Hadron structure-Highlights from lattice QCD

Constantia Alexandrou

University of Cyprus, The Cyprus Institute, and DESY-Zeuthen

WE-Heraeus Physics School

Diffractive and electromagnetic processes at high energies

Bad Honnef, August 17 - 21, 2015

Outline

Introduction

- Computer and algorithmic developments
- Hadron spectrum
- Hyperons and Charmed baryons

Excited states, resonances

- ρ-meson width
- Scalar mesons

Nucleon structure

- Scalar, axial and tensor charges \rightarrow axial charges of hyperons
- Electromagnetic form factors
- Generalized Parton Distributions
- Ο...

Introduction

Quantum ChromoDynamics (QCD)

QCD-Gauge theory of the strong interaction Lagrangian: formulated in terms of quarks and gluons

$$\mathcal{L}_{OCD} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\,\mu\nu} + \sum_{f=u,d,s,c,b,t} \bar{\psi}_{f} \left(i \gamma^{\mu} D_{\mu} - m_{f} \right) \psi_{f}$$

$$D_{\mu} = \partial_{\mu} - ig \frac{\lambda^{a}}{2} A^{a}_{\mu}$$

Harald Fritzsch

Murray Gell-Mann

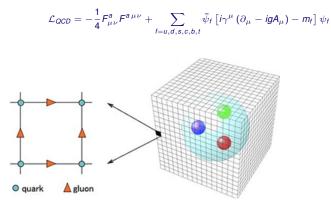
Heinrich Leutwyler

This "simple" Lagrangian produces the amazingly rich structure of strongly interacting matter in the universe.

Numerical simulation of QCD provides essential input for a wide class of complex strong interaction phenomena \rightarrow In this talk: Highlights in hadron structure related to topics discussed in this meeting

Introduction of QCD on the lattice

QCD Lagrangian: formulated in terms of quarks and gluons



- Gauge invariant discretization of QCD on a space-time lattice
- Finite lattice spacing a provides an ultraviolet cutoff at π/a
- Lattice provides a non-perturbative regularization
 - ightarrow "lattice regularization" well suited for an asymptotically free theory like QCD
- Theory described by a discrete action S: $S = S_G + S_F$ where $S_F = \sum_x \bar{\psi}(x) D\psi(x)$ \longrightarrow fermions can be integrated out of the path integral to yield det(D[U])

Introduction of QCD on the lattice

Lattice QCD Lagrangian: formulated in terms of quarks and gluons

- For numerical evaluation:
 Finite box L³ × T
 - Fermion degrees of freedom integrated out
 - Rotate into imaginary time most drastic operation
 - Path integral over gauge fields:

Partition function: $Z = \int \mathcal{D}U_{\mu}(x) \prod_{f} det(D_{f}[U]) e^{-S_{G}[U]}$

- Monte Carlo simulation to produce a representative ensemble of {U_μ(x)} using the largest supercomputers
- Computation of observables: $\langle \mathcal{O} \rangle = \sum_{\{U_{\mu}\}} O(D_{f}^{-1}, U_{\mu})$ need

inverse of Dirac matrix, typically of $10^8 \times 10^8$ dimensions

5.0 Pflop/s (10¹⁵ flop/s), second biggest in Europe

U_u(n)=e iaAµ(n)

Systematic uncertainties

- Finite lattice spacing a take the continuum limit a → 0
- Finite volume *L* take infinite volume limit $L \rightarrow \infty$
- Identification of hadron state of interest depends on observable
- Simulation at physical quark masses now feasible
- Inclusion of quark loop contributions now feasible

Fermion actions

Observables: $\langle \mathcal{O} \rangle = \sum_{\{U_{\mu}\}} O(D_{f}^{-1}, U_{\mu})$

Several $\mathcal{O}(a)$ -improved fermion actions, K. Jansen, Lattice 2008 $\langle O \rangle_{cont} = \langle O \rangle_{latt} + \mathcal{O}(a^2)$

Action	Advantages	Disadvantages
Clover improved Wilson	computationally fast	breaks chiral symmetry needs operator improvement
Twisted mass (TM)	computationally fast automatic improvement	breaks chiral symmetry violation of isospin
Staggered	computational fast	four doublers (fourth root issue) complicated contractions
Domain wall (DW)	improved chiral symmetry	computationally demanding needs tuning
Overlap	exact chiral symmetry	computationally expensive

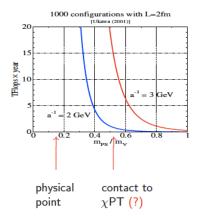
Several collaborations:

Clover	QCDSF, BMW, ALPHA, CLS, PACS-CS, NPQCD
Twisted mass	ETMC
Staggered	MILC
Domain wall	RBC-UKQCD, JLQCD
Overlap	JLQCD

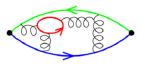
Cost of simulations

Main cost due to fermions

Cost of dynamical quark simulations in 2001



Before the 21st century: neglect pair creation (quenched QCD)

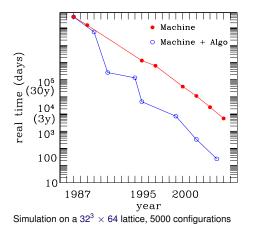


21st century: Dynamical quark simulations

Simulation cost: $C_{\rm sim} = C \left(\frac{300 {\rm MeV}}{m_{\pi}}\right)^{c_{m}} \left(\frac{L}{3 {\rm fm}}\right)^{c_{L}} \left(\frac{0.1 {\rm fm}}{a}\right)^{c_{a}}$ For $N_{\rm f} = 2$ Wilson fermion simulations in 2001: Number of inversions, step size in molecular dynamics and autocorrelations $\sim \frac{1}{m_{q}} \frac{1}{m_{q}} \frac{1}{m_{q}} \rightarrow (m_{\rho}/m_{\pi})^{6}$ scaling.

Computer and algorithmic development

Algorithm development has been decisive



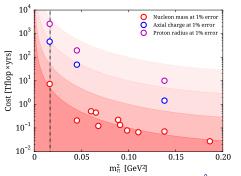
ETMC simulations with physical quark masses

European Twisted Mass Collaboration (ETMC): $N_f = 2$ and $N_f = 2 + 1 + 1$ twisted mass Wilson fermions 10^{3} N_f =2, 10,000 trajectories, a \simeq 0.09fm С $N_f=2+1+1$, 10.000 trajectories, a $\simeq 0.09 \text{ fm}$ 10² Cost [Tflop ×yrs] -64³-×128 О $48^{3} \times 96$ 10^{1} $32^3 \times 64$ $24^3 \times 48$ 10^{0} ٨ П П 10^{-1} 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 m_{π}^2 [GeV²]

Simulation cost: $C_{\rm sim} \propto \left(\frac{300 {\rm MeV}}{m\pi}\right)^{c_m} \left(\frac{L}{3 {\rm fm}}\right)^{c_L} \left(\frac{0.1 {\rm fm}}{a}\right)^{c_a}$ We find $c_L \sim 4.5$ and $c_m \sim 2$ for a fixed lattice spacing.

A. Abdel-Rehim et al. (ETMC), arXiv:1507.05068

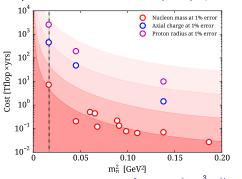
Observables at physical quark mass



European Twisted Mass Collaboration (ETMC): $N_f = 2$ and $N_f = 2 + 1 + 1$ twisted mass Wilson fermions

Inversion cost (for a lattice of 64³x128):~ $e^{(m_p - \frac{3}{2}m_\pi)t_s}$ Methods to reduce further the statistical error are being developed

Observables at physical quark mass



European Twisted Mass Collaboration (ETMC): $N_f = 2$ and $N_f = 2 + 1 + 1$ twisted mass Wilson fermions

Inversion cost (for a lattice of 64³x128):~ $e^{(m_p-\frac{3}{2}m_\pi)t_s}$ Methods to reduce further the statistical error are being developed

Exascale computing is needed for lattice QCD

Hadron mass

First goal: reproduce the low-lying masses

Use Euclidean correlation functions:

$$G(\vec{q}, t_{s}) = \sum_{\vec{x}_{s}} e^{-i\vec{x}_{s}\cdot\vec{q}} \langle J(\vec{x}_{s}, t_{s})J^{\dagger}(0) \rangle$$

$$= \sum_{n=0, \dots, \infty} A_{n}e^{-E_{n}(\vec{q})t_{s}} \xrightarrow{t_{s}\to\infty} A_{0}e^{-E_{0}(\vec{q})t_{s}}$$
Interpolating field with the quantum numbers of π^{+} : $J(x) = \vec{d}(x)\gamma_{5}u(x)$

$$= aE_{0}(\vec{q}, t_{s}) = \ln \left[G(\vec{q}, t_{s})/G(\vec{q}, t_{s} + a)\right]$$

$$= aE_{0}(\vec{q}) \xrightarrow{q=0} am$$

$$N_{t} = 2 + 1 + 1 \text{ TM fermions at } m_{\pi} = 210 \text{ MeV}$$

 $N_f = 2$ TM plus clover fermions at physical pion mass

Hadron mass

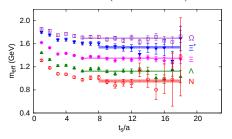
First goal: reproduce the low-lying masses

Use Euclidean correlation functions:

$$\begin{aligned} G(\vec{q}, t_s) &= \sum_{\vec{x}_s} e^{-i\vec{x}_s \cdot \vec{q}} \langle J(\vec{x}_s, t_s) J^{\dagger}(0) \rangle \\ &= \sum_{n=0, \cdots, \infty} A_n e^{-E_n(\vec{q}) t_s} \stackrel{t_s \to \infty}{\longrightarrow} A_0 e^{-E_0(\vec{q}) t_s} \end{aligned}$$

Interpolating field with the quantum numbers of *p*: $J(x) = e^{abc} \left(u^{a\top}(x) C \gamma_5 d^b(x) \right) u^c(x)$

- Large Euclidean time evolution gives ground state for given quantum numbers —> enables determination of low-lying hadron properties
- $aE_{\text{eff}}(\vec{q}, t_s) = \ln \left[G(\vec{q}, t_s)/G(\vec{q}, t_s + a)\right]$ = $aE_0(\vec{q}) + \text{excited}/\text{states}$ $\rightarrow aE_0(\vec{q}) \stackrel{\vec{q}=0}{\rightarrow} am$

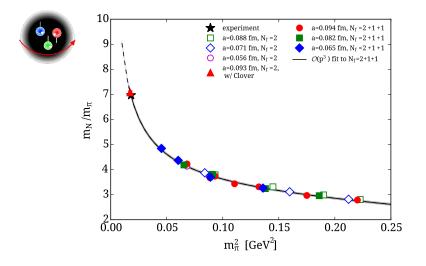


 $N_f = 2$ TM plus clover fermions at physical pion mass Noise to signal increases with $t_s: \sim e^{(m_h - \frac{3}{2}m_\pi)t_s}$

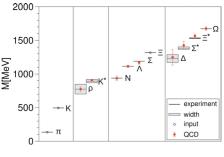
Simulations with physical quark masses

A number of collaborations are producing simulations with physical values of the quark mass

European Twisted Mass Collaboration (ETMC): The nucleon, A. Abdel-Rehim et al. (ETMC) arXiv:1507.04936



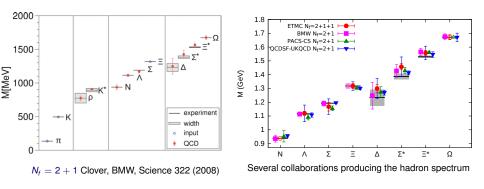
Hadron spectrum



 $N_f = 2 + 1$ Clover, BMW, Science 322 (2008)

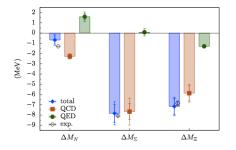
Milestone calculation for lattice QCD \rightarrow agreement with experiment is a success for QCD & LQCD

Hadron spectrum



Milestone calculation for lattice QCD \rightarrow agreement with experiment is a success for QCD & LQCD

Isospin and electromagnetic mass splitting



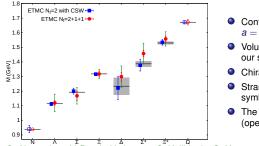
RBC and BMW collaborations: Treat isospin and electromagnetic effects to LO

Baryon spectrum with mass splitting from BMW

- Nucleon mass: isospin and electromagnetic effects with opposite signs
- Physical splitting reproduced

Hyperons and Charmed baryons

- Spectrum using N_f = 2 + 1 + 1 for a range of pion masses from about 450 MeV to 210 MeV, 3 lattice spacings and different volumes
- Spectrum using an $N_f = 2$ ensemble with physical pion mass

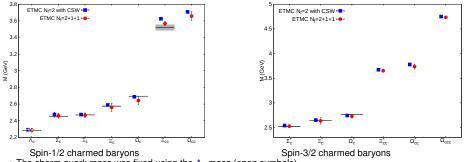


- Continuum extrapolation using three lattice spacings, a = 0.094 fm, 0.082 fm and 0.065 fm
- Volume dependence no observable effects within our statistics
- Chiral extrapolation biggest systematic error
- Strange quark mass fixed using the Ω⁻ mass (open symbols)
- The lattice spacing was fixed using the nucleon mass (open symbols)

C. Alexandrou, V. Drach, K. Jansen, C. Kallidonis, G. Koutsou, Phys.Rev. D90 (2014) 7, 074501; C. Alexandrou et al. (ETMC) to appear

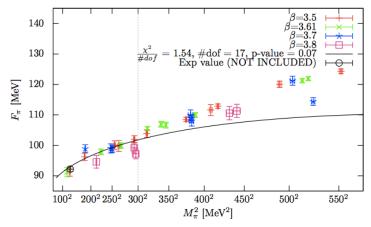
Hyperons and Charmed baryons

- Spectrum using N_f = 2 + 1 + 1 for a range of pion masses from about 450 MeV to 210 MeV, 3 lattice spacings and different volumes
- Spectrum using an $N_f = 2$ ensemble with physical pion mass



The charm quark mass was fixed using the Λ_c mass (open symbols)
 C. Alexandrou, V. Drach, K. Jansen, C. Kallidonis, G. Koutsou, Phys.Rev. D90 (2014) 7, 074501; C. Alexandrou et al. (ETMC) to appear

Pion decay constant by BMW



NLO SU(2) chiral perturbation theory for m_{π} < 300 MeV, S. Durr *et al.*, 1310.3626

Excited states, resonances & exotics

Variational approach: Enlarge basis of interpolating fields \rightarrow correlation matrix

 $G_{jk}(\vec{q}, t_s) = \sum_{\vec{x}_s} e^{-i\vec{x}_s \cdot \vec{q}} \langle J_j(\vec{x}_s, t_s) J_k^{\dagger}(0) \rangle \rangle, j, k = 1, \dots N$

Solve the generalized eigenvalue problem (GEVP)

 $G(t)v_n(t;t_0) = \lambda_n(t;t_0)G(t_0)v_n(t;t_0) \rightarrow \lambda_n(t;t_0) = e^{-E_n(t-t_0)}$ yields N lowest eigenstates, M. Lüscher & U. Wolff (1990)

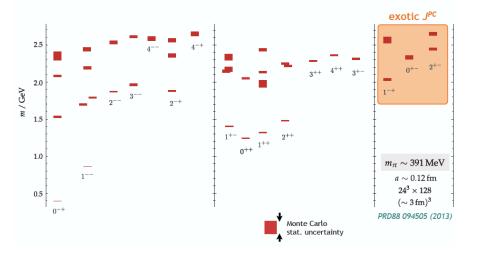
Large effort to construct the appropriate basis using lattice symmetries, Hadron Spectrum Collaboration

- must extract all states lying below the state of interest
- as $m_{\pi} \rightarrow m_{\text{physical}}$ need to consider multi-hadron states
- must include disconnected diagrams
- most excited states are unstable (resonances)

Meson spectrum

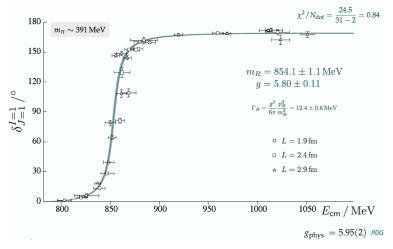
JLab analysis using anisotropic lattice at $m_\pi \sim 391$ MeV, J. Dudek, Presentation at St. Goar, March 2015

• meson spectrum for a range of JPC



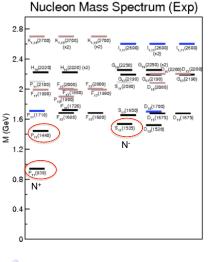
ρ -meson width

- Consider $\pi^+\pi^-$ in the I = 1-channel
- Estimate P-wave scattering phase shift δ₁₁(k) using finite size methods
- Use Lüscher's relation between energy in a finite box and the phase in infinite volume
- Use Center of Mass frame and Moving frame



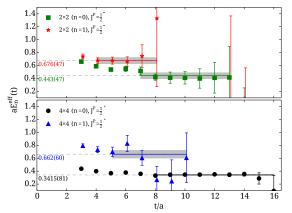
Impressive results using $N_f = 2 + 1$ clover fermions and 3 asymmetric lattices for pion mass about 400 MeV, J. J. Dudek, R. G. Edwards and C.E. Thomas, Phys. Rev. D 87 (2013) 034505

Low-lying nucleon resonances



- R.G. Edwards, J. J. Dudek, D. G. Richards, S. J. Wallace. Phys. Rev. D 84 (2011) 074508
- M. Mahbub et al., Phys. Lett. B679 (2009) 418
- G. P. Engel, C. Lang, D. Mohler, A. Schäfer, 1301.4318

Low-lying nucleon resonances



 $N_f=2$ Clover fermions, $m_{\pi}=156$ MeV - configurations provided by QCDSF, C.A., T. Korzec, G. Koutsou, T. Leontiou, arXiv:1302.4410

- R.G. Edwards, J. J. Dudek, D. G. Richards, S. J. Wallace. Phys. Rev. D 84 (2011) 074508
- M. Mahbub et al., Phys. Lett. B679 (2009) 418
- G. P. Engel, C. Lang, D. Mohler, A. Schäfer, 1301.4318

Scalar mesons

Start with $a_0(980)$ and $\kappa(800)$

In our study: 4(+2) operators with the quantum numbers of $a_0(980)$.

$$\mathcal{O}^{q\bar{q}} = \sum_{\mathbf{x}} \left(\bar{d}_{\mathbf{x}} u_{\mathbf{x}} \right)$$

$$\mathcal{O}^{K\bar{K}, \text{ point}} = \sum_{\mathbf{x}} \left(\bar{s}_{\mathbf{x}} \gamma_{5} u_{\mathbf{x}} \right) \left(\bar{d}_{\mathbf{x}} \gamma_{5} \bar{s}_{\mathbf{x}} \right)$$

$$\mathcal{O}^{\eta_{s}\pi, \text{ point}} = \sum_{\mathbf{x}} \left(\bar{s}_{\mathbf{x}} \gamma_{5} s_{\mathbf{x}} \right) \left(\bar{d}_{\mathbf{x}} \gamma_{5} u_{\mathbf{x}} \right)$$

$$\mathcal{O}^{Q\bar{Q}} = \sum_{\mathbf{x}} \epsilon_{abc} \left(\bar{s}_{\mathbf{x},b} (C\gamma_{5}) \bar{d}_{\mathbf{x},c}^{T} \right) \epsilon_{ade} \left(u_{\mathbf{x},d}^{T} (C\gamma_{5}) \bar{s}_{\mathbf{x},e} \right)$$

$$\mathcal{O}^{K\bar{K}, 2-\text{part}} = \sum_{\mathbf{x},\mathbf{y}} \left(\bar{s}_{\mathbf{x}} \gamma_{5} u_{\mathbf{x}} \right) \left(\bar{d}_{\mathbf{y}} \gamma_{5} s_{\mathbf{y}} \right)$$

$$\mathcal{O}^{\eta_{s}\pi, 2-\text{part}} = \sum_{\mathbf{x},\mathbf{y}} \left(\bar{s}_{\mathbf{x}} \gamma_{5} s_{\mathbf{x}} \right) \left(\bar{d}_{\mathbf{y}} \gamma_{5} u_{\mathbf{y}} \right)$$
Investigation of the tetraquark candidate aq (980): technical aspects - Joshua Berlin, June 2014

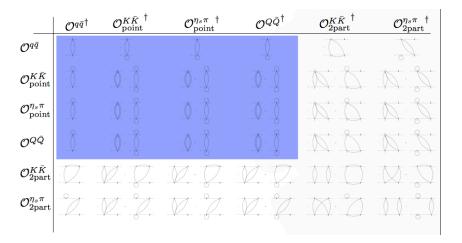
Scalar mesons

Start with $a_0(980)$ and $\kappa(800)$

	${\cal O}^{qar q \dagger}$	$\mathcal{O}^{Kar{K}^{\dagger}}_{\mathrm{mol.}}$	$\mathcal{O}_{\mathrm{mol.}}^{\eta_s\pi}$ †	${\cal O}^{Q ar Q^\dagger}$	$\mathcal{O}_{2\mathrm{part}}^{Kar{K}}{}^{\dagger}$	$\mathcal{O}_{\mathrm{2part}}^{\eta_s\pi}{}^\dagger$
$\mathcal{O}^{q \bar{q}}$	0	- 0		Q		<u> </u>
$\mathcal{O}_{ ext{mol.}}^{Kar{K}}$	- 0		$\overline{\mathbb{Q}} \cdot \overline{\mathbb{Q}}$	<u>0</u> . <u>0</u>		
$\mathcal{O}_{\mathrm{mol.}}^{\eta_s\pi}$	0	<u>0</u> . <u>0</u>	0 - 0	<u>0</u> . §	D.D	
${\cal O}^{Q ar Q}$	0		<u>0</u> . <u>0</u>	0-0	D.D	
$\mathcal{O}_{2\mathrm{part}}^{K\bar{K}}$	<u>.</u>	V.Q	V.Q	V.Q		
$\mathcal{O}_{2\mathrm{part}}^{\eta_s\pi}$						

Scalar mesons

Start with $a_0(980)$ and $\kappa(800)$

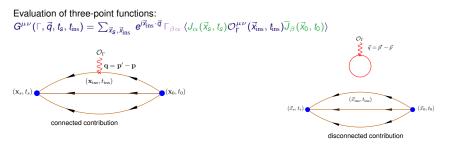


Preliminary results show weak overlap with a $q\bar{q}$ state

Need to compute disconnected diagrams - very challenging!

Nucleon charges

Evaluation of matrix elements



Form ratio by dividing the three-point correlator by an appropriate combination of two-point functions:

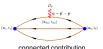
$$R(t_{s}, t_{ins}, t_{0}) \xrightarrow{(t_{ins}-t_{0})\Delta \gg 1} \mathcal{M}[1 + \ldots e^{-\Delta(\mathbf{p})(t_{ins}-t_{0})} + \ldots e^{-\Delta(\mathbf{p}')(t_{S}-t_{ins})}]$$

- M the desired matrix element
- t_s, t_{ins}, t₀ the sink, insertion and source time-slices
- \[
 \Delta(p) the energy gap with the first excited state
 \]

Evaluation of matrix elements

Evaluation of three-point functions:

$$G^{\mu\nu}(\Gamma, \vec{q}, t_{\rm s}, t_{\rm ins}) = \sum_{\vec{x}_{\rm s}, \vec{x}_{\rm ins}} e^{j\vec{x}_{\rm ins}\cdot\vec{q}} \Gamma_{\beta\alpha} \langle J_{\alpha}(\vec{x}_{\rm s}, t_{\rm s}) \mathcal{O}_{\Gamma}^{\mu\nu}(\vec{x}_{\rm ins}, t_{\rm ins}) \overline{J}_{\beta}(\vec{x}_{\rm 0}, t_{\rm 0}) \rangle$$



Form ratio by dividing the three-point correlator by an appropriate combination of two-point functions: $(t_{-}-t_{-}) = 0$

$$R(t_{s}, t_{\text{ins}}, t_{0}) \xrightarrow{(t_{\text{ins}} - t_{0})\Delta \gg 1} \mathcal{M}[1 + \ldots e^{-\Delta(\mathbf{p})(t_{\text{ins}} - t_{0})} + \ldots e^{-\Delta(\mathbf{p}')(t_{S} - t_{\text{ins}})}]$$

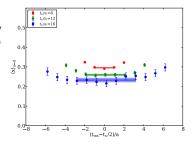
- M the desired matrix element
- t_s, t_{ins}, t₀ the sink, insertion and source time-slices
- $\Delta(\mathbf{p})$ the energy gap with the first excited state

Summing over *t*_{ins}:

$$\sum_{t_{ins}=t_0}^{t_s} R(t_s, t_{ins}, t_0) = \text{Const.} + \mathcal{M}[(t_s - t_0) + \mathcal{O}(e^{-\Delta(\mathbf{p})(t_s - t_0)}) + \mathcal{O}(e^{-\Delta(\mathbf{p}')(t_s - t_0)})].$$

So the excited state contributions are suppressed by exponentials decaying with $t_s - t_0$, rather than $t_s - t_{ins}$ and/or $t_{ins} - t_0$. However, one needs to fit the slope rather than to a constant

Connect lattice results to measurements: $\mathcal{O}_{\overline{\text{MS}}}(\mu) = Z(\mu, a)\mathcal{O}_{\text{latt}}(a)$ \implies evaluate $Z(\mu, a)$ non-perturbatively



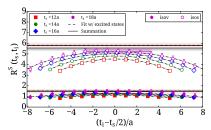
Nucleon charges and axial charge of hyperons

- axial-vector operator: $\mathcal{O}_A^a = \bar{\psi}(x)\gamma^{\mu}\gamma_5 \frac{\tau^a}{2}\psi(x)$
- tensor operator: $\mathcal{O}_T^a = \bar{\psi}(x)\sigma^{\mu\nu}\frac{\tau^a}{2}\psi(x)$
- scalar operator: $\mathcal{O}_{S}^{a} = \bar{\psi}(x) \frac{\tau^{a}}{2} \psi(x)$
- $\implies \langle N(\vec{p'}) \mathcal{O}_{\Gamma} N(\vec{p})
 angle |_{q^2=0}$ yields g_s, g_A, g_T

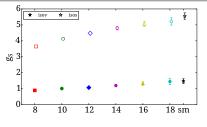
Scalar charge

• High statistics analysis with $N_f = 2 + 1 + 1$ TMF, a = 0.082 fm, $m_{\pi} = 373$ MeV





Agreement of summation, plateau and two-states fits give confidence to the correctness of the final result



g_A: No detectable excited states

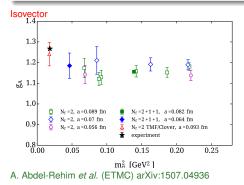
g_T: similar to g_A

g_s: severe contamination from excited states

Nucleon charges: g_A, g_s, g_T

The good news:

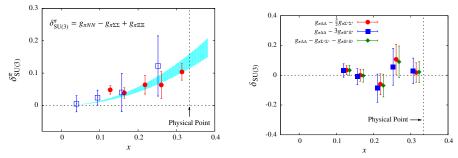
Axial-vector FFs: $A^3_{\mu} = \bar{\psi}\gamma_{\mu}\gamma_5 \frac{\tau^3}{2}\psi(x) \Longrightarrow \frac{1}{2}\bar{u}_N(\vec{p'}) \left[\gamma_{\mu}\gamma_5 G_A(q^2) + \frac{q^{\mu}\gamma_5}{2m}G_p(q^2)\right] u_N(\vec{p})|_{q^2=0}$ \rightarrow yields $G_A(0) \equiv g_A$: i) well known experimentally, & ii) no quark loop contributions



- g_A at the physical point using ~ 1500 measurements indicates agreement with the physical value → important to reduce error
- many results from other collaborations, e.g.
 - N_f = 2 + 1 Clover, J. R. Green et al., arXiv:1209.1687
 - N_f = 2 Clover, R.Hosley et al., arXiv:1302.2233
 - N_f = 2 Clover, S. Capitani et al. arXiv:1205.0180
 - N_f = 2 + 1 Clover, B. J. Owen et al., arXiv:1212.4668
 - $N_{\rm f}=2+1+1$ Mixed action (HISQ/Clover), T. Bhattacharya et al., arXiv:1306.5435

Hyperon axial charges

- Hyperon axial charges: g_{ΛΣ} ~ 0.60, g_{ΣΣ}, g_{ΞΞ} not known experimentally
- Calculation equivalent to g_A of the nucleon: (h|ψ
 γ_µ γ₅ψ|h)|_{q²=0} Efficient to calculate with fixed current method
- SU(3) breaking can be checked systematically



Also results from H.- W. Lin and K. Orginos, PRD 79, (2009)

Probe deviation:

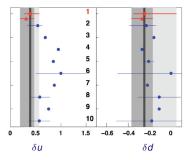
- Octet: $\delta_{SU(3)} = g_A^N g_A^\Sigma + g_A^\Xi$ versus $x = (m_K^2 m_\pi^2)/4\pi^2 f_\pi^2$
- Decuplet: Three relations one can check

Nucleon charges: g_s, g_T

- scalar operator: $\mathcal{O}_{S}^{a} = \bar{\psi}(x) \frac{\tau^{a}}{2} \psi(x)$
- axial-vector operator: $\mathcal{O}_A^a = \bar{\psi}(x)\gamma^{\mu}\gamma_5 \frac{\tau^a}{2}\psi(x)$
- tensor operator: $\mathcal{O}_T^a = \bar{\psi}(x)\sigma^{\mu\nu}\frac{\tau^a}{2}\psi(x)$
- \implies extract from ratio: $\langle N(\vec{p'}) \mathcal{O}_X N(\vec{p}) \rangle |_{q^2=0}$ to obtain g_s, g_A, g_T

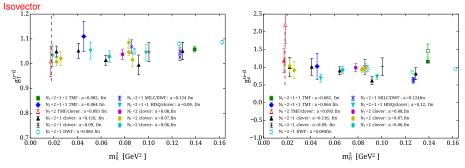
(i) isovector combination has no disconnect contributions; (ii) g_A well known experimentally, g_T to be measured at JLab

Planned experiment at JLab, SIDIS on ³He/Proton at 11 GeV:



Experimental values: $\delta u = 0.39^{+0.18}_{-0.12}$ and $\delta d = -0.25^{+0.3}_{-0.1}$

Nucleon charges: gs, gT

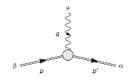


- Experimental value of $g_T \sim 0.54^{+0.30}_{-0.13}$ from global analysis of HERMES, COMPASS and Belle e^+e^- data, M. Anselmino *et al.* (2013)
- For g_s increasing the sink-source time separation to ~ 1.5 fm is crucial

Electromagnetic form factors

Electromagnetic form factors

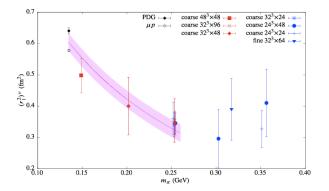
 $\langle N(p',s')|j^{\mu}(0)|N(p,s)\rangle = \bar{u}_N(p',s') \left[\gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m}F_2(q^2)\right] u_N(p,s)$



- Proton radius extracted from muonic hydrogen is 7.7 σ different from the one extracted from electron scattering, R. Pohl et al., Nature 466 (2010) 213
- Muonic measurement is ten times more accurate

Dirac and Pauli radii

Dipole fits: $\frac{G_0}{(1+Q^2/M^2)^2} \Rightarrow \langle r_i^2 \rangle = -\frac{6}{F_i} \frac{dF_i}{dQ^2}|_{Q^2=0} = \frac{12}{M_i^2}$ Need better accuracy at the physical point



Using results from summation method, J. M. Green et al., 1404.4029

Position methods

- Avoid model dependence-fits
- Application to Sachs form factors \rightarrow nucleon isovector magnetic moment $G_M^{iso}(0)$
- Isovector rms charge radius of the nucleon
- Neutron electric dipole moment

As a first step we calculated $G_M(0)$ (equivalently $F_2(0)$) at $m_{\pi} = 373$ MeV.

C.A., G. Koutsou, K. Ottnad, M. Petschlies, PoS(Lattice2014), 144

Position methods for $G_M(0)$

Plateau for large Euclidean times t, t_s - t

$$\lim_{t\to\infty} \lim_{t_s-t\to\infty} R^{\mu}(t_s,t,\vec{q},\Gamma_{\nu}) = \Pi^{\mu}\left(\vec{q},\Gamma_{\nu}\right),$$

Extract Sachs form factors from

$$\begin{split} \Pi_{0}\left(\vec{q},\Gamma_{0}\right) &= -C\frac{E\left(\vec{q}\right)+m_{N}}{2m_{N}}G_{E}\left(Q^{2}\right) \,,\\ \Pi_{i}\left(\vec{q},\Gamma_{0}\right) &= -C\frac{i}{2m_{N}}q_{i}G_{E}\left(Q^{2}\right) \,,\\ \Pi_{i}\left(\vec{q},\Gamma_{k}\right) &= -C\frac{1}{4m_{N}}\epsilon_{ijk}q_{j}G_{M}\left(Q^{2}\right) \,, \end{split}$$

where $\Gamma_0 = \frac{1}{2} (1 + \gamma_0), \Gamma_k = \frac{1}{4} i S \Gamma_0 \gamma_5 \gamma_k$ and $C = \sqrt{\frac{2m_N^2}{\mathcal{E}(\vec{q})(\mathcal{E}(\vec{q}) + m_N)}}.$

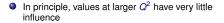
 \Rightarrow Due to the factor q_i the magnetic moment $G_M(0)$ cannot be extracted directly!

Apply a partial derivative to remove momentum dependence $\sim q_i$

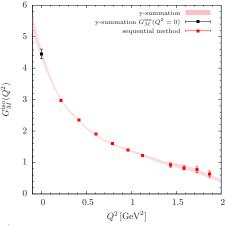
$$\lim_{q^2\to 0}\frac{\partial}{\partial q_j}\Pi_i(t,\vec{q},\Gamma_k)=\frac{1}{2m_N}\,\epsilon_{ijk}G_M(0)\,.$$

... and calculate $G_M(0)$ directly.

Magnetic moment $G_M^{iso}(0)$



- Value for G^{iso}_M = 4.45(15)_{stat} larger than result from dipole fit 3.99(9)_{stat}
- Closer to exp. value (4.71)



 $G_{M}^{\rm iso}(0)$ from $\mathcal{O}(4700)$ gauge confs of B55; $t_{\rm s}/a = 14$

Check $G_E^{iso}(0)$

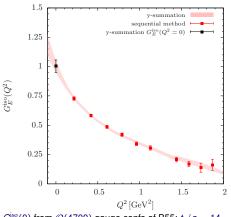
• $G_E^{\rm iso}(Q^2=0)=1$ by definition

Can use

 $\Pi_{i}\left(\vec{q},\Gamma_{0}\right)=-C\frac{i}{2m_{N}}q_{i}G_{E}\left(Q^{2}\right)\,,$

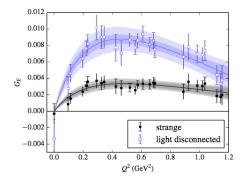
and apply same method as for $G_M^{iso}(Q^2)$...

• Value at zero momentum nicely reproduced $G_E^{iso}(0) = 1.00(5)$.



 $G_E^{\rm iso}(0)$ from $\mathcal{O}(4700)$ gauge confs of B55; $t_{\rm s}/a = 14$

Magnetic moment for proton and neutron



Disconnected diagrams yield only small contribution

J. Green et al., arXiv:1505.01803

Magnetic moment for proton and neutron



 Magnetic moment for proton (l.h.s.) and neutron (r.h.s.) on B55 (neglecting disc. contributions)

- $G^{p}_{M}(0) = 2.73(9)_{stat}$ and $G^{n}_{M}(0) = -1.72(6)_{stat}$ close to exp. values 2.79 and -1.91, respectively.
- Dipole fit gives again smaller values $G_M^p(0) = 2.47(6)$ and $G_M^n(0) = -1.54(4)$)

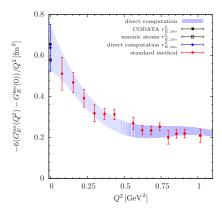
Isovector charge radius r_{E,iso}

Consider isovector rms charge radius of the nucleon:

$$r_{E,\rm iso}^2 = -6 \frac{d}{dQ^2} G_E(Q^2) \Big|_{Q^2=0}$$

• Start from most simple relation for $G_E(Q^2)$:

$$\Pi_0\left(\vec{q},\Gamma_0\right) = -\sqrt{\frac{E_N+m_N}{2E_N}}G_E\left(Q^2\right) \ .$$



- We use an ETMC $48^3 \times 96$, $N_f = 2$ ensemble with **physical pion mass**
- Data shown in plot are for *O*(1400) confs → very expensive!
- $t_s/a = 14$ compatible with experiment!
- Unfortunately errors are still not small enough to distinguish the two experimental values

Parton Distribution Functions

Generalized Parton Distributions

Factorization leads to matrix elements of local operators:

vector operator

$$\mathcal{O}_{V^a}^{\mu_1\cdots\mu_n} = \bar{\psi}(x)\gamma^{\{\mu_1}i\stackrel{\leftrightarrow}{D}{}^{\mu_2}\dots i\stackrel{\leftrightarrow}{D}{}^{\mu_n\}}\frac{\tau^a}{2}\psi(x)$$

axial-vector operator

$$\mathcal{O}_{A^{a}}^{\mu_{1}\cdots\mu_{n}} = \bar{\psi}(x)\gamma^{\{\mu_{1}i\stackrel{\leftrightarrow}{D}\mu_{2}}\dots i\stackrel{\leftrightarrow}{D}^{\mu_{n}\}}\gamma_{5}\frac{\tau^{a}}{2}\psi(x)$$

tensor operator

$$\mathcal{O}_{T^{a}}^{\mu_{1}\cdots\mu_{n}} = \bar{\psi}(x)\sigma^{\{\mu_{1},\mu_{2}\,i}\stackrel{\leftrightarrow}{D}{}^{\mu_{3}}\dots i\stackrel{\leftrightarrow}{D}{}^{\mu_{n}\}}\frac{\tau^{a}}{2}\psi(x)$$

Special cases:

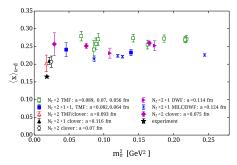
- For Q² = 0 → parton distribution functions one-derivative → first moments e.g. average momentum fraction ⟨x⟩ Generalized form factor decomposition:

$$\langle N(p',s')|\mathcal{O}_{V3}^{\mu\nu}|N(p,s)\rangle = \bar{u}_N(p',s') \left[A_{20}(q^2)\gamma^{\{\mu}P^{\nu\}} + B_{20}(q^2) \frac{i\sigma^{\{\mu\alpha}q_{\alpha}P^{\nu\}}}{2m} + C_{20}(q^2) \frac{q^{\{\mu}q^{\nu\}}}{m} \right] \frac{1}{2} u_N(p,s)$$

Nucleon spin
$$J^q = \frac{1}{2} \left[A_{20}(0) + B_{20}(0) \right]$$
 and $\langle x \rangle = A_{20}(0)$

Momentum fraction and the nucleon spin

What is the distribution of the nucleon momentum among the nucleon constituents? $\langle x \rangle$ obtained in the \overline{MS} scheme at $\mu = 2$ GeV.



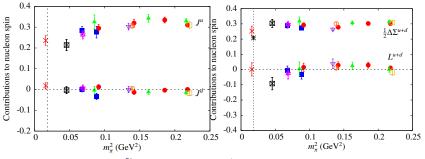
- (x)_{u−d} approach physical value for bigger source-sink separations → need an equivalent high statistics study
- Can provide a prediction for (x)_{δu-δd}

Experimental values:

(x) u-d from S. Alekhin et al. arXiv:1202.2281

Where is the nucleon spin? Spin sum: $\frac{1}{2} = \sum_{q} \left(\frac{1}{2} \Delta \Sigma^{q} + L^{q} \right) + J^{G}$ $J^{q} = A_{20}^{q}(0) + B_{20}^{q}(0) \text{ and } \Delta \Sigma^{q} = g_{A}^{q}$

For one ensemble at m_{π} = 373 MeV we have the disconnected contribution \rightarrow we can check the effect on the observables, O(150, 000) statistics



 \implies Total spin for u-quarks $J^u \stackrel{\sim}{<} 0.25$ and for d-quark $J^d \sim 0$

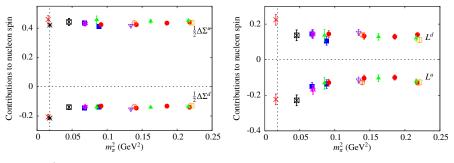
- $L^{u+d} \sim 0$ at physical point
- $\Delta \Sigma^{u+d}$ in agreement with experimental value at physical point
- The total spin $J^{u+d} \sim 0.25$

Where is the nucleon spin?

Spin sum:
$$\frac{1}{2} = \sum_{q} \underbrace{\left(\frac{1}{2}\Delta\Sigma^{q} + L^{q}\right)}_{J^{q}} + J^{G}$$

 $J^{q} = A_{20}^{q}(0) + B_{20}^{q}(0) \text{ and } \Delta\Sigma^{q} = g_{A}^{q}$

For one ensemble at $m_{\pi} = 373$ MeV we have the disconnected contribution \rightarrow we can check the effect on the observables, O(150, 000) statistics



- $\Delta \Sigma^{u,d}$ consistent with experimental values
- $L^d \sim -L^u$

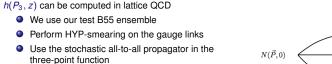
Parton distribution functions

í

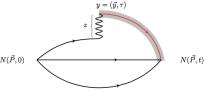
$$\tilde{a}_{n}(x,\Lambda,P_{3}) = \int_{-\infty}^{+\infty} dx \, x^{n-1} \, \tilde{q}(x,\Lambda,P_{3}) \rangle,$$

$$\tilde{q}(x,\Lambda,P_{3}) = \int_{-\infty}^{+\infty} \frac{dz}{4\pi} e^{-izxP_{3}} \underbrace{\langle P|\bar{\psi}(z,0)\rangle\gamma_{3} \, W(z)\psi(0,0)|P\rangle}_{h(P_{3},z)}$$

is the quasi-distribution defined by X. Ji Phys.Rev.Lett. 110 (2013) 262002, arXiv:1305.1539



• Extract quasi-distribution for $\frac{2\pi}{L}$, $\frac{4\pi}{L}$, $\frac{6\pi}{L}$



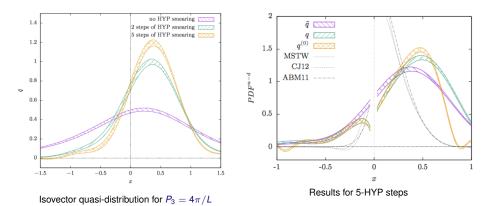
Relate the quasi-distribution to the measured PDF

Our starting point is

 $q(x,\mu) = \tilde{q}(x,\Lambda,P_3) - \frac{\alpha_s}{2\pi} \tilde{q}(x,\Lambda,P_3) \delta Z_F^{(1)}\left(\frac{\mu}{P_3},\frac{\Lambda}{P_3}\right) - \frac{\alpha_s}{2\pi} \int_{-1}^1 \frac{dy}{y} Z^{(1)}\left(\frac{x}{y},\frac{\mu}{P_3},\frac{\Lambda}{P_3}\right) \tilde{q}(y,\Lambda,P_3) + \mathcal{O}(\alpha_s^2)$

- The calculation of the leading UV divergences to q̃ in PT are done keeping P₃ fixed while taking ∧ → ∞ (in contrast to first taking P₃ → ∞ for the renormalization of q)
- We still do not have a renormalization procedure → identify the UV regulator as µ for q and as ∧ for the case of the quasi-distribution.
- The dependence on the UV regulator Λ will be translated, in the end, into a renormalization scale μ after proper renormalization
- Single pole terms cancel when combining the vertex and wave function corrections, and double poles are
 reduced to a single pole that are taken care via the principal value prescription
- A divergent term remains in $\delta Z^{(1)}$ that depends on the cut-off x_c

Preliminary results



Renormalization still has to be done to remove the cut-off x_c and the remaining divergent term $\sim \ln(x_c^2 - 1)$

Conclusions

Future Perspectives

- Confirm g_A , $\langle x \rangle_{u-d}$, etc, at the physical point using $N_f = 2$ and $N_f = 2 + 1 + 1$
- Provide predictions for g_s, g_T, tensor moment, sigma-terms, etc.
- Improve the accuracy of the results on proton radius using position methods
- Use the developed methods for calculating the neutron electric dipole moment, PDFs, etc at the physical point
- Develop methods for resonances

European Twisted Mass Collaboration

European Twisted Mass Collaboration (ETMC)

Cyprus (Univ. of Cyprus, Cyprus Inst.), France (Orsay, Grenoble), Germany (Berlin/Zeuthen, Bonn, Frankfurt, Hamburg, Münster), Italy (Rome I, II, III, Trento), Netherlands (Groningen), Poland (Poznan), Spain (Valencia), Switzerland (Bern), UK (Liverpool)

Collaborators:

A. Abdel-Rehim, K. Cichy, M. Constantinou, V. Drach, E. Garcia Ramos, K. Hadjiyiannakou, K.Jansen Ch. Kallidonis, G. Koutsou, K. Ottnad, M. Petschlies, F. Steffens, A. Strelchenko, A. Vaquero, C. Wiese

Conference on Electromagnetic Interactions with Nucleons and Nuclei, 1-7 Nov. 2015

ORGANISERS

Conference: Constantia Alexandrou (Chair) Richard G. Milner (Vice-Chair)

Workshops: Zein-Eddine Meziani (Chair) Marc Vanderhaeghen (Co-chair)

Pre-conference Or Han and Charlotte Van Hu

IMPORTANT DEADLINE

15[™] SEP 2015

· Registration · Abstract submission

CONTACT DETAILS

Academic Matters Prof. Constantia Alexandrou ⊠ alexand@ucy.ac.cy (k) +357 22892829

Organisational Matters Easy Conferences M info@easyconferences.org (C) +357 22591900

Manual Institute

EINN2015

11th European Research Conference on "Electromagnetic Interactions with Nucleons and Nuclei" 1-7 November 2015

Annabelle Hotel, Paphos, Cyprus

OVERVIEW

Pre-conference: 1-2 November 2015

- Frontiers and Careers in Photonuclear Physics skill development and talks for students
- Introductory talks

Main conference: 3-7 November 2015

Conference Topics

- · Nucleon form factors and low-energy hadron structure
- Partonic structure of nucleons and nuclei
- Precision electroweak physics and new physics searches
- Meson structure
- Baryon and light-meson spectroscopy
- · Nuclear effects and few-body physics

Parallel Workshops

1. Spin structure of nucleons and nuclei from low to large energy scales Spectroscopy - status and future prospects

Poster Session

We invite you to submit abstracts for talks at the workshops and for the poster session. Contributions not selected for talks will be given the ontion of a poster presentation

INTERNATIONAL ADVISORY COMMITTEE

- Mauro Anaelmino (University of Torino, Italy) Sinva Acki (University of Kyoto, Japan)
- Reinhard Beck (University of Bonn, Germany)
- Andrea Bressen (CERN, Switzerland)
- Annalisa D'Anpelo (University of Rome-II, Italy)
- Achim Denig (University of Mainz, Germany)
- Huters Erro (Riken, Japan)
- Haivan Gao (Duke, USA)
- Michel Garcon (Saday, France)
- Paola Gianoti (Frascati, Italy)
- Michel Guidal (Orsay, France)
- Max Klein (DESY, Germany) Karlheinz Lancanke (GSI, Germany) Gerhard Malict (CERN, Switzerland) William Marciano (BNL, USA) Plet Mulders (VU University, The Netherlands)
- Costas Papanicolas (The Cyprus Institute, Cyprus)
- Bernard Pire (Ecole Polytechnique, France)
- Xiaovan Shen (HEP, China)
- Toshimi Suda (Tohoku University, Japan) Barry Holstein (University of Massachusetts, USA) + Marc Vanderhaeghen (Mainz University, Germany)

Join us! Kara James (DESY, NC, General Deadline for abstracts: 31 Aug. 2015 Paphos, Cyprus

● SFB ≧

Acknowledgments

Thanks to the WE-Heraeus Foundation for the support

