} \sim 15$ \%

