Review diffractive and electromagnetic processes in ATLAS

Laurent Schoeffel
Some time ago in H1/HERA (DVCS -1999-2009 -all H1 papers-, F2D 2004-2012 -the HERA2 paper-) Now, involved in many ATLAS analyses:
convener of the physics group related to QCD and EM processes

CEA Irfu/SPP

France

International WE-Heraeus Physics School (2015) August 2015

The LHC experiments

The total cross section at the LHC

 A short anatomy of pp collisions$$
\begin{aligned}
& \sigma_{\text {tot }}=\sigma_{e l}+\sigma_{i n} \\
& \sigma_{i n}=\sigma_{p a r t o n}+\sigma_{S D}+\sigma_{D D}+\sigma_{D P E}
\end{aligned}
$$

$\sim 60 \%$ of the time a "hard" collision occurs
$\sim 25 \%$ of the time the protons scatter elastically
$\sim 10 \%$ of the time single diffraction occurs
$\sim 1 \%$ of the time double diffraction occurs
$\sim 1 \%$ of the time central (exclusive) diffraction occurs

$\sigma_{\text {diff }} \sim 15 \mathrm{mb}$

The total cross section at the LHC

 A short anatomy of pp collisions$$
\begin{aligned}
& \sigma_{\text {tot }}=\sigma_{e l}+\sigma_{i n} \\
& \sigma_{i n}=\sigma_{\text {parton }}+\sigma_{S D}+\sigma_{D D}+\sigma_{D P E}
\end{aligned}
$$

$\sim 60 \%$ of the time a "hard" collision occurs
~25\% of the time the protons scatter elastically
~10\% of the time single diffraction occurs
$\sim 1 \%$ of the time double diffraction occurs
$\sim 1 \%$ of the time central (exclusive) diffraction occurs

Experimental techniques

Either we measure scattered protons using
forward detectors

Or we measure GAPs (veto on particles and/or energy flow)

This needs a large pseudo-rapidity coverage...

Central/forward detectors in ATLAS

Pseudo-rapidity coverage

LRG (large Rapidity Gaps) and proton tags

 A short anatomy of pp collisions / examples...This will be covered in this presentation

\square Cross sections in mb

Many other processes (EM) possible

Cross sections in pb ...deeper anatomy

And also... Vector Boson Scattering (VBS)

This will be covered in this presentation

tagging jet (3)

Cross sections in fb ...even deeper anatomy

Outline

\square Intact protons
-- 'elastic' diffractive scattering
"The diffraction phenomena of quantum systems can however be reduced directly
to a classical limit only when elastic scattering takes place..." [Alberi, Goggi 1981]
Rapidity Gaps
-- 'inelastic' diffractive scattering
"As a consequence, inelastic diffraction can be reduced to elastic diffraction scattering
of the basic states, in which the initial and final states can be decomposed.
The fluctuations of hadronic systems over this set of basic states,
typical manifestation of quantum field-theoretical objects,
are the main origin of the large probability observed for inelastic diffraction..."
[Alberi, Goggi 1981]

EM processes and beyond (EM extended to EWK [Electro-Weak])

Elastic pp->pp reaction

$$
t=\left(p_{1}-p_{3}\right)^{2}=\left(p_{2}-p_{4}\right)^{2} \approx-p^{2} \theta^{2}
$$

To determine the total cross section, it is sufficient to measure the elastic cross section down to very small |t| values ($\underline{\theta->0}$)...
This is why it is needed to use forward proton taggers and a dedicated LHC optics (see later)

$$
\begin{aligned}
& \sigma_{\mathrm{tot}}^{2}=\left.\frac{16 \pi(\hbar c)^{2}}{1+\rho^{2}} \frac{\mathrm{~d} \sigma_{\mathrm{el}}}{\mathrm{~d} t}\right|_{t \rightarrow 0} \\
& ->\text { total pp cross section }
\end{aligned}
$$

History: rise of $\sigma_{\text {tot }}$ at ISR

CERN Intersecting Storage Rings

At the ISR a rise of the total cross section was first observed.

U. Amaldi et al., Phys. Lett. B 44 (1973) 192

S.R. Amendolia et al., Phys. Lett. B 44 (1973) 119

Next, we describe precisely the measurement at ATLAS using ALFA at 7 TeV (which kind of rise: $\ln (\mathrm{s}), \ln ^{2}(\mathrm{~s})$, ...?)

Pre-LHC rise of $\sigma_{\text {tot }}$

Then, Pre-LHC measurements does not constraint the rise of the total cross section very precisely...

ATLAS -- ALFA / Roman Pots

- Roman pots:
located 240 m from the IP
- 4 stations, 8 detectors
- Detectors: scintillating fibers
(i.e. trackers)

ATLAS -- ALFA / Roman Pots

- Roman pots:
located 240 m from the IP
- 4 stations, 8 detectors
- Detectors: scintillating fibers (i.e. trackers)

ALFA / beams (protons)

Roman Pot detectors at 240 m from IP1 approaching the beam during special runs at high β^{*}. We explain this condition in a few slides

In October 2011 ALFA had the special run 191373 with $\beta^{*}=90 \mathrm{~m}$
and recorded 800k good selected elastic events used for the analysis of the total cross section and the nuclear slope B. At 7 TeV : each proton beam with momentum 3.5 TeV/c

ALFA / Hit map (1)

ALFA / Hit map (1)

Hit pattern in one station, before elastic event selection.

Pattern shape is caused only by beam optics...

We justify this map in a few slides

LHC beams (protons)

LHC beams (protons)

Special optics for ALFA w.r.t. nominal LHC optics

	Beam size (width) at collision point	Beam divergence	$\\|\mathrm{t}\\|_{\text {min }} \propto \mathrm{p} / \beta^{*}$
Standard optics $\beta^{*}=0.5 \mathrm{~m}$	Small	Large	$>0.3 \mathrm{GeV}^{2}$
Special optics $\boldsymbol{\beta}^{*}=\mathbf{9 0 m}$	Large	Small	$\sim \mathbf{0 . 0 1} \mathbf{G e V}^{2}$

This justifies the high β^{*} requirement
higher β^{*} ($\sim 1 \mathrm{~km}$) would lead to smaller $/ t /_{\text {min }} \sim 0.001 \mathrm{GeV}^{2}$
Then, what is observed/measured in ALFA?

Measurements in RP $[x, y]$

beam-optical elements (magnets)

$\left(\theta^{*}{ }_{x}, \theta^{*}{ }_{y}\right)$ emission angles at IP (interaction point)
(x^{*}, y^{*}) vertex at IP

$$
t=-\left(p \theta^{*}\right)^{2}
$$

$\binom{y}{\theta_{y}}=\left(\begin{array}{ll}M_{11} & M_{12} \\ M_{21} & M_{22}\end{array}\right)\binom{y^{*}}{\theta_{y}^{*}}$
In linear optics: det[M] := 1
$\square \mathrm{y} \sim \mathrm{M}_{12} \theta^{*}{ }_{\mathrm{y}}=\mathrm{L}_{\mathrm{y}}[270 \mathrm{~m}] \theta_{\mathrm{y}}{ }_{\mathrm{y}}$
\square Similarly for [x]:
$x=L_{x}[13 m] \theta_{x}^{*}+v_{x} x^{*}+D_{x} \xi$
(elastic $\hat{\xi}=0)_{23}$

ALFA / Hit map (2)

$$
\begin{aligned}
& y=L_{\text {, }}[270 \mathrm{~m}] \theta^{*}{ }_{y} \\
& x=L_{x}[13 m] \theta^{*}{ }_{x}+v_{x} x^{*}+D_{x} \xi \\
& \text { (elastic } \xi=0 \text {) }
\end{aligned}
$$

Hit pattern in one station. The shape is caused by the beam optics only (equations above)
$x[m m]$

Note:
If one would like to measure non-zero ξ values -with a good acceptance
$\square=>$ New RP needed \perp ALFA
CERN-LHCC-2015-009; ATLAS-TDR-024

Longitudinal momemtum loss (fraction)

Elastic cross section / Analysis strategy

Following the previous slides =>
Selection based on constrained kinematics of elastic events:

- Left (C side)-right (A side) symmetry (in x and y)
- Correlation between trajectory position (x) and elevation angle (θ)

Correlation between y on A and C sides

Correlation between x and θ_{x} on A side

Elastic cross section / Results

$$
\sigma_{\mathrm{tot}}^{2}=\left.\frac{16 \pi(\hbar c)^{2}}{1+\rho^{2}} \frac{\mathrm{~d} \sigma_{\mathrm{el}}}{\mathrm{~d} t}\right|_{t \rightarrow 0}
$$

...can be extended to $\frac{\mathrm{d} \sigma_{\mathrm{el}}}{\mathrm{dt}}=$ Coulomb + CNI $+\sigma^{2}{ }_{\text {tot }} \frac{1+\boldsymbol{\rho}^{2}}{16 \pi} \mathrm{e}^{-\mathrm{B}|\mathrm{t}|}$

Cross sections:

$$
\begin{aligned}
\sigma_{\text {tot }} & =95.35 \pm 1.36 \mathrm{mb} \\
\sigma_{\mathrm{el}} & =24.00 \pm 0.60 \mathrm{mb} \\
\sigma_{\text {incl }} & =71.34 \pm 0.90 \mathrm{mb}
\end{aligned}
$$

Elastic slope:

$$
-t\left[\mathrm{GeV}^{2}\right]
$$

$$
B=19.73 \pm 0.24 \mathrm{GeV}^{-2}
$$

Final result

Main systematic uncertainties:
 Luminosity: 2.3 \%
 $=>1.1 \%$ in $\sigma_{\text {tot }}$

Beam energy: 0.63 \% $=>0.43 \%$ in $\sigma_{\text {tot }}$

(1) Measurements at 13 TeV will be important (in the range of cosmic rays) (2) σ_{el} growing more/less rapidly than $\sigma_{\text {tot }}$?

Right now: the slope of $\sigma_{\mathrm{el}}\left(\mathrm{E}_{\mathrm{cm}}\right)$ is smaller than $\sigma_{\text {tot }}\left(\mathrm{E}_{\mathrm{cm}}\right)$

Internal history of the paper in ATLAS

Back on the anatomy of pp collisions

From the ALFA measurement(s):

$$
\sigma_{\mathrm{el}} / \sigma_{\text {tot }} \sim 25 \% \text { and thus } \sigma_{\text {inel }} / \sigma_{\text {tot }} \sim 75 \%
$$

From this 75\% of inelastic cross-section, how much of SD and DD?

Single Diffraction

The content of soft diffractive events in the inelastic cross-section can be obtained by the ratio of single sided events (enriched in diff events) to the total \# events.

This ratio is a function of $f_{D} \ldots$ and this fraction can be tuned in the MC up to reproduce the value of $R_{S S}=>f_{D} \sim 27 \%+/-2 \%$

Back on the inelastic cross-section

$$
\sigma_{\text {inel }}=71.34+/-0.9 \mathrm{mb} \text { from ALFA at } \mathrm{E}_{\mathrm{cm}}=7 \mathrm{TeV}
$$

An independent measurement using MBTS triggers (lower limit in ξ or $M x$).
=>
$\sigma_{\text {inel }}=60.3+/-2.1 \mathrm{mb}$ for $M x>15 \mathrm{GeV}$
(also) at $\mathrm{E}_{\mathrm{cm}}=7 \mathrm{TeV}$.

$$
\sigma_{\text {incl }}=11.0 . \pm 2.3 \mathrm{mb} \text { for } M_{x}<15 \mathrm{GeV}
$$

(low mass inelastic cross-section)

Back on the anatomy of pp collisions Focus on low masses

For $\mathrm{Mx}<15 \mathrm{GeV}, \sigma_{\text {inel }}=11.0+/-2.3 \mathrm{mb}$
Out of these $11 \mathrm{mb}, 27 \%$ are of SD and DD origins. =>3 mb (with a 20% uncertainty)

Experiment	CERN-ISR	UA4	TOTEM	ATLAS
Energy	$31-62 \mathrm{GeV}$	516 GeV	7 TeV	7 TeV
$\sigma_{\text {diff }}$ (low mass) $/ \sigma_{\text {el }}$	$\sim 2 / 7=0.3$	$\sim 3 / 12=0.25$	$2.6 / 25=0.1$	$3 / 24=0.12$

$\sigma_{\text {diff }}$ (low mass) $/ \sigma_{\text {el }}$ is decreasing with the Energy

This is an interesting experimental result... to be re-examined...

Additional: ALFA and more complex reactions

Exclusive pion production
$p p \rightarrow p p \pi^{+} \pi^{-}$
high $\beta^{*}=90 \mathrm{~m}$ runs (206881-)
at $\mathrm{E}_{\mathrm{cm}}=8 \mathrm{TeV} \quad \mathrm{L}=37.33 / \mathrm{nb}$

Analysis strategy:

- Two tracks from common vertex with

$$
|\eta|<2.5 \text { and } P_{T}>100 \mathrm{MeV} / \mathrm{c}
$$

- No signal in MBTS above noise
- Single proton on both ATLAS sides -Preliminary ALFA alignment

Data contains elastic pp->pp events with overlap charged particle pair not belonging to the same interaction vertex (collinear protons)
Clean exclusive signature (exclusivity line)
$\Delta \eta_{F}$:= the largest of the 2 forward rapidity gaps between the first track (pT>200 MeV/c $|\eta|<2.5$) or the first CAL activity above noise and the edge of the detector $|\eta|=4.9$.

Cross section $\left[\Delta \eta_{F}\right]$:

- Non-diffractive fall at small $\Delta \eta_{F}$
- Rapidity plateau at $\Delta \eta_{\mathrm{F}}>2=>S D$ and $D D$
arXiv:1201.2808
EPJ C72 (2012) 1926

$\Delta \eta_{\mathrm{F}}>2$ => data/MC confirms that the event sample is dominated by SD (and DD)

Observed: [1,1.5] mb / unit of $\Delta \eta$
...to be compared to:
(3.5 mb for Pythia and 2.7 for Phojet)

Note:

The 2 MCs does not agree...
And there is something more...

Rapidity Gaps($\left.\mathrm{P}_{\mathrm{T}}^{\text {cut }}\right)$

The diffractive plateau disappears for $\mathrm{p}_{\mathbf{T}}{ }^{\mathrm{cut}} \mathbf{> 8 0 0} \mathbf{~ M e V}$

As the $p_{T}{ }^{\text {cut }}$ increases, data show larger gaps
=> Sensitive to hadronization fluctuation and underlying event
Therefore, this is a measurement of $\mathrm{d} \sigma / \mathrm{d} \Delta \eta_{\mathrm{F}}\left[\Delta \eta_{\mathrm{F}}\right]\left[\mathrm{p}_{T}{ }^{\mathrm{cut}}\right]$
Interesting to tune MCs, certainly not to extract some physics messages
like tunes of MCs based on Minimum Bias (MB) studies...

Rapidity Gaps

For example, we can check that Herwig MC is not satisfactory. <= Large gaps are produced in the absence of an explicit model of soft-diffraction in Herwig...

Another view of Gaps

Jet (1)

In the experimental configuration:
2 jets events with large Δy separation (GAP)
with/without a veto on jets P_{T} in ΔV
(Gap events / Inclusive events)
Interesting to test interesting limits on MCs?

One key observable is the gap fraction:

$$
\mathrm{f}\left(Q_{0}\right)=\sigma_{\mathrm{jj}}\left(Q_{0}\right) / \sigma_{\mathrm{ij}}
$$

Gap fraction (2j)

Plateau at high Δy and $\ln \left(P_{\lambda} / Q_{0}\right)$

=> Effect of PDFs and/or diffractive exchange

2 MCs are tested (POWHEG, HEJ): can be used as an element of tuning....

Gaps and Azimuths

Still the experimental configuration:
2 jets events with large Δy separation (GAP)
Define the correlation function ($\Delta \varphi$) of jets (1) and (2).

What happens when Δy increases? (for Gap versus Inclusive events)

The idea: if more and more gluons are emitted between the 2 jets (as Δy increases),
this should lead to a de-correlation of their relative azimuthal angle.

Gaps and Azimuths

Let us note $\Delta \varphi$ the azimuthal difference between the 2 jets.
We can always write the Fourier series of the normalized cross-section
$1 / \sigma \mathrm{d} \sigma / \mathrm{d} \Delta \varphi()=.1 /(2 \pi)\left\{1+2 \sum \mathrm{C}_{\mathrm{n}}(.) \cos [\mathrm{n}(\pi-\Delta \varphi)]\right\}$
Where: $\mathrm{C}_{\mathrm{n}}()=.\langle\cos [\mathrm{n}(\pi-\Delta \varphi)]>$
If there are only 2 jets with $\Delta \varphi=\pi=>C_{n}()=$.1 .

With the emission of partons (between the 2 jets, even with small transverse momentum) $=>C_{n}()<1.$.
$:=$ Stronger effect when $\Delta y=|y 1-y 2|$ is increased?!

Azimuthal decorrelation: inclusive events

Again, some tensions can be observed between the models...

None of them provide a good description of this first moment function!

However, the general behavior is correct...

Azimuthal decorrelation: gap events

Here, a veto is applied for potential jets between the 2 leading jets (this defines Gap events in the 2 jets configuration)

Similar conclusions as before
Note:
The veto enhances back-to-back topology with the gap size...
[C(.) increases]

Intermediate summary A short anatomy of pp collisions

$$
\begin{aligned}
& \sigma_{\text {tot }}=\sigma_{e l}+\sigma_{i n} \\
& \sigma_{i n}=\sigma_{p a r t o n}+\sigma_{S D}+\sigma_{D D}+\sigma_{D P E}
\end{aligned}
$$

$\sim 60 \%$ of the time a "hard" collision occurs
$\sim 25 \%$ of the time the protons scatter elastically
$\sim 10 \%$ of the time single diffraction occurs
$\sim 1 \%$ of the time double diffraction occurs
$\sim 1 \%$ of the time central (exclusive) diffraction occurs

$\sigma_{\text {diff }} \sim 15 \mathrm{mb}$

Probing deeper: pp->($\gamma \gamma)->\mathrm{ppX}$ Using photons...

The idea is that when the velocity of a charged particle (proton, Pb) ~c, its EM field becomes Lorentz-contracted equivalent to a transverse EM (photon) field...

This is the Equivalent Photon Approximation (EPA)

Probing deeper: pp->($\gamma \gamma)->p p X$ Using photons...

$$
\begin{aligned}
& \cdots \\
& M \\
& \text { num } \\
& \hat{v \approx c}
\end{aligned}
$$

The idea is that when the velocity of a charged particle (proton, Pb) ~c, its EM field becomes Lorentz-contracted equivalent to a transverse EM (photon) field...

Then, in general, we can write:

$$
\begin{aligned}
& \sigma(p+p \rightarrow p+p+X)=\iint f\left(\omega_{1}\right) f\left(\omega_{2}\right) \sigma_{\gamma \gamma \rightarrow X}\left(\omega_{1}, \omega_{2}\right) \frac{d \omega_{1}}{\omega_{1}} \frac{d \omega_{2}}{\omega_{2}} \\
& f\left(\omega_{1}\right) f\left(\omega_{2}\right) \rightarrow \iint n\left(\vec{b}_{1}, \omega_{1}\right) n\left(\vec{b}_{2}, \omega_{2}\right) P_{\text {non-inel }}\left(\left|\vec{b}_{1}-\vec{b}_{2}\right|\right) d^{2} \vec{b}_{1} d^{2} \vec{b}_{2}
\end{aligned}
$$

Example of processes @13 TeV Elementary cross sections: $\gamma \gamma->\mathbf{X}$

For pp collisions: $\sigma_{m} \otimes$ \#photons from each proton

- Also, we must not forget that protons have a finite size.
- This can be translated into a survival factor of the cross section

$$
S_{\gamma \gamma}^{2}=\frac{\int_{b_{1}>r_{p}} \int_{b_{2}>r_{p}} n\left(\vec{b}_{1}, \omega_{1}\right) n\left(\vec{b}_{2}, \omega_{2}\right) P_{\text {non-inel }}\left(\left|\vec{b}_{1}-\vec{b}_{2}\right|\right) d^{2} \vec{b}_{1} d^{2} \vec{b}_{2}}{\int_{b_{1}>0} \int_{b_{2}>0} n\left(\vec{b}_{1}, \omega_{1}\right) n\left(\vec{b}_{2}, \omega_{2}\right) d^{2} \vec{b}_{1} d^{2} \vec{b}_{2}}
$$

The pp->(ry)->... cross section with no account of finite size effects will be multiplied by S^{2}

Process	$\sigma_{\text {tot }}$	$\sigma_{t o t} \otimes S_{\gamma \gamma}^{2}$	$<S_{\gamma \gamma}^{2}>$
$\gamma \gamma \rightarrow H\left(M_{H}=125 \mathrm{GeV}\right)$	0.15 fb	0.11 fb	0.74
$\gamma \gamma \rightarrow \mu^{+} \mu^{-}\left(W_{\gamma \gamma}>40 \mathrm{GeV}\right)$	12 pb	10 pb	0.8
$\gamma \gamma \rightarrow \mu^{+} \mu^{-}\left(W_{\gamma \gamma}>160 \mathrm{GeV}\right)$	36 fb	25 fb	0.7
$\gamma \gamma \rightarrow W^{+} W^{-}$	82 fb	53 fb	0.65
$\gamma \gamma \rightarrow \gamma \gamma\left(W_{\gamma \gamma}>200 \mathrm{GeV}\right)$	0.06 fb	0.04 fb	0.64

Measurement of pp->($\gamma \gamma)->\mathrm{ppX}$ (at 7 TeV) with $\mathrm{X}=\mathrm{di}$-lepton

Prerequisites: The measurement (and its interpretation) are complicated by the fact that the proton does not stay necessarily intact:
elastic

SD

DD

Fiducial phase-space of the analysis:

$$
\begin{aligned}
& \cdot \mathrm{p}_{\mathrm{T}} \gg 10 \mathrm{GeV},\left|\eta_{\mu}\right|<2.4, \mathrm{M}_{\mu+\mu}>20 \mathrm{GeV} \\
& \cdot \mathrm{p}_{\mathrm{T}}^{\mathrm{e}}>12 \mathrm{GeV},\left|\eta_{\mathrm{e}}\right|<2.4, \mathrm{M}_{\mathrm{e}+\mathrm{e}}>24 \mathrm{GeV}
\end{aligned}
$$

Measurement of pp->($\gamma \gamma)->\mathrm{ppX}$ (at 7 TeV) with $\mathrm{X}=\mathrm{di}$-lepton

Why this is complicated!

Prior to any specific cuts, the selection (di-muon) is dominated by DY.

Similarly for ee

We are interested by the red part

Measurement of pp->($\gamma \gamma)->p p X$ (at 7 TeV) with $\mathrm{X}=\mathrm{di}$-lepton

Analysis strategy:

- ONLY 2 tracks (pT > 400 MeV) associated to vertex, formed by the 2 leptons (exclusivity selection)
- Vertex is requested to be isolated from other possible tracks (to remove again some DY and pile-up backgrounds)
- The p_{\top} of the di-lepton system is requested to be small ($<1.5 \mathrm{GeV}$) to keep elastic protons and reject (as much as possible) SD and DD.
- + cuts at the Z boson peak (to remove almost all remaining DY events)

Measurement: X=di-lepton /

 Exclusivity selection

Measurement: X=di-lepton / ${ }^{p p>(m)>p e n x}$ DY removal and p_{T} spectrum before cut

QATLAS

 LEXPERMENTRun 190644, Event 51422085 Time 2011-10-09, 16:29 CEST

Measurement: X=di-lepton / pp>>(m)>pnX Final step -1-

869 and 2124 events selected in ee/ $\mu \mu$ channels

Signal events (elastic)
$\sim 50 \%$ of the analysis-selected sample

MC does not include finite size Effects (or absorptive corrections) => Data~80\% of the prediction

We intend to determine this number precisely!
for elastic and SD processes...

Measurement: X=di-lepton / Final step -2-

- Binned likelihood of signal (exclusive or elastic) and background (SD)
- DY and DD fixed! (DD from Pythia, re-scattering corrections included)
- Both elastic and SD requires the factor $\sim 80 \%$

- $R_{\gamma \gamma \rightarrow e^{+} e^{-}}^{\text {excl }}=0.863 \pm 0.070$
- $R_{\gamma \gamma \rightarrow \mu^{+} \mu^{-}}^{\text {excl. }}=0.791 \pm 0.041$

$$
\begin{aligned}
& R_{\gamma \gamma \rightarrow e^{+} e^{-}}^{\mathrm{s}-\text { diss }}=0.759 \pm 0.080 \\
& R_{\gamma \gamma \rightarrow \mu^{+} \mu^{-}}^{\mathrm{s}-\mathrm{diss}}=0.762 \pm 0.049
\end{aligned}
$$

Measurement: X=di-lepton / Systematic uncertainties

dominant sources of systematic uncertainty are from background modeling:

	Uncertainty $[\%]$	
Source of uncertainty	$\gamma \gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$	$\gamma \gamma \rightarrow \mu^{+} \mu^{-}$
Electron reconstruction		
and identification efficiency	1.9	-
Electron energy scale		
and resolution	1.4	-
Electron trigger efficiency	0.7	-
Muon reconstruction efficiency	-	0.2
Muon momentum scale		
and resolution	-	0.5
Muon trigger efficiency	-	0.6
Backgrounds	2.3	2.0
Template shapes	1.0	0.9
Pile-up description	0.5	0.5
Vertex isolation efficiency	1.2	1.2
LHC beam effects	0.5	0.5
QED FSR in DY e ${ }^{+} \mathrm{e}^{-}$	0.8	-
Luminosity	1.8	1.8
Total systematic uncertainty	4.3	3.3
Data statistical uncertainty	8.2	5.1

Measurement: X=di-lepton / Control distributions

Apply the derived scaling factors to MCs (elastic and SD)
=>
The description data/MC is good!

Measurement: X=di-lepton / Cross sections

$$
R_{\gamma \gamma \rightarrow e^{+} e^{-}}^{\text {excl. }}=0.863 \pm 0.070
$$

$$
R_{\gamma \gamma \rightarrow \mu^{+} \mu^{-}}^{\text {excl. }}=0.791 \pm 0.041
$$

$$
\sigma_{\gamma \gamma \rightarrow l^{-} l^{-}}^{\mathrm{excl}}=R_{\gamma \gamma \rightarrow l^{-}}^{\mathrm{excl}} \cdot \sigma_{\gamma \gamma \rightarrow l^{-}}^{\mathrm{EPA}}
$$

Cross sections in the fiducial region (inside the kinematical cuts)

Variable	Electron channel	Muon channel
p_{T}^{ℓ}	$>12 \mathrm{GeV}$	$>10 \mathrm{GeV}$
$\left\|\eta^{\ell}\right\|$	<2.4	<2.4
$m_{\ell+\ell^{-}}$	$>24 \mathrm{GeV}$	$>20 \mathrm{GeV}$

$$
\begin{aligned}
& \sigma_{\gamma \gamma \rightarrow e^{+} e^{-}}^{\text {excl. }}=0.428 \pm 0.035 \text { (stat.) } \pm 0.018 \text { (syst.) } \mathrm{pb} \\
& \sigma_{\gamma \gamma \rightarrow \mu^{+} \mu^{-}}^{\text {excl. }}=0.628 \pm 0.032 \text { (stat.) } \pm 0.021 \text { (syst.) pb }
\end{aligned}
$$

Measurement: X=di-lepton / Cross sections -summary-

$$
\begin{aligned}
& R_{\gamma \gamma \rightarrow e^{+} e^{-}}^{\text {excl. }}=0.863 \pm 0.070 \\
& R_{\gamma \gamma \rightarrow \mu^{+} \mu^{-}}^{\text {excl. }}=0.791 \pm 0.041
\end{aligned}
$$

arXiv:1506.07098

$$
\text { PLB } 749 \text { (2015) 242-261 }
$$

Intermediate summary

On pp->($\gamma \gamma$)->... processes

We have shown experimentally that: This is possible to define an exclusivity selection in order to identify 'exclusive' events with a good efficiency -in the presence of Pile Up Events $\langle\mu\rangle-$

This is something promising for any analysis of this kind!

64

Intermediate summary On pp->($\gamma \gamma$)->ppX processes

Example of potential studies: $\mathrm{X}=\mathrm{WW}$; $\mathrm{X}=\gamma \gamma$; ... and many others in the exotic context...

This is a wide domain of experimental research... only starting.
A few points to keep in mind:
a) Take the correct scale for α_{EM} (which means $0 \mathrm{GeV}^{2}$ for elastic)
b) This is not correct to write (even implicitly) a relation like:

$$
\sigma_{\text {eff }}(21) / \sigma_{\text {EPA }}\left(2 \mid 2=\sigma_{\sigma_{\text {eff }}}^{-\quad-W W) / \sigma_{\text {EPA }}(W W) ~}\right.
$$

and then use this relation to scale predictions...
Interestingly, all this can be done in $\mathrm{PbPb}>(\gamma \gamma)->\mathrm{PbPbX}$ with advantages and drawbacks compared to pp...

Additional: MCs

For pp->($\gamma \gamma)->\mathbf{Y Y} \mathbf{X}$ processes

Treatment in LPAIR This produces only particles in the forward directions
'Correct' treatment in Pythia8 Particles are also visible in the central part of the detector

Additional: MCs

For pp->($\gamma \gamma$)->YY X processes

Treatment in LPAIR This produces only particles in the forward directions
'Correct' treatment in Pythia8 Particles are also visible in the central part of the detector

Then:
A large part of the 'total' cross-section is missed by LPAIR (/Phythia8) or any approach à la LPAIR for proton-dissociative events...

Additional: MCs

For pp->($\gamma \gamma$)->YY X processes

- $\mathrm{O}\left(\alpha_{\mathrm{s}}\right)$ corrections to the $\gamma q \rightarrow q$ process should have to be also considered

Initial state radiaiton

b)

Final state radiaiton

c)

Quark pair production
$\approx 40 \%$ contribution to the double-dissociative cross section (PYTHIA8)

- Enhancement of the cross section (diss part)
- Increased underlying event activity in the central detector
- Total cross section comparison: ($\mathrm{M}_{\mu \mu}>20 \mathrm{GeV}, \mathrm{p}_{\mathrm{T}}{ }^{\mu}>10 \mathrm{GeV},\left|\eta_{\mu}\right|<2.5$)

Generator	LPAIR (s-diss)	LPAIR (d-diss)	PYTHIA 8 (d-diss)
-	- MRST2004QED		
Cross-section	0.87 pb	1.02 pb	7.72 pb

Additional: Photon Induced reactions in DY

Probing even deeper Using Vector Boson Scattering...

$$
\begin{aligned}
& \text { QGC:=Quartic Gauge Coupling } \\
& \mathcal{A}\left(W_{L} W_{L} \rightarrow W_{L} W_{L}\right) \propto \frac{g_{W}^{2}}{v^{2}}\left[-s-t+\frac{s^{2}}{s-m_{H}^{2}}+\frac{t^{2}}{t-m_{H}^{2}}\right]
\end{aligned}
$$

Direct probe of the nature of the electroweak symmetry breaking mechanism EWSB
General motivation:
This is a high priority: we need to understand QGCs to tell if the Higgs unitarizes the process WW->WW

WW scattering

Electro-weak same-sign WW production (+2 jets) gets contributions from VBS diagrams (and non-VBS):

This is a promising channel for early VBS searches (low backgrounds) The idea to identify the VBS signature:
two jets with large rapidity separation and large mass!

WW scattering

 tagging jet (4)tagging jet (3)

First evidence of same sign WW
Signal:
(a) Same sign di-leptons
(b) 2 high pT jets with a large
gap between them

First evidence ever!

$$
\text { ATLAS: } \sigma^{\text {fid }}=1.3 \pm 0.4(\text { stat }) \pm 0.2(\text { syst }) \mathrm{fb}
$$

Predicted: $\quad 0.95 \pm 0.06 \mathrm{fb}$

WW scattering: VBS cross section

WWjj event in ATLAS

jets: $p_{T}^{j 1}=271 \mathrm{GeV}, p_{T}^{j 2}=54 \mathrm{GeV}, \eta^{j 1}=2.9, \eta^{j 2}=-3.4$
$E_{\mathrm{T}}^{\text {miss }}=75 \mathrm{GeV}$ muons: $p_{T}^{\mu 1}=180 \mathrm{GeV}, p_{T}^{\mu 2}=38 \mathrm{GeV}, \eta^{\mu 1}=1.4, \eta^{\mu 2}=-1.3$

Outlook -1-

Soon, pp elastic measurement at 8 TeV (90m optics) :within a year
On going: Some dedicated 'diffractive'-like measurements using ALFA (at higher beam intensity) instead of using LRG method (central detectors)

New runs at 13 TeV for ALFA (nominal optics) foreseen in October: we have already discussed how this measurement is important...

On going: new studies in $\gamma \gamma$ interactions (at 8 TeV). In parallel, we prepare some analyses for the 13 TeV data... where the large statistic expected will be decisive in the "probing deeper" topologies...

Uncovered in this presentation: photo-production of VM in PbPb collisions (on going)... for Pb , the equivalent \#photons is multiplied by 82^{2} ! Making a high intensity field... (with smaller maximal energies for photons)

Outlook -2-

LHC/ATLAS is re-starting... sample of results using tracks in central detectors so important in all analyses!

Feynman plateau

2-particle correlations at large multiplicities => long range correlations($\phi \sim 0)$!

