Diffractive charm production at the LHC within k_t -factorization approach

Rafał Maciuła

Institute of Nuclear Physics (PAN), Kraków, Poland

WE-Heraeus Physics School
Diffractive and electromagnetic processes at high energies
Bad Honnef, August 17-21, 2015

Outline

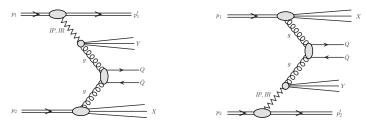
- Introduction
- 2 Theoretical formalism
 - k_t -factorization in non-diffractive charm production
 - unintegrated diffractive gluon PDF
 - k_t -factorization in diffractive charm production
- 3 Numerical results
 - charm quark level
 - open charm meson

in collaboration with:

M. Łuszczak, A. Szczurek and M. Trzebiński

Diffractive production of open heavy mesons

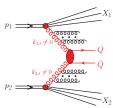
- the subject discussed on Monday by M. Łuszczak
- theoretical predictions based on
 resolved pomeron model (Ingelman-Schlein approach)
 corrected by absorption effects in terms of gap survival probability
- diffractive collinear PDFs and LO collinear matrix elements



Extension of the theoretical model by adopting k_f -factorization approach as an effective way to:

- include higher-order corrections
- make kinematical correlation studies avalaible

Basic concepts of the k_t -factorization (semihard) approach



 k_t -factorization $\longrightarrow \kappa_{1,t}, \, \kappa_{2,t} \neq 0$ Collins-Ellis, Nucl. Phys. B360 (1991) 3;

Catani-Ciafaloni-Hautmann, Nucl. Phys. B366 (1991) 135; Ball-Ellis, JHEP 05 (2001) 053

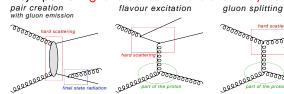
⇒ very efficient approach for QQ correlations

multi-differential cross section

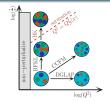
$$\begin{split} \frac{d\sigma}{dy_{1}dy_{2}d^{2}p_{1,t}d^{2}p_{2,t}} &= \sum_{i,j} \int \frac{d^{2}\kappa_{1,t}}{\pi} \frac{d^{2}\kappa_{2,t}}{\pi} \frac{1}{16\pi^{2}(x_{1}x_{2}s)^{2}} \overline{|\mathcal{M}_{i^{2}j^{*} \to Q\bar{Q}}|^{2}} \\ &\times \quad \delta^{2}\left(\vec{\kappa}_{1,t} + \vec{\kappa}_{2,t} - \vec{p}_{1,t} - \vec{p}_{2,t}\right) \, \mathcal{F}_{i}(x_{1},\kappa_{1,t}^{2}) \, \mathcal{F}_{j}(x_{2},\kappa_{2,t}^{2}) \end{split}$$

- $\mathcal{F}_i(x_1, \kappa_{1,t}^2)$, $\mathcal{F}_i(x_2, \kappa_{2,t}^2)$ unintegrated (k_t -dependent) gluon distributions
- $\qquad \textbf{LO off-shell } \overline{|\mathcal{M}_{\sigma^*\sigma^*\to\Omega\bar{\Omega}}|^2} \Rightarrow \text{ Catani-Ciafaloni-Hautmann (CCH) analytic formulae}$ or QMRK approach with effective BFKL NLL vertices

major part of higher-order corrections effectively included



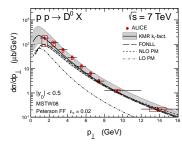
Unintegrated gluon distribution functions (UGDFs)

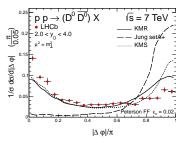


most popular models:

- Kwieciński, Jung (CCFM, wide range of x)
- Kimber-Martin-Ryskin (DGLAP-BFKL, wide range of x)
- Kwieciński-Martin-Staśto (BFKL-DGLAP, small x-values)
- Kutak-Staśto (BK, saturation, only small x-values)

Lesson from non-diffractive charm production at the LHC:

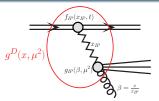




- KMR UGDF works very well (single particle spectra and correlation observables)
- may be applied for hard diffractive processes

Introduction

Model for diffractive UGDF



Resolved pomeron model (Ingelman-Schlein model):

- convolution of the flux of pomerons in the proton and the parton distribution in the pomeron
- both ingredients known from the H1 Collaboration analysis of diffractive structure function and diffractive dilets at HERA

First step ⇒ diffractive collinear PDF:

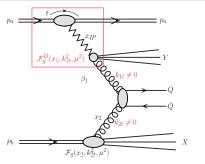
$$g^{\mathrm{D}}(x,\mu^2) = \int dx_{\mathbf{IP}} d\beta \, \delta(x - x_{\mathbf{IP}}\beta) g_{\mathbf{IP}}(\beta,\mu^2) \, f_{\mathbf{IP}}(x_{\mathbf{IP}}) = \int_{x}^{1} \frac{dx_{\mathbf{IP}}}{x_{\mathbf{IP}}} \, f_{\mathbf{IP}}(x_{\mathbf{IP}}) g_{\mathbf{IP}}(\frac{x}{x_{\mathbf{IP}}},\mu^2)$$
where the flux of pomerons: $f_{\mathbf{IP}}(x_{\mathbf{IP}}) = \int_{t_{\min}}^{t_{\max}} dt \, f(x_{\mathbf{IP}},t)$

Second step ⇒ diffractive unintegrated gluon within Kimber-Martin-Ryskin method:

$$f_g^D(x, k_t^2, \mu^2) \equiv \frac{\partial}{\partial \log k_t^2} \left[g^D(x, k_t^2) T_g(k_t^2, \mu^2) \right] = T_g(k_t^2, \mu^2) \frac{a_S(k_t^2)}{2\pi} \times \int_x^1 dz \left[\sum_q P_{gq}(z) \frac{x}{z} q^D\left(\frac{x}{z}, k_t^2\right) + P_{gg}(z) \frac{x}{z} g^D\left(\frac{x}{z}, k_t^2\right) \Theta\left(\Delta - z\right) \right]$$

• $T_{\alpha}(k_{+}^{2}, \mu^{2})$ - Sudakov form factor

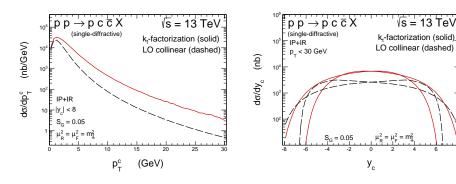
Single-diffractive cross section



$$\begin{split} d\sigma^{SD(a)} \big(p_a p_b \to p_a c\bar{c} \; XY \big) & = & \int dx_1 \, \frac{d^2 k_{1t}}{\pi} \, dx_2 \frac{d^2 k_{2t}}{\pi} \; d\hat{\sigma} \big(g^* g^* \to c\bar{c} \big) \times \, \mathcal{F}_g^D \big(x_1, k_{1t}^2, \mu^2 \big) \cdot \mathcal{F}_g \big(x_2, k_{2t}^2, \mu^2 \big) \\ d\sigma^{SD(b)} \big(p_a p_b \to c\bar{c} p_b \; XY \big) & = & \int dx_1 \, \frac{d^2 k_{1t}}{\pi} \, dx_2 \, \frac{d^2 k_{2t}}{\pi} \; d\hat{\sigma} \big(g^* g^* \to c\bar{c} \big) \times \, \mathcal{F}_g \big(x_1, k_{1t}^2, \mu^2 \big) \cdot \mathcal{F}_g^D \big(x_2, k_{2t}^2, \mu^2 \big) \end{split}$$

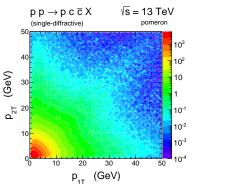
- ullet \mathcal{F}_g are the conventional UGDFs and $\mathcal{F}_g^{\mathcal{D}}$ are their diffractive counterparts
- elementary cross section with off-shell matrix element $\overline{|\mathcal{M}_{g^*g^* \to c\bar{c}}(k_1, k_2)|^2}$
- influence of pomeron transverse momenta on initial gluon transverse momenta neglected, we assume: gluon $k_t >> p_T$ of pomeron (or outgoing proton) (work in progress)

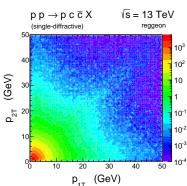
LO Parton Model vs. k_t -factorization approach



- significant differences between LO PM and k_t -factorization (similar as in the non-diffractive case)
- higher-order corrections very important

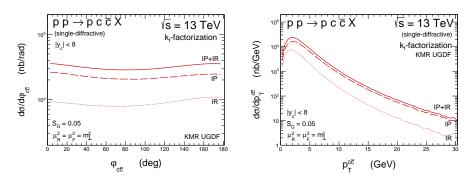
2Dim-distribution in transverse momenta of c and \bar{c}





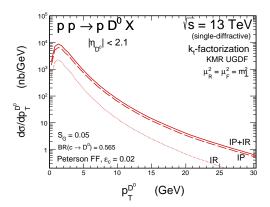
- transverse momenta of outgoing particles not balanced
- one p_t small and second p_t large ⇒ configurations typical for NLO corrections (in the PM classification)

Correlation observables

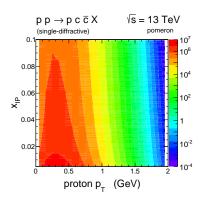


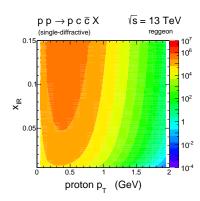
- azimuthal angle correlations ⇒ almost flat distribution (similar shape in the case of inclusive central diffraction (DPE))
- exclusive central diffractive events \Rightarrow much more correlated (peaked at π)
- quite large $c\bar{c}$ pair transverse momenta

\mathcal{D}^0 meson transverse momentum spectra for ATLAS



- hadronization effects included via fragmentation function technique
- small reggeon contribution
 (becomes more important in the forward rapidity region, e.g. LHCb)





- the cross section concentrated in the region of proton p_T less than 1 GeV
- pomeron contribution \Rightarrow strong dependence on the minimal value of the x_{IP}

Introduction

Integrated cross sections in nanobarns at $\sqrt{s}=13\, ext{TeV}$

ullet Exp. mode: $rac{D^0+\overline{D^0}}{2}$; ATLAS cuts: $p_T>3.5$ GeV and $|\eta|<2.1$

• BR(
$$c \to D^0$$
) = 0.565

min. $x_P(x_R)$	parton-level σ_{tot} for $car c$		D^0 meson with the ATLAS detector		
	pomeron	reggeon	pomeron	reggeon	$\frac{R}{P+R}$
0.005	71466.95	28239.61	3237.70	823.06	20%
0.01	59724.05	28059.41	2751.93	820.10	23%
0.015	51710.60	27795.48	2390.31	814.80	25%
0.02	45452.81	27456.82	2100.86	807.31	28%
0.025	40250.23	27049.62	1857.81	797.77	30%
0.03	35762.93	26578.13	1647.77	786.41	32%
0.035	31793.50	26045.35	1461.59	772.94	35%
0.04	28221.20	25453.78	1294.41	757.53	37%
0.045	24963.04	24806.25	1142.29	740.24	39%
0.05	21961.04	24103.46	1002.51	721.34	42%

• relatively high cross section: $2-3 \mu b$ (depending on minimal value of x_{IP})

feasibility studies on the way (M. Trzebiński)

Conclusions

- sizeable cross section for single-diffractive production of open charm at the LHC calculated for the first time within the k_t -factorization approach
- useful model for unintegrated diffractive PDFs
- very important higher-order corrections and interesting azimuthal angle correlations in the case of inclusive diffractive charm production
- feasibility studies needed (on the way)

Thank You for attention!

