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Typical pp events: Exclusive events:
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Central Exclusive Processes
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Two-photon interactions:
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 Very clean processes: Central production with forward hadrons

® Accessible measurements:
1. Luminosity via dilepton production (yy = p™p™);

2. Anomalous quartic gauge - couplings (yy = WTW ™),
3. SUSY/Radion/Dilaton production
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Two-photon interactions:
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 Very clean processes: Central production with forward hadrons

® Accessible measurements:
1. Luminosity via dilepton production (yy — p™p~);

2. Anomalous quartic gauge - couplings (yy = WTW ™),
3. SUSY/Radion/Dilaton production
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Central Exclusive Processes

Two-photon interactions: | Photon - Pomeron:

h|

p P

p
# Allow us to study the QCD dynamics at small-z.

® Very clean processes: Central production with forward hadrons N o o
# Sensitive to the description of diffraction.

& Accessible measurements: o o ,
# Determination of the gluon distribution and the magnitude of

1. Luminosity via dilepton production (yy — p™p~); the shadowing effects.

2. Anomalous quartic gauge - couplings (yy = WTW~); B Search for saturation effects.

3. SUSY/Radion/Dilaton production # Search for Odderon, Charmoniumlike exofic states. ..



Central Exclusive Processes
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C amics at small-z. ‘ .
# Alow us o study the ACD dynamics at small- # Spin- parity analyser: only a subset of resonant states can

® Very clean processes: Central production with forward hadrons N . e
# Sensitive to the description of diffraction. be produced. In particular 0 but not, for example, 17

® Accessible measurements: . o .
# Determination of the gluon distribution and the magnifude of § g Sensitive to the description of diffraction.

1. Luminosity via dilepton production (yy — u™p™); the shadowing effects. N .
! PR =) d # Very sensitive to beyond Standard Model Physics.

2. Anomalous quartic gauge - couplings (yy = WTW~); B Search for saturation effects.

. . 12
3. SUSY/Radion/Dilaton production # Search for Odderon, Charmoniumlike exofic states, ...



Central Exclusive Processes

Photon - Pomeron:

h|

# Allow us to study the QCD dynamics at small-z.
# Sensitive to the description of diffraction.

# Determination of the gluon distribution and the magnitude of
the shadowing effects.

# Search for saturation effects.

8 Search for Odderon, Charmoniumlike exotic states, ...
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Photon — Induced Interactions:
The Equivalent Photon Approximation

B Consider a charged nucleus at rest. The associated electromagnetic field can be
represented by:
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Photon — Induced Interactions:
The Equivalent Photon Approximation

B As a charged nucleus moves with nearly the speed of light, the electromagnetic
field becomes transverse to its velocity.

W
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Photon — Induced Interactions:
The Equivalent Photon Approximation

B Since the electric and magnetic field associated to the nucleus take on the same
absolute value, this transverse electromagnetic field can be simulated by an
equivalent swarm of photons “.
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“E. Fermi (1924), E. J. Williams (1933), C. F. Von Weizacker (1934)



Photon — Induced Interactions:
The Equivalent Photon Approximation

B Thus the collision of two charged nuclei at large impact parameter can be
described as the collision of two equivalent swarms of photons.
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Photon — Induced Interactions:
The Equivalent Photon Approximation

B Thus the collision of two charged nuclei at large impact parameter can be
described as the collision of two equivalent swarms of photons.
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Photon — Induced Interactions:
The Equivalent Photon Approximation

B Thus the collision of two charged nuclei at large impact parameter can be
described as the collision of two equivalent swarms of photons.

_ — — - - - - e — — = = = = =

B

np(w)
# For a detailed and pedagogical discussion about the validit
pedad .Q | Y o \/
of the EPA see Budnev, Ginzburg, Meledin and Serbo, Phys. 21
Rep. 15, 181 (1975).



Photon — Induced Interactions:
Center of mass energies

T

el 1. yh Processes: o(hyhy - X) = ni(w) @ 07X (W)
2. 1y Processes: o(hihy = X) = my(w) ©na(w) © 01~ (W)

Center of mass energies

LHC pp W.,p < 8390 GeV W, < 4504 GeV
LHC | pPb(Ar) | W, 4 < 1500 (2130) GeV | W, < 260 (480) GeV
LHC PbPb W, 4 < 950 GeV W, < 160 GeV
HERA ep W, , < 200 GeV —
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Photon — Induced Interactions:
Center of mass energies

S S\ 1. yh Processes: o(hyhy - X) = ni(w) @ 07X (W)
2. 7y Processes: o(hthy = X) = ny () @ na(w) § 1= (W)

Center of mass energies

LHC pp <F"{fl‘,p = 8390 GEE ) W, < 4504 GeV
LHC | pPb(Ar) | W, A S TBU0T2TE0) GeV | W 7. < 260 (480) GeV
LHC | PbPb W, 4 < 950 GeV W, < 160 GeV
HERA ep W, < 200 GeV =
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Photon — Induced Interactions:
Center of mass energies

o R+,

1. 7h Processes: o(hihy = X) = np(w) @ 07F=X (W)

2.y Processes. o(huhy — X) = na(u) @ nafu) .11 (W)

Center of mass energies

LHC pp Vp S 8390 Ge W, < 4504 GeV
LHC | pPb(Ar) | W 4 L < 260 (480) GeV
LHC PbPb W, < 160 GeV
HERA ep —

® Photoproduction in pp collisions at LHC probes energies

one order of magnitude larger than HERA.

24



Photon — Induced Interactions:
Center of mass energies

e M 1. yh Processes: o(hyhy - X) = ni(w) @ 07X (W)
2. 1y Processes: o(hihy = X) = my(w) ©na(w) © 01~ (W)

Center of mass energies

LHC pp W,p < 8390 GeV W, < 4504 GeV
o — |
LHC Pb(Ar W, < 1500 (2130) GeV DW.., < < 260 (480) GeV
‘ PP (A IV, A (2130) GeV D (480)
LHC PbPb WA ; 050 GeV W S < 160 GeV
HERA ep W, < 200 GeV =
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Photon — Induced Interactions:
Center of mass energies

el 1. yh Processes: o(hyhy - X) = ni(w) @ 07X (W)
2. 1y Processes: o(hihy = X) = my(w) ©na(w) © 01~ (W)

Center of mass energies

LHC pp W,p < 8390 GeV W, < 4504 GeV

LHC | pPb(Ar) (LAJL" 500(2130) GeV | W, < 260 (480) GeV
B |~ v sooey D W, < iocev
HERA ep W, < 200 GeV -

#® Photoproduction in pA and AA collisions probes an

unexplored regime of center of mass energies.
26



Photon — Induced Interactions:
Center of mass energies

el 1. yh Processes: o(hyhy - X) = ni(w) @ 07X (W)
2. 1y Processes: o(hihy = X) = my(w) ©na(w) © 01~ (W)

Center of mass energies

LHC pp W, < 8390 GeV W, < 4504 GeV
LHC | pPb(Ar) | W, 4 < 1500 (2130) GeV | W,, < 260 (480) GeV

‘ LHC | PbPb W, 4 < 950 GeV W, < 160 GeV

HERA ep W, < 200 GeV -

® 7~ interactions with center of mass energies larger than
those obtained at LEP - CERN.
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Photon —

Induced Interactions:

Center of mass energies

o R+,

1. yh Processes: o(hyhy - X) = ni(w) @ 07X (W)

2. 1y Processes: o(hihy - X) = n1(w) @ ma(w) @ 074 (W)

Center of mass energies

W~ = 4504 GeV )
\

‘ LHC pp W,p < 8390 GeV  (
LHC | pPb(Ar) | W, 4 < 1500 (2130) GeV | W, < 260 (450) GeV
LHC PbPb W,a4 < 950 GeV I“n.,n., = 160 GeV
HERA |  ep W, < 200 GeV -

#® -~ interactions with center of mass energies larger than
those expected in the future ILC.
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Photon — Induced Interactions:
Center of mass energies

e W T 1, 4h Processes: o{hyhy — X) = np(w) § o7=X (W, )
2. vy Processes: o(hihy » X) =mi(w) @ nalw) @ 77X (W)

Center of mass energies

LHC pp Wop < 8390 GeV W, < 4504 GeV
LHC | pPb(Ar) | W, 4 < 1500(2130) GeV | W, < 260 (480) GeV
LHC PbPb W,a4 < 950 GeV W, < 160 GeV
HERA ep W, < 200 GeV —

‘ ® The LHC is the world’'s most powerful collider not only for
protons and lead ions but also for v~ and ~h collisions.
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Photon —

Induced Interactions:

Center of mass energies

o R+,

1. yh Processes: a(hyhy = X) = my(w) @ 0™~ (I, )
2. 7y Processes. o(huha — X) = m1(u) 8 ma(w) @ 077 (W)

Center of mass energies

‘ IS

LHC pp W,p < 8390 GeV W, < 4504 GeV
LHC | pPb(Ar) | W, < 1500(2130) GeV | W, < 260 (480) GeV
LHC PbPb W, 4 < 950 GeV W, < 160 GeV
HERA ep W, < 200 GeV -

Photon - induced interactions at LHC allows to study

Quantum Chromodynamics in an unexplored regime of
center of mass energies.
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Open questions in the QCD dynamics
at high energies



(1) The proton gluon distribution

Deep inelastic ep scattering

;LJ

Tp P+ g

32



(1) The proton gluon distribution

Deep inelastic ep scattering
K

Ip+q
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(1) The proton gluon distribution

Deep inelastic ep scattering
k'

Tp Tp +4q

p— | ;,_'_’—'(
Q2—_q2
Q2
x =
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(1) The proton gluon distribution

Deep inelastic ep scattering

K
k 4o
o= Q;’" Fo(x. Q%)
q
rp rp+q
Fo(x, Qz) = X Z e;z fi(x, QQ)
, - [
R D ! PDFs
P ) SR ¢
V2
QQ _ _q2
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(1) The proton gluon distribution

Deep inelastic ep scattering

K
ke 47T v em 5
a = Q2 FQ{X. Q )
|
Tp Tp+q
2 2 2
Fa(x, Q) = x E e fi(x, Q°)
| ."," "W_/
| ' PDFs
P [T X
W # Evolution of the parton distributions in the hard scale 2 = Q2 described by the
linear DGLAP equations. Resum Q2 logs: 5° [ In(Q?/Q2)]™.
2 2
R°=—q
2
Q
X =
2p-q
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(1) The proton gluon distribution

Deep inelastic ep scattering

K
k 4T em 5
a = Q2 FQ{X. Q )
|
Tp Tp+q
2 2 2
Fa(x, @) = x ) _ & fi(x, @)
| i v
—l--—I I|—J-— pDFS
p II ../Y
'y #® Evolution of the parton distributions in the hard scale 2 = @ described by the
linear DGLAP equations. Resum Q2 logs: 5° [ In(Q?/Q2)]™.
2 2
R°=—q
2 2
X = Q ~ Q 5 High energies <= Small-z
2p-q W+
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(1) The proton gluon distribution

#® Proton structure determined by the HERA measurements in

F, -log (%)

ep collisions in a large kinematical range;

—— HI1 FDF 2000 fut

H1 and ZEUS

1
08-
0.6 o
04l

5§ (< 0.05)
01

Woxg [ 0.08)

Q=10 GeV?

= HERAPDF1.4
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(1) The proton gluon distribution

H1 and ZEUS

08—

0.6

10

—— HERAPDF1.0

- EXp. uncert.
I:I model nncert.

B parame trization un

Q* =10 GeV*

cert.

10 107

10"

4D
N
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H1 and ZEUS

08—

—— HERAPDF1.0

Q* =10 GeV*

(1) The proton gluon distribution
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(1) The proton gluon distribution

H1 and ZEUS

1

I Q* = 10 GeV*
08| —— HERAPDFI1.(

L B exp. uncert.

o |:| model uncert.

™,
B parametrization uncert.

0.6

W Xg (< 0.05)

2y

Bk
2000000 eA;

0.4

0.2

10 10 1w 10" 1
X

#» Gluon dominates the proton structure at high energies (low

momentum fractions ). "
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(1) The proton gluon distribution

H1 and ZEUS

Q* = 10 GeV*

—— HERAFPDF1.0

L B exp. uncert.
o |:| model uncert.

B parametrization uncert.

W Xg (< 0.05)

2y

Bk
2000000 eA;

0.4

10 10 1w 10" 1
X

® Gluon distribution poorly known at small-z.



(I1) The nuclear gluon distribution

* Deep inelastic scattering with
nuclear targets

Partons distributions in the nuclei
are different from the scaled proton
parton distributions



(I1) The nuclear gluon distribution

* Deep inelastic scattering with v O2
P & p — %94z Q")
g - rd . » 2
nuclear targets A - zgy(z,Q?)
e #® No nuclear effects = R, = 1.
P .I 13 u u IIIIV"I u T IIV"'I T T T Tl T .'I LISUTLILIL U
‘/’ 4 L2 [ Q=10 GeV? .
HJL’I Lo ﬂﬁ
pnr.% \ S il
[ / ; 0.9 _;___ﬁ___________.__._ , JHL_”.U
o8
(K — k)? = qE = —{L}E ~ o7 .
£ r oha == EPS09 1
& 0.6 T mo o ramts! 11 DSSZ
S f”?.-i -gq) 0.5 - — HKNOT —
04 - .I-.L I-: I-'_
FQ_.} [:J.f} ?__ ;4_1:2_,"-,,-'{;1'} 10 10 10 x 10 1
! Eskola, Puukkunen, arXiv:1401.2345
Partons distributions in the nuclei # The current eA experimental data does not constrain the
are different from the scaled proton small-z behaviour

parton distributions
8 Large theoretical uncertainty present in the kingTatical

range probed by LHC.



(1l1) The transition between the linear and
nonlinear regime of QCD dynamics
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(1l1) The transition between the linear and
nonlinear regime of QCD dynamics
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(1l1) The transition between the linear and
nonlinear regime of QCD dynamics

In(1/x)
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(1l1) The transition between the linear and
nonlinear regime of QCD dynamics
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(1l1) The transition between the linear and
nonlinear regime of QCD dynamics

In(1/x)

(i

Monperturbative

> ()




(1l1) The transition between the linear and
nonlinear regime of QCD dynamics
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(1l1) The transition between the linear and
nonlinear regime of QCD dynamics

BFKL
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(1l1) The transition between the linear and
nonlinear regime of QCD dynamics
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(1l1) The transition between the linear and
nonlinear regime of QCD dynamics

# Linear QCD evolution equations predict a power growth of gluon distribution as
x -+ 0 (violates uniarity).

In(1/x)

(a8 £l
2 ey ey Y
1 D A

1Y ey

> ()
53



In(1/x)

BFEKL

(1l1) The transition between the linear and
nonlinear regime of QCD dynamics

B Linear QCD evoluton equations predict a power growth of gluon distribufion as
7 -+ 0 (vioiates unariy).

4§ Number of gluons in the nucleon becomes so large that gluon recombing -
Nonlinear efects

MNonperturbative QCD

> ()?

DCLAP 54
_ =



BFEKL

(1l1) The transition between the linear and
nonlinear regime of QCD dynamics

/ m f .{ ®e e [;_-"-m
| C/

B Linear QCD evolution equafions predict a power growth of gluon distribution as
z -+ 0 violates unitarty).

B Number of gluons in the nucleon becomes so large that gluon recombing -
Nonlinear efects

B Saturafion scal () (energy and atomic number dependent) defines the onset of
nonfinear QCD dynamics.
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(1l1) The transition between the linear and
nonlinear regime of QCD dynamics

In(1/x)
M

BE

_
BFKL

MNonperturbative QCI ]\

DGLAP

B Linear QCD evolution equafions predict a power growth of gluon distribution as
z -+ 0 violates unitarty).

B Number of gluons in the nucleon becomes so large that gluon recombing -
Nonlinear efects

B Saturafion scal () (energy and atomic number dependent) defines the onset of
nonfinear QCD dynamics.

§ CGC: Effective theory which describes the evolution of a hadronic wavefunction
with increasing energy In the presence of non-finear effects associated with the
high gluon density

B Evolution described by an infinite hierarchy of equations, the B-JIMWLK equations,
which reduces to the Baltsky - Kovchegov (BK) equation in the mean field
approximation,

# Running coupling BK solution largely used to estmate saturation in ep /vp/pp/pA
collisions.

# Very good description of the HERA, RHIC and LHC data. o6
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Photon — Hadron Interactions:
Typical processes

L & AR S

= 1h Processes. oy ~ X) = my() 6 24 (W)
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Photon — Hadron Interactions:

Typical processes

— 1h Processes. oy ~ X) = my() 6 24 (W)

* Inclusive processes: 7p — XY

—. Heavy quark photoproduction (X = ¢, bb)
The final state is characterized by one rapidity gap due to
the dissociation of the hadron target (pp — p @ XY).
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Photon — Hadron Interactions:
Typical processes

. z_"j ~~\ 11 ";’h PI0cesses: (hlh-g - }&) = ?lh({,d) § [Iﬁ-"h_}X(l'i’rﬁ!.h]

—

.

* Inclusive processes: 7p — XY

—. Heavy quark photoproduction (X = ¢, bb)
The final state is characterized by one rapidity gap due to
the dissociation of the hadron target (pp — p @ XY).
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Photon — Hadron Interactions:

Typical processes

- o Proceses: by X) = o) 807" ()

L= = S = S S

* Inclusive processes: 7p — XY

—. Heavy quark photoproduction (X = ¢, bb)
The final state is characterized by one rapidity gap due to
the dissociation of the hadron target (pp — p @ XY).

. — 61
®» \ =1l aypG, PRD88, 054025 (2013)



Photon — Hadron Interactions:
Typical processes

S 1h Processes. oy ~ X) = my() 6 24 (W)

T R ._1—].:[2 B

* Inclusive processes:. vp — XY

—. Heavy quark photoproduction (X = ¢, bb)
The final state is characterized by one rapidity gap due to
the dissociation of the hadron target (pp — p @ XY).

TABLE I. The integrated cross section (events rate) for the
photoproduction of top quarks in pp, pPb, and PbPb collisions

f % by N F

o — vl A at LHC energies.
12, ,{ h Pp MRST CT10
% , J5 = 8 TeV 0.739 pb (73900) 0.764 pb (76400)
t J5 = 14 TeV 2.50 pb (250000) 2.53 pb (253000)
-~ i pPb MRST MRST + EPS09
ha ,55--1 - J5 = 5.5 TeV 0.036 nb (5.4/3600) 0.038 nb (5.7/3800)
T =" X ha f_fg he J5 = 8.8 TeV 0.159 nb (23.85/15900) 0.165 nb (24.75/16500)
Y — PbPb MRST MRST g5 EPS09
— a
-. = =1 VPG, PRDSS: 054025 {2013} J5 = 5.5 TeV 0.42 nb (0.18) 0.40 nb (0.17)




Photon — Hadron Interactions:

Typical processes

r

e Sy 1h Processes. oy ~ X) = my() 6 24 (W)

—

.

* EXxclusive processes: 7p — Xp

= Heavy vector meson photoproduction (X = .J/¥, T)
The final state is characterized by two rapidity gaps

(pp — p® X @ p).

*&* 63
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Photon — Hadron Interactions:
Typical processes

e Sy 1h Processes. oy ~ X) = my() 6 24 (W)

* EXxclusive processes: 7p — Xp

= Heavy vector meson photoproduction (X = .J/W¥, T)
The final state is characterized by two rapidity gaps

@ p).

} #® Cross section is proportional to the square of the
proton/nuclear gluon distribution.

*&* 64

(pp — p® X



Photon — Hadron Interactions:
Typical processes

- o Proceses: by X) = o) 807" ()

'I:-::-—R._—n—].:lg B

* EXxclusive processes: 7p — Xp

= Heavy vector meson photoproduction (X = .J/W¥, T)
The final state is characterized by two rapidity gaps

(pp — pR@ X @ p).

h

} #® Cross section is proportional to the square of the
proton/nuclear gluon distribution.
L o7

.
g #® Diffractive vector meson photoproduction in UPHIC is a

b
Z'? —
— é V=Y probe of the gluon distribution 2

=

: 65
%_’T PG, Bertulani, PRC65, 054905 (2002)
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Photon — Hadron Interactions:
Constraining the nuclear gluon distribution
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Photon — Hadron Interactions:
Constraining the nuclear gluon distribution

R zga(z,Q?)
I A zgy(x,Q?)

# No nuclear effects = R, = 1.

1.3 — T T
L2 [ Q=10 GeV®

= 1.0 —HHIIIIIIIIIH

AT

B ata
0.G no d :L'lﬂ- fﬂ! ‘

r consti® I DSSZ
0 — HEKNO7
0.4 .
10 107 10 107 1

o
Eskola, Puukkunen, arXiv:1401.2345

# The current eA experimental data does not constrain the
small-z behaviour.

# Large theoretical uncertainty present in the kinematical
range probed by LHC.



Photon — Hadron Interactions:

Constraining the nuclear gluon distribution

R = zga(z, Q?) # Diffractive J/ ¥ photoproduction in UPHIC:
9= 7..
A . 'Egp(ﬂ:a QZ) E B
3
#® No nuclear effects = R, = 1. g N —
13— diaai C
1.9 E Q=10 GeV” .' ‘ B
o | ] -
I _ \ q -
= 10 FIFarees Ty TR Eﬁ i
o " ] : ® PHENIX
£ 08 TE — No shadowing
S - EK herent
[ no date I EPS09 -~ EKS  coherent Y
06T ‘;‘;iﬂimms\ ‘ ~IE- DSSZ == EPS09 \
0.5 — HENO7T
0.4 - [Filho et al, PRC78 044904 (2008)]
it 107 e 10 1 IS N DS N S I T R
Eskola, Puukkunen, arXiv:1401.2345 2 415 4 05 0 05 1 15 }?

# The current eA experimental data does not constrain the

small-z behaviour.

# Large theoretical uncertainty present in the kinematical

range probed by LHC.
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R,

Photon — Hadron Interactions:
Constraining the nuclear gluon distribution

zga(z,Q?)

A . ;Egp(:c! QZ)

# No nuclear effects = R, = 1.

1.3 — T T
L2 [ Q=10 GeV®

=1
= 10 HITITrss i 511 TITIF
07 |

L cﬂ-_;n%t'l.'a-
0.5

B ata
0.G no d :L'lﬂ- fﬂ! ‘

= EPS09
- DSSZ
— HEKNOTY

3

1o 107 1
Eskola, Puukkunen, arXiv:1401.2345

# The current eA experimental data does not constrain the

small-z behaviour.

# Large theoretical uncertainty present in the kinematical

range probed by LHC.

x 107

# Diffractive J/ ¥ photoproduction in UPHIC:

E s Pb+Pb — Pb+Pb+J/y 'I’S_HH =276 TeV a)
= | ------- AB-MSTW08 -
P I . # ALICE Coherent J/y
T OF AB-HKNOT ===, O Reflected
B8 gE — — STARLIGHT
E - GM
- LMIPSEt
5F —---— AB-EPSOO
F ——RSZLA [ e
gE T TABERSOE S
3E
2
=
o=

® Since z = My /\/s exp(—y) we have:
y=-—-3=x=0.02

y=0=2=0.001inzg4(z,Q>).
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Photon — Hadron Interactions:

Constraining the nuclear gluon distribution
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Eskola, Puukkunen, arXiv:1401.2345 .
. | ® Since z = My /\/s exp(—y) we have:
# The current eA experimental data does not constrain the y=—3= 2 =0.02

small-z behaviour.

y=0=2=0.001inzg4(z,Q>).

# Large theoretical uncertainty present in the kinematical

range probed by LHC.

® ALICE gives the first evidence of large nuclear shggowing
effect at small-z.
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h
§=/ # Diffractive vector meson photoproduction in photon -

L Induced interactions is a probe of the nonlinear effects in the

-,x i QCD dynamics at high energies and the vector meson wave
¢ V=JuuT ) 3
8 function “.

VPG, Machado, EPJC 40, 519 (72005}
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# Diffractive .J/¥ photoproduction in hadronic collisions “
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#® Diffractive p photoproduction in hadronic collisions *

°\VPG, Machado, PRC80, 054901 (2009); PRC&4, 011902 (2011)
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FIG. 1: (Color online) Predictions for the rapidity distribu-
tion of p” photoproduction at RHIC energy considering dis-
tinct theoretical approaches. Data from STAR Collaboration
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energy behaviour of the total hadronic cross sections.
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# InpQCD the Pomeron corresponds to a C' - even parity (C' #® Alternative: Consider exclusive processes in which the
being the charge conjugation) compound state of two Odderon is the only contribution |
t-channel reggeized gluons, which determines the high # Diffractive 7. photoproduction in hadronic collisions “.
energy behaviour of the total hadronic cross sections. ———————
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# Anatural prediction of the QCD is the presence of a C' - odd
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Qdderon, which dominates the hadronic cross section
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# InpQCD the Pomeron corresponds to a C' - even parity (C'
being the charge conjugation) compound state of two
t-channel reggeized gluons, which determines the high
energy behaviour of the total hadronic cross sections.

# Anatural prediction of the QCD is the presence of a C' - odd
compound state of three reggeized gluons, the so-called
Qdderon, which dominates the hadronic cross section
difference between the direct and crossed channel
processes at very high energies.

®» Open question: Does the Odderon exist?

#® Alternative: Consider exclusive processes in which the
Odderon is the only contribution !

# Diffractive 7. photoproduction in hadronic collisions “.
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# Basic idea: As the photon carries negative C' parity, its
transformation into a diffractive final state system of positive
C' parity requires the ¢ - channel exchange of an object of
negative C' parity.
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# InpQCD the Pomeron corresponds to a C' - even parity (C' #® Alternative: Consider exclusive processes in which the
being the charge conjugation) compound state of two Odderon is the only contribution |

t.channel reqgeized gluons, which determines the high # Diffractive 7. photoproduction in hadronic collisions “.

hy R B

enerqy behaviour of the total hadronic cross sections. .
T, e
® Anatural prediction of the QCD is the presence of a C - odd g/g é
compound state of three reggeized gluons, the so-called \ é
Odderon, which dominates the hadronic cross section =<é>=
difference between the direct and crossed channel # Basic idea: As the photon carries negative C' parity, its

transformation into a diffractive final state system of positive
C' parity requires the ¢ - channel exchange of an object of
negative C' parity.

®» Open question: Does the Odderon exist?]|#® Pomeron exchange cannot contribute to this process.

processes at very high energies.
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# Diffractive 7. photoproduction in hadronic collisions °.
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# We have considered two different models for the Odderon
exchange:

Czyzewski, Kwiecinski, Motyka, Sadzikowski (CKMS)
model: simplified three non interacting gluon exchange.

Bartels, Braun, Colferai, Vacca (BEBCV) model: takes into
account the interaction between the three gluons.

VPG, NPA 902, 32 (2013)
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# We have considered two different models for the Odderon
exchange:

Czyzewski, Kwiecinski, Motyka, Sadzikowski (CKMS)
model: simplified three non interacting gluon exchange.

Bartels, Braun, Colferai, Vacca (BEBCV) model: takes into
account the interaction between the three gluons.

VPG, NPA 902, 32 (2013)

® Predictions:

Table |
Cross sections (event rates/year) for the diffractive 5, photoproduction in pp
collisions at LHC energies.

VSNV CKMS BBCV

8 TeV 0.55 pb (55000) 10.10pb (1 x ]06)
14 TeV 0.63 pb (65 000) 13.90pb (1.4 x 106)
Table 2

Cross sections (event rates/year) for the diffractive 5. photoproduction in PbPb
collisions at LHC energies.

SN CKMS BBCV
276 TeV 0.30 pb (126) 14.25 pb (5985)
55TeV 0.40 pb (168) 23.59 ub (9912)
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# Diffractive 7. photoproduction in hadronic collisions . | ® Predictions for the AFTER@LHC experiment °.

e ’_':,__;f:)ih‘
e, e——
g hihs CKMS BBCV
g pp (/s = 115 GeV) [0.05 pb (1000.0)] 0.30 pb (6000.0)
Q\”’”’ Pbp (\/s=T2 GeV) | 28.1 pb (31.0) | 356.6 pb (393.0)
§£ PbPb (/s = 72 GeV)|5870.0 pb (41.0)|74366.0 pb (520.0)
ha _E’j_ (D‘p _:::: ha
. : TABLE I Cross sections (event rates/year) for the exclu-
» We have considered two different models for the Odderon sive 1. photoproduction in pp/Pp/PhPh colisions at AF-
exchangej TERQLHC experiment.

Czyzewski, Kwiecinski, Motyka, Sadzikowski (CKMS)
model: simplified three non interacting gluon exchange.

Bartels, Braun, Colferai, Vacca (BEBCV) model: takes into
account the interaction between the three gluons.
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# Diffractive 7. photoproduction in hadronic collisions . | ® Predictions for the AFTER@LHC experiment °.
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e, e——
g hihs CKMS BBCV
g pp (/s = 115 GeV) [0.05 pb (1000.0)] 0.30 pb (6000.0)
Q\”’”’ Pbp (\/s=T2 GeV) | 28.1 pb (31.0) | 356.6 pb (393.0)
§£ PbPb (/s = 72 GeV)|5870.0 pb (41.0)|74366.0 pb (520.0)
ha _E’j_ (D‘p _:::: ha
. : TABLE I Cross sections (event rates/year) for the exclu-
» We have considered two different models for the Odderon sive 1. photoproduction in pp/Pp/PhPh colisions at AF-
exchangej TERQLHC experiment.

Czyzewski, Kwiecinski, Motyka, Sadzikowski (CKMS)

model: simplified three non interacting gluon exchange. : : . :
P 99 ° # Background is only present in pp collisions, which makes the

observation of the exclusive 7. production in Pbp and PbPb
collisions a signature of the Odderon.

Bartels, Braun, Colferai, Vacca (BEBCV) model: takes into
account the interaction between the three gluons.
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h A~ e 2\ _ ~ e ~ - 2
' / (J,”LL ) — fel(i) - f’inel(i:/u’ )
hq
- where z is the fraction of the nucleon energy carried by the
photon and ;. is a momentum scale of the photon - induced
! subprocess.
}11
B
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Y 42) = (@) + a4

where z is the fraction of the nucleon energy carried by the
photon and ;. is a momentum scale of the photon - induced
subprocess.

# Several groups (MRST, NNPDF, CTEQ) have proposed to
treat the photon as one of the point-like partons inside the
nucleon and to account for this QED effect explicitly in the
global analysis.
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® The inclusion of the QED effects implies that the quark, gluon and photon
distributions satisfy QED-modified DGLAP equations, which are given at leading
order in both as and « by:

Ogi(z, pi° as [dy z .

ﬁl(og ,u.z) - 2_:' /I {qu(y) qi(_ ) + Fag(y 9’{5: #2)}

v 1dy , T
* o2r [:r Y {qu(y €i Q‘a{y, 1) + Pry(y) e-a'"}’(g;ﬁ ]}

dg(e.?)  as [ dy !

dlog 2 = 2—::_ A ?{ gq(y Z QJ ) + ng(’y) g(a )}
Oz, p?) o rtdy v

0 log p? o %/E ;{ ZE QJ(_ +P’n( )'}(;:P’»)}u

where
ﬁqq — CEquq: Rm — CEngq:
- 2 _
Py =Tg' Py, Py = T3 £ e; (1 —y)

and momentum is conserved:

1
/0 d x {Z gi(z, p2) + gz, p?) + (2, 1)} = 1. 103
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® |Initial condition y(z, Q3):

MRST: Naive model
NNPDF: Freely parametrized
CTEQ: Similar to that proposed by MRST, but with arbitrary normalization.
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® |Initial condition v (x, Q2):
MRST: Naive model
NNPDF: Freely parametrized

CTEQ: Similar to that proposed by MRST, but with arbitrary normalization.
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# Diffractive Quarkonium Photoproduction in Hadronic
Collisions as a probe of the photon flux °.

I
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Thank you for your attention !
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Probing Quarkonium Production in
photon — induced interactions



Quarkonium + Photon production in
photon — induced interactions (*)

dolp+p—p@H+y+X)]
dY
ANy (@)
=wW— Oy Hty+X (@)

dw

dN, h, (@)
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(*) VPG, M. M. Machado, EPIC 72, 2231 (2012)
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Table 1 The total cross section for the H + y photoproduction in co-
herent hadron—hadrons collisions at LHC energies

/W4y MEHEN BK

LHC (7 TeV) 3.62 pb 1.23 £0.50 pb
LHC (14 TeV) 5.60 pb 1.90 £ 0.32 pb
T +y BFL BSV

LHC (14 TeV) 5.46 fb 1.45+0.13 fb
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Table 1. The total cross section [event rates) for the mielastic gquarkonnm photoproduction in coherent pp colbsions at LTHOC
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Fig. 4. Rapidity distribution for the JAF and T production in

coherent pp collisaons at s

TTeV [left panels) and 14 Te=W

(mght panels) conssdenng two different parametnsations for
s . e
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