The decays of the Higgs boson into two off-mass-shell Z or W bosons

Taras Zagoskin

Kharkov Institute of Physics and Technology,
Kharkov, Ukraine
August 19, 2015

Introduction

- In 2012 the ATLAS and CMS Collaborations observed a boson h with the mass around 126 GeV . We call this particle the Higgs boson. However, clarification of properties of the observed boson h requires more data.

$$
\begin{gathered}
q_{h}=0 \\
S_{h}=0 \text { or } S_{h}=2(\text { very unlikely }) \\
C P_{h}=?
\end{gathered}
$$

- In the SM for the Higgs boson

$$
q=0, S=0, C=P=1
$$

but some supersymmetric extensions of the SM assume the existence of neutral bosons with negative or indefinite $C P$ parity.

Plan of the investigation

In order to clarify the $C P$ properties of h the following way has been chosen.

- We consider the decay $X \rightarrow Z_{1}^{*} Z_{2}^{*} \rightarrow f_{1} \bar{f}_{1} f_{2} \bar{f}_{2}$, where X is a neutral particle with zero spin and arbitrary $C P$ parity, $f_{1} \neq f_{2}$.

Plan of the investigation

$A_{X \rightarrow Z_{1}^{*} Z_{2}^{*}} \sim a\left(e_{1}^{*} \cdot e_{2}^{*}\right)+\frac{b}{m_{X}^{2}}\left(e_{1}^{*} \cdot p_{2}\right)\left(e_{2}^{*} \cdot p_{1}\right)+i \frac{c}{m_{X}^{2}} \varepsilon_{\mu \nu \rho \sigma}\left(p_{1}^{\mu}+p_{2}^{\mu}\right)\left(p_{1}^{\nu}-p_{2}^{\nu}\right) e_{1}^{* \rho} e_{2}^{* \sigma}$
e_{1} and e_{2} are the polarization 4-vectors of Z_{1}^{*} and Z_{2}^{*} respectively.
a, b, c are complex-valued functions of the masses of Z_{1}^{*} and Z_{2}^{*}. These functions characterize the $C P$ properties of the boson X. At tree level

$C P_{X}$	a	b	c
1	any	any	0
$1(\mathrm{SM})$	1	0	0
-1	0	0	$\neq 0$
indefinite	p any	any	$\neq 0$
	$\neq 0$		

- We derive the full distribution of the decay $X \rightarrow Z_{1}^{*} Z_{2}^{*} \rightarrow f_{1} \bar{f}_{1} f_{2} \bar{f}_{2}$.
- Experimentalists measure an experimental full distribution of this decay for $X=h$.
- Comparing the theoretical and experimental distributions, one can get constraints on the values of a, b, c at various masses of Z_{1}^{*} and Z_{2}^{*}.

Definitions of $\theta_{1}, \theta_{2}, \varphi$

θ_{1} is the angle between the momentum of Z_{1}^{*} in a rest frame of X and the momentum of f_{1} in a rest frame of Z_{1}^{*},
θ_{2} is the angle between the momentum of Z_{2}^{*} in a rest frame of X and the momentum of f_{2} in a rest frame of Z_{2}^{*},
φ is the azimuthal angle between the planes of the decays $Z_{1}^{*} \rightarrow f_{1} \bar{f}_{1}$ and $Z_{2}^{*} \rightarrow f_{2} \bar{f}_{2}$.

Definitions of $A_{0}, A_{\|}, A_{\perp}$

Moreover, it is convenient to write down the fully differential width by means of the following amplitudes:

$$
\begin{aligned}
& A_{0} \equiv-\left(a \frac{m_{X}^{2}-a_{1}-a_{2}}{2 \sqrt{a_{1} a_{2}}}+b \frac{\lambda\left(m_{X}^{2}, a_{1}, a_{2}\right)}{4 m_{X}^{2} \sqrt{a_{1} a_{2}}}\right) \\
& A_{\|} \equiv \sqrt{2} a \\
& A_{\perp} \equiv \sqrt{2} c \frac{\lambda^{\frac{1}{2}}\left(m_{X}^{2}, a_{1}, a_{2}\right)}{m_{X}^{2}}
\end{aligned}
$$

a_{j} is the mass squared of Z_{j}^{*}, or, in other words, a_{j} is the invariant mass squared of the fermion pair $f_{j} \bar{f}_{j}$, $\lambda(x, y, z) \equiv x^{2}+y^{2}+z^{2}-2 x y-2 x z-2 y z$.

The differential width with respect to $a_{1}, a_{2}, \theta_{1}, \theta_{2}, \varphi$

 Using approximations $m_{f_{1}}=m_{f_{2}}=0$, we have derived that$$
\begin{aligned}
\frac{d^{5} \Gamma}{d a_{1} d a_{2} d \theta_{1} d \theta_{2} d \varphi}= & \left|A_{0}\right|^{2} f_{1}+\left(\left|A_{\|}\right|^{2}+\left|A_{\perp}\right|^{2}\right) f_{2}+\left(\left|A_{\|}\right|^{2}-\left|A_{\perp}\right|^{2}\right) f_{3} \\
& +\operatorname{Re}\left(A_{0}^{*} A_{\|}\right) f_{4}+\operatorname{Re}\left(A_{0}^{*} A_{\perp}\right) f_{5}+\operatorname{Re}\left(A_{\|}^{*} A_{\perp}\right) f_{6} \\
& +\operatorname{Im}\left(A_{0}^{*} A_{\|}\right) f_{7}+\operatorname{Im}\left(A_{0}^{*} A_{\perp}\right) f_{8}+\operatorname{Im}\left(A_{\|}^{*} A_{\perp}\right) f_{9}
\end{aligned}
$$

$f_{1}, f_{2}, \ldots, f_{9}$ depend on $a_{1}, a_{2}, \theta_{1}, \theta_{2}, \varphi$, but they are independent of a, b and c.
The dependence of the fully differential width on the couplings a, b and c is concentrated in nine quadratic combinations of the amplitudes $A_{0}, A_{\|}, A_{\perp}$.

How many decays should be measured for obtaining a precise enough experimental full distribution of the decay?

$$
\begin{gathered}
d^{n} \Gamma \leftrightarrow 10^{n+1} \text { decays } \\
d^{5} \Gamma \leftrightarrow 10^{6} \text { decays }
\end{gathered}
$$

How many decays have been observed?

$$
h \rightarrow Z_{1}^{*} Z_{2}^{*} \rightarrow e^{-} e^{+} \mu^{-} \mu^{+}
$$

26 decays (ATLAS and CMS together after about 1.5 years of measurements)

Distributions of four and less variables should be considered

We will probably have a precise enough experimental full distribution

$$
\text { in } 60000 \text { years (roughly). }
$$

That is why we should try to get constraints on a, b, c by means of measuring distributions of as little a number of variables as possible.

$a_{1} a_{2}$-differential width

Figure: $\frac{d^{2} \Gamma}{d a_{1} d_{2}}$ of the decay $X \rightarrow Z_{1}^{*} Z_{2}^{*} \rightarrow I_{1}^{-} I_{1}^{+} I_{2}^{-} I_{2}^{+}$as a function of $\sqrt{a_{1}}, \sqrt{a_{2}}$ if X is the SM Higgs boson and $m_{X}=125.7 \mathrm{GeV}$. $I_{1}, I_{2}=e, \mu, \tau, I_{1} \neq I_{2}$.

a_{2}-differential width

Integrating $\frac{d^{2} \Gamma}{d a_{1} d a_{2}}$ approximately, we derive that

$$
\begin{aligned}
\frac{d \Gamma}{d a_{2}} \approx & \frac{\sqrt{2} G_{F}^{3} m_{Z}^{9}}{288 \pi^{4} m_{X}^{3} \Gamma_{Z}}\left(a_{f_{1}}^{2}+v_{f_{1}}^{2}\right)\left(a_{f_{2}}^{2}+v_{f_{2}}^{2}\right) \frac{\lambda^{\frac{1}{2}}\left(m_{X}^{2}, m_{Z}^{2}, a_{2}\right) a_{2}}{\left(a_{2}-m_{Z}^{2}\right)^{2}+\left(m_{Z} \Gamma_{Z}\right)^{2}} \sum_{\lambda=0, \|, \perp}\left|A_{\lambda}^{\prime}\right|^{2} \\
& \forall a_{2} \mid 2 m_{f_{2}}<\sqrt{a_{2}} \leq m_{X}-\sqrt{m_{Z}^{2}+3 m_{Z} \Gamma_{Z}}
\end{aligned}
$$

a_{f} and v_{f} are constants depending on a fermion $f,\left.A_{\lambda}^{\prime} \equiv A_{\lambda}\right|_{a_{1}=m_{Z}^{2}}$.
In several articles the formula for $\frac{d \Gamma}{d a_{2}}$ has been used in the narrow- Z-width approximation when

$$
\sqrt{a_{2}} \leq m_{X}-m_{Z}
$$

and their approach is inaccurate.
$m_{h}-\sqrt{m_{Z}^{2}+3 m_{Z} \Gamma_{Z}} \approx 30.8 \mathrm{GeV}$
$m_{h}-m_{Z} \approx 34.5 \mathrm{GeV}$

Constraints on hZZ couplings

CMS data:

$$
\frac{\sigma(p p \rightarrow h) \mathrm{BR}(h \rightarrow Z Z \rightarrow 4 /)}{\sigma_{S M}(p p \rightarrow h) \mathrm{BR}_{S M}(h \rightarrow Z Z \rightarrow 4 I)}=0.93_{-0.23}^{+0.26}(\mathrm{stat})_{-0.09}^{+0.13}(\mathrm{syst})
$$

CMS and ATLAS have already constrained couplings of the Higgs boson to $Z Z$. ATLAS use the $h Z Z$ couplings $\alpha, \kappa_{S M}, \tilde{\kappa}_{H Z Z}, \tilde{\kappa}_{A Z Z}$, connected with our ones via

$$
\begin{aligned}
& a=\cos \alpha\left(\kappa \kappa_{S M}+\frac{m_{X}^{2}-a_{1}-a_{2}}{m_{Z}^{2}} \tilde{\kappa}_{H Z Z}\right), \\
& b=-2 \frac{m_{X}^{2}}{m_{Z}^{2}} \tilde{\kappa}_{H Z Z} \cos \alpha, \quad c=-i \frac{m_{X}^{2}}{m_{Z}^{2}} \tilde{\kappa}_{A Z Z} \sin \alpha .
\end{aligned}
$$

Constraints on hZZ couplings

Table: ATLAS and CMS 95\% CL allowed regions and our estimations for various $h Z Z$ coupling ratios.

	$\tilde{\kappa}_{H z Z} / \kappa_{S M}$	$\left(\tilde{\kappa}_{\text {AZZ }} / \kappa_{S M}\right) \tan \alpha$	$\operatorname{Im} \tilde{\kappa}_{H z Z} / \operatorname{Re} \kappa_{S M}$
ATLAS	$(-0.75,2.45)$	$(-2.85,0.95)$	n/a
CMS	$[-2.28,-1.88] \cup[-0.69, \infty)$	$[-2.05,2.19]$	n/a
Our est.	$[-2.38,-1.89] \cup[-0.24,1.13]$	$[-1.28,1.28]$	$[-1.01,1.01]$

Relations between the helicity coefficients and observables

$$
\begin{aligned}
\frac{d^{5} \Gamma}{d a_{1} d a_{2} d \theta_{1} d \theta_{2} d \varphi}= & \left|A_{0}\right|^{2} f_{1}+\left(\left|A_{\|}\right|^{2}+\left|A_{\perp}\right|^{2}\right) f_{2}+\left(\left|A_{\|}\right|^{2}-\left|A_{\perp}\right|^{2}\right) f_{3} \\
& +\operatorname{Re}\left(A_{0}^{*} A_{\|}\right) f_{4}+\operatorname{Re}\left(A_{0}^{*} A_{\perp}\right) f_{5}+\operatorname{Re}\left(A_{\|}^{*} A_{\perp}\right) f_{6} \\
& +\operatorname{Im}\left(A_{0}^{*} A_{\|}\right) f_{7}+\operatorname{Im}\left(A_{0}^{*} A_{\perp}\right) f_{8}+\operatorname{Im}\left(A_{\|}^{*} A_{\perp}\right) f_{9}
\end{aligned}
$$

We call the ratios of the nine quadratic combinations of the fully differential width to $\sum_{\lambda=0, \|, \perp}\left|A_{\lambda}\right|^{2}$ 'the helicity coefficients'. Integrating $\frac{d^{5} \Gamma}{d a_{1} d a_{2} d \theta_{1} d \theta_{2} d \varphi}$, we can relate all the helicity coefficients to observables. For example,

$$
\begin{aligned}
O_{1}^{(1,2)}\left(a_{2}\right) \equiv & \left(\frac{d \Gamma}{d a_{2}}\right)^{-1}\left(\int_{0}^{\frac{\pi}{2}} d \theta_{1,2} \frac{d^{2} \Gamma}{d a_{2} d \theta_{1,2}}-\int_{\frac{\pi}{2}}^{\pi} d \theta_{1,2} \frac{d^{2} \Gamma}{d a_{2} d \theta_{1,2}}\right) \sim \frac{\operatorname{Re}\left(A_{\|}^{\prime *} A_{\perp}^{\prime}\right)}{\sum_{\lambda}\left|A_{\lambda}^{\prime}\right|^{2}} \\
= & \operatorname{Re}\left(F_{\|}^{\prime *} F_{\perp}^{\prime}\right) . \\
& F_{\lambda}^{\prime} \equiv \frac{A_{\lambda}^{\prime}}{\sqrt{\sum_{\lambda}\left|A_{\lambda}\right|^{2}}}, \lambda=0, \|, \perp
\end{aligned}
$$

Relations between the helicity coefficients and observables

$$
\left.\begin{array}{rrr}
O_{1}^{(1,2)}\left(a_{2}\right) & \sim & \operatorname{Re}\left(F_{\|}^{\prime *} F_{\perp}^{\prime}\right) \\
O_{2}^{(1,2)}\left(a_{2}\right) & \sim & \left|F_{0}^{\prime}\right|^{2} \\
O_{3}\left(a_{2}\right) & \sim\left|F_{\|}^{\prime}\right|^{2}+\left|F_{\perp}^{\prime}\right|^{2} \\
O_{4}\left(a_{2}\right) & \sim & \left|F_{\|}^{\prime}\right|^{2}-\left|F_{\perp}^{\prime}\right|^{2} \\
O_{5}\left(a_{2}\right) & \sim & \operatorname{Im}\left(F_{\|}^{\prime *} F_{\perp}^{\prime}\right) \\
O_{6}\left(a_{2}\right) & \sim & \operatorname{Re}\left(F_{0}^{\prime *} F_{\|}^{\prime}\right) \\
O_{7}^{(1,2)}\left(a_{2}\right) & \sim & \operatorname{Im}\left(F_{0}^{\prime *} F_{\|}^{\prime}\right) \\
O_{8}^{(1,2)}\left(a_{2}\right) & \sim & \operatorname{Re}\left(F_{0}^{\prime *} F_{\perp}^{\prime}\right) \\
O_{9}\left(a_{2}\right) & \sim & \operatorname{Im}\left(F_{0}^{\prime *} F_{\perp}^{\prime}\right)
\end{array}\right\} \rightarrow \text { Constraints on } a, b, c
$$

Figure: Plots of observables for the decay $h \rightarrow Z_{1}^{*} Z_{2}^{*} \rightarrow I_{1}^{-} I_{1}^{+} I_{2}^{-} I_{2}^{+}$ $\left(I_{1} \neq l_{2}\right)$. Solid line: $a=1, b=-0.5 i, c=0$, dashed lines: $a=1, b=0, c=0.5$, dash-dotted lines: $a=1, b=0, c=0.5 i$.

Conclusions

- In order to clarify the $C P$ properties of the Higgs boson we have considered the decay $X \rightarrow Z_{1}^{*} Z_{2}^{*} \rightarrow f_{1} \bar{f}_{1} f_{2} \bar{f}_{2}$, where X is a neutral particle with zero spin and arbitrary $C P$ parity, $f_{1} \neq f_{2}$.
- We have constrained couplings of the Higgs boson to ZZ. Our constraints are in good agreement with those of CMS and ATLAS and provide an allowed interval for a coupling ratio unconstrained by CMS and ATLAS.
- Observables are defined measurement of which will allow one to obtain information on the $h Z Z$ vertex.
- An analogous analysis has been carried out for the decay $X \rightarrow W^{-*} W^{+*} \rightarrow f_{1-} \bar{f}_{2} \bar{f}_{1+} f_{2+}$.

The presentation is based on the paper T.V. Zagoskin and A.Yu. Korchin, arXiv:1504.07187v2 [hep-ph].

