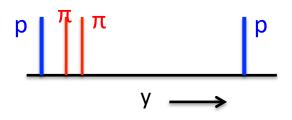
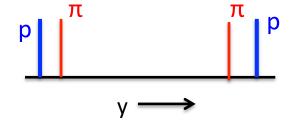
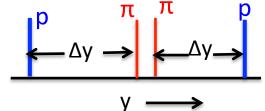
Central Exclusive Production in Hadron-Hadron Collisions WHAT DOES IT MEAN? HOW COME THIS QUESTION AFTER THE WHOLE WEEK??

This is what I believe – I hope we can agree:


"PRODUCTION":


Obvious, particle(s) after the collision that were not there before, i.e. "created"


"CENTRAL":

No crisp, precise definition.

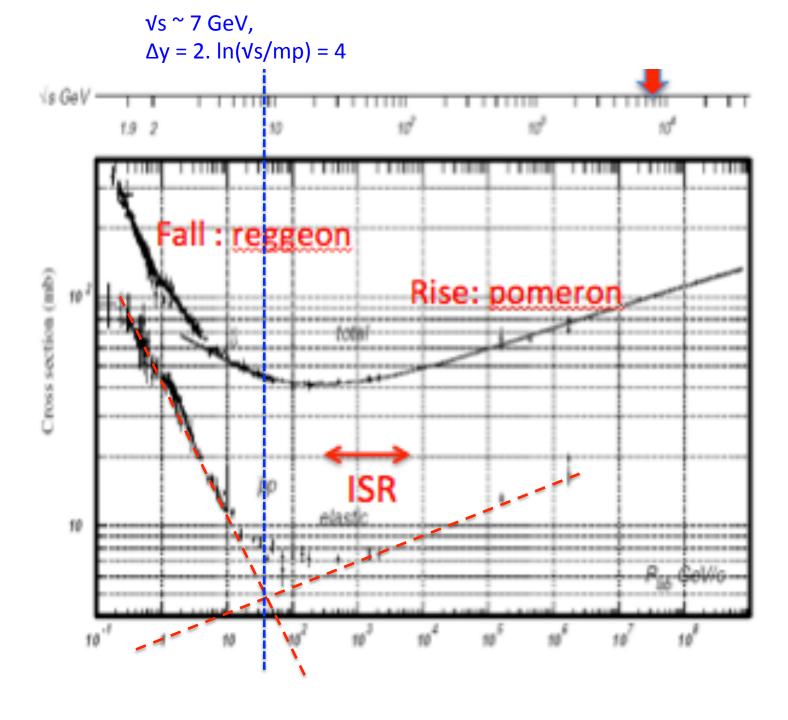
But rapidity differences Δy are invariant under boosts

SDE = Single diffractive excitation Not central!

DDE = Double diffractive excitation Not central!

Central production

How big should Δy be to be called **CENTRAL**?


It depends on your physics interest, but physics of X (= $\pi\pi$ etc) changes when $\Delta y >^{\sim} 3$, 4ish This is due to dominance of pomeron exchange, as reggeon exchanges die out.

Evidence: \rightarrow

What's special about 3-4 units Δy ? From dozens of examples at this meeting: $\Delta \eta \neq \Delta y$ except for photons, but usually OK 20.3 µb-1 (7 TeV) 10 dσ/d∆η^F (mb) PROTON SPECTRA 10² s = 929.5 (GeV)2 CMS MinBias, P8-MBR (ε=0.08) Diffractive Dissociation ND SD g2 = 0.275 (GeVc)2 DD (VeV)² 10^{-1} 105(GeV/c)2 / Data 1755(CME)2 $\Delta \eta^{\mathsf{F}}$ Feynman x = pz/pbeam

xF = 0.95 equiv.to $\Delta y = 3$

(Pseudo)rapidity

So if both gaps in p + X + p are $\Delta \eta$ (better, Δy) > 3 (better, >4) then pomeron exchange should dominate. Reggeon exchanges present but small and dying with increasing gaps.

This is due to pomeron intercept > 1 and reggeon intercepts < $^{\sim}$ 0.5 **BUT** also spin γ = 1 and photon exchange (& odderon maybe) stays high : have IP + IP & γ + IP & γ + γ all can be **Central Exclusive Production.**

→ Define "exclusive"

All final state particles are measured or inferred (e.g. by E,p conservation) (Wlodek Guryn disputes "or inferred")

Example: Elastic scattering $p + p \rightarrow p + p \dots 0$ hadrons produced (soft photons inevitable) Note: if only one proton was detected, and missing 4-momentum infers the other, it's OK (IMO) Example $2: \pi^{-} + p \rightarrow \pi^{0} + n$ Example $3: p + p \rightarrow p + (p\pi\pi)$ SDE all measured

ISR "invented?" <u>inclusive</u> cross sections $p + p \rightarrow \pi^+ + anything$, now Z, H, ... + anything At high energy colliders, central ($\Delta y > 3$) exclusive p + X + p with :

X = e+e-, μ+μ-, π+π-, W+W-, Z, H, etc with $\begin{picture}(100,0) \put(0,0) \put(0,$

Events with undetected central hadrons are a background to our "exclusive" spectrum.