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Introduction
°

Motivation for ki-factorization approach

Diffractive production of open heavy mesons

@ the subject discussed on Monday by M. tuszczak
@ theoretical predictions based on
resolved pomeron model (Ingelman-Schlein approach)
corrected by absorption effects in terms of gap survival probability
@ diffractive collinear PDFs and LO collinear matrix elements
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Extension of the theoretical model by adopting k;-factorization approach
as an effective way to:

@ include higher-order corrections ﬁ
@ make kinematical correlation studies avalaible



Theoretical formalism
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k¢-factorization in non-diffractive charm production

Basic concepts of the k;-factorization (semihard) approach

k;-factorization — x4, 15+ # 0 Collins-Ells, Nucl. Phys. B360 (1991 3;
Catani-Ciafaloni-Hautmann, Nucl. Phys. B366 (1991) 135; Ball-Ellis, JHEP 05 (2001) 053

= very efficient approach for QQ correlations
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@ LO off-shell |Mg g - ,0al? = Catani-Ciafaloni-Hautmann (CCH) analytic formulae
or QMRK approach with effective BFKL NLL vertices

@ major part of higher-order corrections effectively included
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k¢-factorization in non-diffractive charm production

Unintegrated gluon distribution functions (UGDFs)

most popular models:
)

Lesson from non-diffractive charm production at the LHC:
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@ KMR UGDF works very well (single particle spectra and correlation observables)
@ may be applied for hard diffractive processes
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unintegrated diffractive gluon PDF

Model for diffractive UGDF

Resolved pomeron model (Ingelman-Schlein model):

@ convolution of the flux of pomerons in the proton
and the parton distribution in the pomeron

@ both ingredients known from the H1 Collaboration analysis of
diffractive structure function and diffractive dijets at HERA

First step = diffractive collinear PDF: .
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where the flux of pomerons: fip(xp) = ff:n':’:x dt f(xp, 1) x ?

Second step = diffractive unintegrated gluon within Kimber-Martin-Ryskin method:
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@ T,(k2, u?) - Sudakov form factor
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k¢-factorization in diffractive charm production

Single-diffractive cross section
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[*] 7:9 are the conventional UGDFs and T;J are their diffractive counterparts

@ elementary cross section with off-shell matrix element |Mg:g+—cz (k1. k2 )2
@ influence of pomeron transverse momenta on initial gluon fransverse momenta neglected,
we assume: gluon k; >> pr of pomeron (or outgoing proton) (work in progress)



Numerical results
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charm quark level

LO Parton Model vs. k;-factorization approach
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@ significant differences between LO PM and k;-factorization
(similar as in the non-diffractive case)

@ higher-order corrections very important
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charm quark level

2Dim-distribution in transverse momenta of ¢ and ¢
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@ fransverse momenta of outgoing particles not balanced

@ one p; small and second p; large = configurations typical for NLO
corrections (in the PM classification)
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charm quark level

Correlation observables
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@ azimuthal angle correlations = almost flat distribution
(similar shape in the case of inclusive central diffraction (DPE))

@ exclusive central diffractive events = much more correlated (peaked at )

@ quite large cc pair transverse momenta



Numerical results
@00

open charm meson

D° meson fransverse momentum spectra for ATLAS
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@ hadronization effects included via fragmentation function technique

@ small reggeon contribution
(becomes more important in the forward rapidity region, e.g. LHCb)
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open charm meson

Proton-vertex variables
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@ the cross section concentrated in the region of proton pr less than 1 GeV

@ pomeron contribution = strong dependence on the minimal value of the xjp
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open charm meson

Integrated cross sections in nanobarms at /s

@ Exp. mode: Dugﬁ; ATLAS cuts: pr > 3.5 GeV and |n| < 2.1

@ BR(c — D% = 0.565

. parton-level oy, for cc D° meson with the ATLAS detector
min. xp(Xp) "

pomeron reggeon pomeron reggeon 1B
0.005 71466.95 28239.61 3237.70 823.06 20%
0.01 59724.05 28059.41 2751.93 820.10 23%
0.015 51710.60 27795.48 2390.31 814.80 25%
0.02 45452.81 27456.82 2100.86 807.31 28%
0.025 40250.23 27049.62 1857.81 797.77 30%
0.03 35762.93 26578.13 1647.77 786.41 32%
0.035 31793.50 26045.35 1461.59 772.94 35%
0.04 28221.20 25453.78 1294.41 757.53 37%
0.045 24963.04 24806.25 114229 740.24 39%
0.05 21961.04 24103.46 1002.51 721.34 42%

@ relatively high cross section: 2 — 3 ub (depending on minimal value of xjp)

@ feasibility studies on the way (M. Trzebihski)



Summary
°

Conclusions

@ sizeable cross section for single-diffractive production of open charm at the
LHC calculated for the first time within the k;-factorization approach

@ useful model for unintegrated diffractive PDFs

@ very important higher-order corrections and interesting azimuthal angle
correlations in the case of inclusive diffractive charm production

@ feasibility studies needed (on the way)

Thank You for aftention!
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