Review of diffraction in Compass

Fabian Krinner for the COMPASS collaboration

Physik-Department E18
Technische Universität München

Diffractive and electromagnetic processes at high energies Bad Honnef

Content

- The Compass experiment
- The two-step fit procedure
 - ► Step 1: Partial-Wave decomposition
 - ► Step 2: The mass-dependent fit
- Results
 - ► The major waves
 - ► The new a₁(1420) resonance
 - A spin-exotic signal with $J^{PC} = 1^{-+}$
- New Directions
 - Non-isobaric waves
 - Freed-isobar approach
- Conclusions

The COMPASS Experiment

The Compass-experiment

The COMPASS Experiment

ПΠ

COMPASS hadron setup

The COMPASS Experiment

- Fixed-target experiment at CERN's northern area
- Various configurations possible:
 - Secondary hadron beams
 - Polarized Tertiary muon beams
 - Various (polarized) targets
- Good acceptance over wide kinematic range
- Particle identification via RICH and CEDARs
- Broad physics program
- Analysis presented here:
 - ▶ 190 GeV/c hadron beam, mainly π^-
 - ► 40 cm liquid hydrogen target

The COMPASS Experiment The reaction

Channel presented here:

$$\pi_{\mathsf{beam}}^- p \to \pi^- \pi^+ \pi^- p_{\mathsf{recoil}}$$

- Around 50 million events recorded
- Up to now largest data-set for this channel

The COMPASS Experiment The reaction

Channel presented here:

$$\pi^-_{
m beam} {m
ho}
ightarrow \pi^- \pi^+ \pi^- {m
ho}_{
m recoil}$$

- Around 50 million events recorded
- Up to now largest data-set for this channel
- Structures → intermediate states

The two-step fit procedure

- Goal: Extraction of quantum numbers, masses and widths of these intermediate states
- Two-step procedure:
 - Step 1: Partial-Wave decomposition
 - ► Step 2: Fit of mass shapes
- Advantages of two steps:
 - Less computational requirements than a global fit
 - No model for resonance shapes necessary in the first step

The two-step fit procedure

Step 1
Partial-Wave decomposition

Step 1: Partial-Wave decomposition

The likelihood function

- Extended likelihood function: Probability to measure the events given the model
- L =

$$p(\textit{N}_{\textit{observed}}) \prod_{\textit{event}}^{\textit{N}_{\textit{observed}}} p(\textit{event}) = \underbrace{\frac{\textit{N}_{\textit{expected}}^{\textit{N}_{\textit{observed}}}}{\textit{N}_{\textit{observed}}!} e^{-\textit{N}_{\textit{expected}}}}_{\textit{Poisson factor}} \underbrace{\prod_{\textit{events}}^{\textit{N}_{\textit{observed}}} \mathcal{I}(\textit{event}) \eta(\textit{event})}_{\textit{Probability of single events}}$$

- ▶ Intensity $\mathcal{I} = |\mathcal{A}|^2$ modeled
- Detection efficiency \(\eta \) of the detector from Monte Carlo
- Write complex amplitude A(event) as:

$$\mathcal{A}(\mathsf{event}) = \sum_i \mathcal{T}_i \mathcal{A}_i(\mathsf{event})$$

- Single amplitudes A_i (event) known, magnitude and phase, T_i , unknown
- \bullet Fit result: Production amplitudes T_i at the maximum of the likelihood

- Structures in the Dalitz plots at different masses $m_X = m_{3\pi}$
- Additional $\pi^-\pi^+$ intermediate states appear

- - Structures in the Dalitz plots at different masses $m_X = m_{3\pi}$
 - Additional $\pi^-\pi^+$ intermediate states appear

- Structures in the Dalitz plots at different masses $m_X = m_{3\pi}$
- Additional $\pi^-\pi^+$ intermediate states appear
 - → Subsequent two-particle decays: *Isobar model*

Step 1: Partial-Wave decomposition

The complex amplitude

Model the amplitude as a sum over Partial-Waves:

 Expand A as a series of Partial-Waves

$$\mathcal{A} = \sum_{\mathsf{waves}} \mathcal{T}_{\mathsf{wave}} \mathcal{A}_{\mathsf{wave}}$$

Wave given by:

$$J^{PC}M^{\epsilon}$$
[isobar] πL (e.g. $1^{++}0^{+}\rho(770)\pi S$)

• Examples for isobars:

$$egin{array}{|c|c|c|c|c|} \hline J^{PC} & Isobars \\ \hline 0^{++} & f_0(500) \ (or \ \sigma \ or \ [\pi\pi]_S), \ f_0(980), \ f_0(1500) \\ 1^{--} &
ho(770) \\ 2^{++} & f_2(1270) \\ 3^{--} &
ho_3(1690) \\ \hline \end{array}$$

• In principle also excited isobars or higher spins possible

Step 1: Partial-Wave decomposition The wave-set

- Amplitude $A = \sum_{waves} T_{wave} A_{wave}$
- In principle: Sum over infinite spins and all isobars
- Truncate at some point
- Results may depend on truncation (Example shown later)
- What are the relevant waves for the data-set?

Step 1: Partial-Wave decomposition The wave-set

- Amplitude $A = \sum_{\text{waves}} T_{\text{wave}} A_{\text{wave}}$
- In principle: Sum over infinite spins and all isobars
- Truncate at some point
- Results may depend on truncation (Example shown later)
- What are the relevant waves for the data-set?
- Now in use: 88 waves

$\begin{array}{c} 0 - + 0 + f_0 & (1500) \pi S \\ 0 - + 0 + f_0 & (980) \pi S \\ 0 - + 0 + f_0 & (980) \pi S \\ 0 - + 0 + f_0 & (1270) \pi D \\ 0 - + 0 + \rho & (770) \pi P \\ 0 - + 0 + \sigma \pi S \\ \hline + + 0 + f_0 & (980) \pi P \\ 1 + 0 + f_0 & (1270) \pi P \\ 1 + 0 + f_0 & (1270) \pi F \\ 1 + 0 + \rho & (1500) \pi D \\ 1 + 0 + \rho & (1500) \pi D \\ 1 + 0 + \rho & (1500) \pi P \\ 1 + 0 + \rho & (1700) \pi S \\ 1 + 0 + \rho & (1700) \pi S \\ 1 + 0 + \rho & (1700) \pi D \\ 1 + 1 + \rho & (1700) \pi D \\ 1 + 1 + \rho & (1700) \pi D \\ 1 + 1 + \rho & (1700) \pi D \\ 1 + 1 + \rho & (1700) \pi D \\ 1 + 1 + \rho & (1700) \pi D \\ 1 + 1 + \rho & (1700) \pi D \\ 2 + 1 + \rho & (1700) \pi D \\ 2 + 1 + \rho & (1700) \pi D \\ 2 + 1 + \rho & (1700) \pi D \\ 2 + 1 + \rho & (1700) \pi D \\ 2 - 1 + \rho & (1700) \pi D \\ 2 - 1 + \rho & (1270) \pi D \\ 2 - 1 + \rho & (1270) \pi D \\ 2 - 1 + \rho & (1270) \pi G \\ 2 - 1 + \rho & (1700) \pi P \\ 2 - 1 + \rho & (1700) \pi P \\ 2 - 1 + \rho & (1700) \pi P \\ 2 - 1 + \rho & (1700) \pi P \\ 2 - 1 + \rho & (1700) \pi D \\ 2 - 1 + \rho & (1700) \pi D \\ 2 - 1 + \rho & (1700) \pi P \\ 2 - 1 + \rho & (1700) \pi D \\ 2 - 1 + \rho & (1700) \pi P \\ 2 - 1 + \rho & (1700) \pi D \\ 2 - 1 + \rho & (1700) \pi P \\ 2 - 1 + \rho & (1700) \pi D \\ 2 - 1 + \rho & (1700) \pi P \\ 2 - 1 + \rho & (1700) \pi D \\ 2 - 1 + \rho & (1700) \pi D \\ 2 - 1 + \rho & (1700) \pi P \\ 2 - 1 + \rho & (1700) \pi D \\ 2 - 1 + \rho & (1700) \pi P \\ 2 - 1 + \rho & (1700) \pi D \\ 2 - 1 + \rho & (1700) \pi P \\ 2 - 1 + \rho & (1700) \pi D \\ 2 - 1 + \rho & (1700) \pi P \\ 2 - 1 + \rho & (1700) \pi D \\ 2 - 1 + \rho & (1700) \pi P \\ 2 - 1 + \rho & (1700) \pi D \\ 2 - 1 + \rho & (1700) \pi P \\ 2 - 1 + \rho & (1700) \pi D \\ 2 - 1 + \rho & (1700) \pi P \\ 2 - 1 + \rho & (1700) \pi D \\ 2 - 1 + \rho & (1700) \pi D \\ 2 - 1 + \rho & (1700) \pi P \\ 2 - 1 + \rho & (1700) \pi D \\$	$\begin{array}{c} 2^{-}+1^{+} t_{2}(1270)\pi S \\ 2^{-}+1^{+} t_{2}(1270)\pi D \\ 2^{-}+1^{+} \rho_{3}(1690)\pi P \\ 2^{-}+1^{+} \rho_{3}(1690)\pi P \\ 2^{-}+1^{+} \rho(770)\pi P \\ 2^{-}+1^{+} \rho(770)\pi F \\ 2^{-}+1^{+} \sigma\pi D \\ 2^{-}+2^{+} t_{2}(1270)\pi S \\ 2^{+}+2^{+} t_{2}(1270)\pi S \\ 2^{+}+2^{+} t_{2}(1270)\pi P \\ 3^{+}+0^{+} \rho_{3}(1690)\pi S \\ 3^{+}+0^{+} \rho_{3}(1690)\pi S \\ 3^{+}+0^{+} \rho(770)\pi G \\ 3^{+}+0^{+} \rho(770)\pi G \\ 3^{+}+1^{+} \rho_{3}(1690)\pi S \\ 3^{+}+1^{+} \rho_{3}(1690)\pi S \\ 3^{+}+1^{+} \rho_{3}(1690)\pi S \\ 3^{+}+1^{+} \rho_{3}(1690)\pi S \\ 3^{+}+1^{+} \rho(770)\pi D \\ 3^{+}+1^{+} \rho(770)\pi G \\ 3^{+}+1^{+} \rho(770)\pi F \\ 4^{+}+1^{+} \rho(770)\pi F \\ 4^{+}+1^{+} \rho(770)\pi G \\ 4^{+}+2^{+} \rho(770)\pi G \\ 4^{+}+2^{+} \rho(1270)\pi G \\ 4^{-}+0^{+} t_{2}(1270)\pi G \\ 4^{-}+0^{+} t_{2}(1270)\pi G \\ 4^{-}+0^{+} \rho(170)\pi G \end{array}$	$\begin{array}{c} 4^{-+}0^{+}\sigma\pi G \\ 4^{-+}1^{+}l_{2}(1270)\pi F \\ 4^{-+}1^{+}\rho(770)\pi F \\ 5^{++}0^{+}l_{2}(1270)\pi F \\ 5^{++}0^{+}l_{2}(1270)\pi F \\ 5^{++}0^{+}l_{2}(1270)\pi H \\ 5^{++}0^{+}\rho(770)\pi G \\ 5^{++}0^{+}\sigma\pi H \\ 5^{++}1^{+}l_{2}(1270)\pi F \\ 5^{++}1^{+}\sigma\pi H \\ 6^{++}1^{+}l_{2}(1270)\pi G \\ 6^{-+}0^{+}l_{2}(1270)\pi G \\ 6^{-+}l_{2}(1270)\pi G \\ 1^{-+}l_{2}(1270)\pi G \\ 1^{-+}$

Step 1: Partial-Wave decomposition

Fit 88 wave model to the data

$$\mathcal{A}(\mathit{m}_{3\pi},\mathit{t}', au) = \sum_{\mathsf{waves}} \mathcal{T}_{\mathsf{wave}}(\mathit{m}_{3\pi},\mathit{t}') \mathcal{A}_{\mathsf{wave}}(au)$$

- $m_{3\pi}$ and t' dependence unknown
- Fit independently in bins of mass $m_{3\pi}$ and four-momentum transfer t':
 - ▶ 100 bins in $m_{3\pi}$ from $0.5 2.5 \,\mathrm{GeV}$
 - ▶ 11 non-equidistant bins in t'
- 1100 independent fits with up to 175 free parameters
- m_{3π}-dependence of the results → extract resonances

Step 1: Partial-Wave decomposition

Two channels:

 $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$ and

$$\pi^- p \rightarrow \pi^- \pi^0 \pi^0 p$$

- Intensity plotted: $\mathcal{I} = |T_{\text{wave}}(m_{3\pi})|^2$
- $J^{PC} = 1^{++}$: axial-vector
- $ho \sim$ 33% of the total intensity

Step 1: Partial-Wave decomposition Results

• $J^{PC} = 2^{++}$: tensor

- Clearest resonance
- ~ 8% of the total intensity

Step 1: Partial-Wave decomposition

 $\sim 7\%$ of the total intensity

Step 1: Partial-Wave decomposition Main features

- Main features of the observed spectrum explained by major waves
- Known intermediate states identified
- Good agreement between both channels
- Up to now, resonance parameters not extracted

Step 1: Partial-Wave decomposition Small signals

ΤЛП

• Spin-4 meson decaying into $\rho(770) \pi$

- Only 0.76% of the intensity in the $\pi^-\pi^+\pi^-$ channel
- The well known a₄(2040) resonance is clearly visible
- PWA also allows to clearly extract waves on sub-percent level

The two-step fit procedure

Step2
The mass-dependent fit

- Extract resonance parameters from the results of the first step
- Higher spin waves mostly non-resonant
- ullet Only subset of the waves is modeled in second step
- Relative phases help finding resonances

• Twave contain resonant structures

- T_{wave} contain resonant structures
- Resonances:
 - Intensity structure (peak or dip)
 - ► Phase motion

- T_{wave} contain resonant structures
- Resonances:

Resonances

- ► Intensity structure (peak or dip)
- Phase motion
- Similar to the harmonic oscillator:
 - Intensity: Energy in the oscillator at a certain excitation frequency
 - ▶ Phase: Phase between the displacement and the driving force

Use e.g. Breit-Wigner parametrization:

$$BW(m_{3\pi}) = \frac{m_0 \Gamma_0}{m_0^2 - m_{3\pi}^2 - i m_0 \Gamma_0}$$

- More sophisticated parameterizations possible (e.g. $\Gamma_0 o \Gamma(m_{3\pi})$)
- Add real-valued non-resonant component $NR(m_{3\pi})$
- Total model for production amplitudes

$$\mathcal{T}_{\mathsf{wave}} = \sum_{\mathsf{resonances}} C_i BW_i(m_{3\pi}) + C_{\mathit{NR}} \mathit{NR}(m_{3\pi})$$

Complex "coupling parameters" C_i, no direct physical meaning

- Free global phase in every bin
- Do not fit amplitudes, but spin-density matrix

$$ho_{ij}(m_{3\pi},t')=T_i(m_{3\pi},t')T_j^*(m_{3\pi},t')$$

- Global phase cancels
- Phase helps to identify resonances
- "Not every peak is a resonance and not every resonance is a peak"
- Separate matrix for every t' bin

The spin-density matrix ρ_{ij}

- Free global phase in every bin
- Do not fit amplitudes, but spin-density matrix

$$\rho_{ij}(m_{3\pi},t') = T_i(m_{3\pi},t')T_j^*(m_{3\pi},t')$$

- Global phase cancels
- Phase helps to identify resonances
- "Not every peak is a resonance and not every resonance is a peak"
- Separate matrix for every t' bin

• Construct $\chi^2(\vec{\theta})$ function:

$$\chi^2(\vec{\theta}) = \sum_{\text{bins}} \sum_{i,j} \left(\frac{\rho_{ij}(\textit{m}_{3\pi},\textit{t}') - \mathcal{T}_i(\textit{m}_{3\pi},\textit{t}';\vec{\theta}) \mathcal{T}_j^*(\textit{m}_{3\pi},\textit{t}';\vec{\theta})}{\Delta \rho_{ij}(\textit{m}_{3\pi},\textit{t}')} \right)^2$$

- Vector of fit parameters $\vec{\theta}$
- Serveral hundred free parameters
- Two types:
 - "Complex couplings" C_i free in every bin of the four-momentum transfer t'
 - Parameters of interest: m₀, Γ₀ of the resonances (only 10%)
- Result: Parameters at minimum of χ^2

- Many possible parameterizations for resonant and non-resonant contributions
- Results depend on chosen subset of waves
- → Model-dependent results
- Lots of parameters with non-linearities
- Many local minima in the χ^2 function
- ullet Results depend on start-values for the minimization of χ^2
- → Many fit attempts necessary (> 1000)
- → Extensive systematic studies

- Fit with six waves
- Five different sets of quantum numbers
- Eleven t' bins in total
- Shape parameters the same in all bins of t'
- Complex couplings vary with t'
- Better separation between resonant and non-resonant contributions

- Fit with six waves
- Five different sets of quantum numbers
- Eleven t' bins in total
- Shape parameters the same in all bins of t'
- Complex couplings vary with t'
- Better separation between resonant and non-resonant contributions

- Fit with six waves
- Five different sets of quantum numbers
- Eleven t' bins in total
- Shape parameters the same in all bins of t'
- Complex couplings vary with t'
- Better separation between resonant and non-resonant contributions

Results

The major waves

- Main resonance: $a_2(1320)$
- Peak position stable
- Nearly no non-resonant contributions
- Clearest resonance in the analysis

Main resonance: a₁(1260)

- Peak of the intensity moves with t'
- Peak of the resonance fixed with t'
- Binning in the four-momentum transfer allows better differentiation between resonant and non-resonant structures

The major waves

- Main resonance $\pi_2(1670)$
- Peak position also stable
- Second resonance appears as shoulder
- Second resonance $\pi_2(1880)$

Results

A new resonance The $a_1(1420)$

The new $a_1(1420)$ resonance

 Previously unknown peak observed in

$$1^{++}0^+f_0(980)\pi P$$

Corresponds to a resonance?

The new $a_1(1420)$ resonance The $a_1(1420)$

Peak in intensity and phase motion:

Phase motion w.r.t. other waves → peak corresponds to a resonance

arXiv:1501.05732, to be published in PRL (Editors' choice)

The new $a_1(1420)$ resonance

Peak in intensity and phase motion:

Phase motion w.r.t. other waves \rightarrow peak corresponds to a resonance

Extracted Breit-Wigner parameters:

$$m_{a_1(1420)} = 1414^{+15}_{-13}\,{
m MeV}/c^2;\; \Gamma_{a_1(1420)} = 152^{+8}_{-23}\,{
m MeV}/c^2$$

arXiv:1501.05732, to be published in PRL (Editors' choice)

The new $a_1(1420)$ resonance

- Never observed before
- J^{PC} = 1⁺⁺: axial-vector meson
- New resonance: $a_1(1420)$
- Nature unclear:
 - Not expected in quark-model
 - Special decay
 - Analogue to X, Y, Z states?
 - Dynamically generated?

Seel also: [Wang, arXiv:1401.1134], [Chen et al., Phys. Rev. D91 (2015) 094022], [Basdevant and Berger, Phys. Rev. Lett. 114 (2015) 192001 and arXiv:1501.04643] and [Mikhasenko et al., Phys. Rev. D91 (2015) 094015]

Results

Spin exotic wave $\pi_1(\ldots)$

A spin-exotic signal with $J^{PC} = 1^{-+}$

Constituent quark model

- Quark-antiquark pair
 - ► Spin couples to: S = 0, 1
 - ▶ Total meson spin: $\vec{J} = \vec{L} + \vec{S}$
 - ► Other quantum numbers:
 - * Parity: $P = (-1)^{L+1}$
 - * Generalized charge conjugation: $C = (-1)^{L+S}$

A spin-exotic signal with $J^{PC}=1^{-+}$

Quark-antiquark pair

► Spin couples to: S = 0, 1

▶ Total meson spin: $\vec{J} = \vec{L} + \vec{S}$

► Other quantum numbers:

* Parity:
$$P = (-1)^{L+1}$$

* Generalized charge conjugation:
$$C = (-1)^{L+S}$$

• Forbidden combinations exist, e.g.: $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, \dots$

A spin-exotic signal with $J^{PC}=1^{-+}$

- Quark-antiquark pair
 - ► Spin couples to: S = 0, 1
 - ▶ Total meson spin: $\vec{J} = \vec{L} + \vec{S}$
 - ► Other quantum numbers:
 - ★ Parity: $P = (-1)^{L+1}$
 - * Generalized charge conjugation: $C = (-1)^{L+S}$

- Forbidden combinations exist, e.g.: $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, \dots$
- ullet Observe forbidden $J^{PC}
 ightarrow$ no qar q-state

A spin-exotic signal with $J^{PC} = 1^{-+}$

- Signal with spin exotic quantum numbers
- $J^{PC} = 1^{-+}$: pion with spin 1
- Cannot be explained as qq̄-pair
- → Has to be something different

A spin-exotic signal with $J^{PC}=1^{-+1}$

- Same wave also analyzed in different experiments
- Very different results
- Wave-sets for the fits different
- 21, 36, 44 or 42 waves used
- Wave-set selection very important

BNL B852

BNLE852

A spin-exotic signal with $J^{PC} = 1^{-+}$

- Low t': Broad structure
- High t': Peak remains

A spin-exotic signal with $J^{PC} = 1^{-+}$

Signal not necessarily from resonances

Non resonant contributions

- Possible origin: Non-resonant contribution:
 - Same initial and final state
 - No intermediate 3π resonances appear

Non resonant contributions

- Signal not necessarily from resonances
- Possible origin: Non-resonant contribution:
 - Same initial and final state
 - ► No intermediate 3π resonances appear

A spin-exotic signal with $J^{PC}=1^{-+}$

ПЛ

Non resonant contributions

- Signal not necessarily from resonances
- Possible origin: Non-resonant contribution:
 - Same initial and final state
 - No intermediate 3π resonances appear
- Isobaric waves: Resonance assumed
- Effects on the Partial-Wave Analysis?

A spin-exotic signal with $J^{PC}=1^{-+}$

- Graph depicts the so-called Deck-effect
- Investigate influence on PWA:
 - Use simple model for this kind of process
 - Generate Monte Carlo data
 - Perform the same analysis on the MC data
 - Compare with results for real data

A spin-exotic signal with $J^{PC} = 1^{-+}$

Comparison with *Deck-model* at different t'-bins

 Low t': the intensities are very similar

A spin-exotic signal with $J^{PC} = 1^{-+}$

- Low t': the intensities are very similar
- High t': data exceeds non-resonant intensity

A spin-exotic signal with $J^{PC} = 1^{-+1}$

- Low t': the intensities are very similar
- High t': data exceeds non-resonant intensity
- Resonance does not depend on t'

A spin-exotic signal with $J^{PC}=1^{-+1}$

- Low t': the intensities are very similar
- High t': data exceeds non-resonant intensity
- Resonance does not depend on t'
- Resonant contribution?

New Directions

Inclusion of non-isobaric waves

Non-isobaric waves

- Already seen one non-isobaric contribution
- Monte-Carlo method not satisfying
- Non isobaric amplitude directly in first step:

$$\mathcal{A} = \sum_{\mathsf{waves}} \mathcal{T}_{\mathsf{wave}} \mathcal{A}_{\mathsf{wave}} + \mathcal{T}_{\mathsf{non}} \mathcal{A}_{\mathsf{non}}$$

- T_{non} also free in the fit
- A_{non} projects to infinite number of Partial-Waves

Non-isobaric waves

- Many possible processes
- Advantages:
 - Interference between isobaric and non-isobaric waves
 - A_{non} represents sum of infinite number of Partial-Waves
 - Less Partial-Waves necessary in the fit model
- Difficulties:
 - Non-isobaric amplitude affects all other waves
 - Strong model-dependence
 - $lackbox{}{} o$ Determine first with kinematic fits
- Work in progress

New Directions

Extraction of the isobar structure (Freed-isobar approach)

Freed-isobar approach

 Up to now: Parametrizations of isobars put into the fit beforehand

- Up to now: Parametrizations of isobars put into the fit beforehand
- Isobars:

- Up to now: Parametrizations of isobars put into the fit beforehand
- Isobars:

•
$$J^{PC} = 0^{++}$$
: $[\pi\pi]_S$,

- Up to now: Parametrizations of isobars put into the fit beforehand
- Isobars:

•
$$J^{PC} = 0^{++}$$
: $[\pi\pi]_S$, $f_0(980)$,

- Up to now: Parametrizations of isobars put into the fit beforehand
- Isobars:

 Up to now: Parametrizations of isobars put into the fit beforehand

- Isobars:

 - $J^{PC} = 1^{--} : \rho(770)$

 Up to now: Parametrizations of isobars put into the fit beforehand

- Isobars:
 - $J^{PC} = 0^{++}$: $[\pi\pi]_S$, $f_0(980)$, $f_0(1500)$
 - $J^{PC} = 1^{--}$: $\rho(770)$
 - $J^{PC} = 2^{++}: f_2(1270)$

- Up to now: Parametrizations of isobars put into the fit beforehand
- Isobars:

►
$$J^{PC} = 1^{--}$$
: $\rho(770)$

$$J^{PC} = 2^{++}$$
: $f_2(1270)$

$$J^{PC} = 3^{--}$$
: $\rho_3(1690)$

 Up to now: Parametrizations of isobars put into the fit beforehand

Isobars:

►
$$J^{PC} = 1^{--}$$
: $\rho(770)$

$$J^{PC} = 2^{++}$$
: $f_2(1270)$

$$J^{PC} = 3^{--}$$
: $\rho_3(1690)$

 Parameterizations not perfect → Might distort the analysis

 Up to now: Parametrizations of isobars put into the fit beforehand

Isobars:

►
$$J^{PC} = 1^{--}$$
: $\rho(770)$

$$J^{PC} = 2^{++}$$
: $f_2(1270)$

►
$$J^{PC} = 3^{--}$$
: $\rho_3(1690)$

- Parameterizations not perfect → Might distort the analysis
- → Binned amplitudes instead of isobar parameterizations

Basic idea

 Up to now: Complex shapes of isobars known beforehand

Intensity of 0⁺⁺ isobars

Basic idea

- Up to now: Complex shapes of isobars known beforehand
- May add up to complicated shape

Intensity of 0⁺⁺ isobars

- Up to now: Complex shapes of isobars known beforehand
- May add up to complicated shape
- Now: Replaced by series of piecewise constant functions

Intensity of 0++ isobars

- Up to now: Complex shapes of isobars known beforehand
- May add up to complicated shape
- Now: Replaced by series of piecewise constant functions
- Binned amplitude of the isobars can be determined in the fit

Intensity of 0++ isobars

- Up to now: Complex shapes of isobars known beforehand
- May add up to complicated shape
- Now: Replaced by series of piecewise constant functions
- Binned amplitude of the isobars can be determined in the fit
- The set of binned functions is denoted as $[\pi\pi]_{0^{++}}$

Intensity of 0++ isobars

Freed-isobar approach

First studies

- Three waves with 0⁺⁺ isobars freed:
 - \bullet 0⁻⁺0⁺[$\pi\pi$]₀₊₊ π *S*
 - ► $1^{++}0^{+}[\pi\pi]_{0^{++}}\pi P$
 - ► $2^{-+}0^{+}[\pi\pi]_{0^{++}}\pi D$
- Other 81 waves in the wave-set unchanged and fitted with fixed parametrizations
- ullet Analysis done in bins of $m_{3\pi} o ext{Two-dimensional picture}$

Two-dimensional intensities for the freed waves

MASS OF THE $\pi^-\pi^+\pi^-$ SYSTEM

These plots should not be mistaken as Dalitz plots

MASS OF THE $\pi^-\pi^+\pi^-$ SYSTEM

These plots should not be mistaken as Dalitz plots

Two-dimensional intensities for the freed waves

MASS OF THE $\pi^-\pi^+\pi^-$ SYSTEM

These plots should not be mistaken as Dalitz plots

Two-dimensional intensities for the freed waves

2⁻⁺0⁺[π⁻π⁺]*π⁻D

MASS OF THE $\pi^-\pi^+\pi^-$ SYSTEM

These plots should not be mistaken as Dalitz plots

Conclusions

 Huge data sets collected by COMPASS

Conclusions

- Huge data sets collected by COMPASS
- Very detailed Partial-Wave Analysis

Conclusions

- Huge data sets collected by COMPASS
- Very detailed Partial-Wave Analysis
- Two-step fit-procedure

Conclusions

- Huge data sets collected by COMPASS
- Very detailed Partial-Wave Analysis
- Two-step fit-procedure
- New resonance signal

Conclusions

- Huge data sets collected by COMPASS
- Very detailed Partial-Wave Analysis
- Two-step fit-procedure
- New resonance signal
- Intensity in spin-exotic wave

Conclusions

- Huge data sets collected by COMPASS
- Very detailed Partial-Wave Analysis
- Two-step fit-procedure
- New resonance signal
- Intensity in spin-exotic wave

Outlook

 Use new methods for wave-set selection Not presented here

Conclusions

- Huge data sets collected by COMPASS
- Very detailed Partial-Wave Analysis
- Two-step fit-procedure
- New resonance signal
- Intensity in spin-exotic wave

Outlook

- Use new methods for wave-set selection
- Include non-resonant amplitudes

Conclusions

- Huge data sets collected by COMPASS
- Very detailed Partial-Wave Analysis
- Two-step fit-procedure
- New resonance signal
- Intensity in spin-exotic wave

Outlook

- Use new methods for wave-set selection
- Include non-resonant amplitudes
- Extract also isobar shapes

