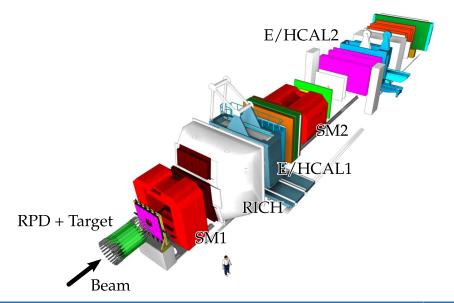
Particle ID COMPASS

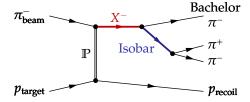
Fabian Krinner for the COMPASS collaboration

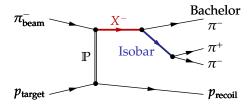
Physik-Department E18 Technische Universität München


Diffractive and electromagnetic processes at high energies Bad Honnef

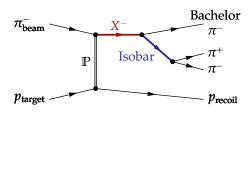
The COMPASS Experiment

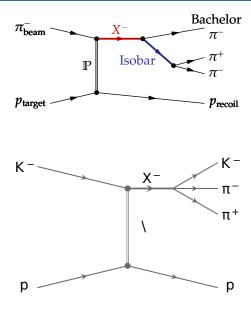
COMPASS hadron setup



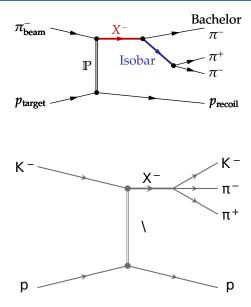

Fabian Krinner (TUM E18)

- Pion-hypothesis:
 "Every charged track is a pion"
- Three types of contaminations:

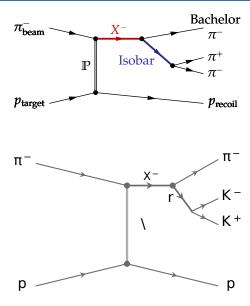

- Pion-hypothesis:
 "Every charged track is a pion"
- Three types of contaminations:
 - Free K^- decay near the target:


TUT

- Pion-hypothesis:
 "Every charged track is a pion"
- Three types of contaminations:
 - Free K⁻ decay near the target: Kinematically suppressed m_{3π} > 0.5GeV/c² plus CEDAR

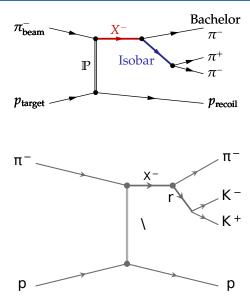


- Pion-hypothesis:
 "Every charged track is a pion"
- Three types of contaminations:
 - Free K⁻ decay near the target: Kinematically suppressed m_{3π} > 0.5GeV/c² plus CEDAR
 - ► Diffractive K⁻ dissociation:

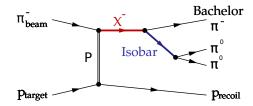

TUT

- Pion-hypothesis:
 "Every charged track is a pion"
- Three types of contaminations:
 - Free K⁻ decay near the target: Kinematically suppressed m_{3π} > 0.5GeV/c² plus CEDAR
 - ► Diffractive K⁻ dissociation: CEDAR and RICH (Also e.g. e⁻)

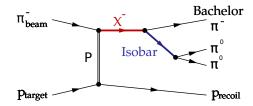
TUT


- Pion-hypothesis:
 "Every charged track is a pion"
- Three types of contaminations:
 - Free K⁻ decay near the target: Kinematically suppressed m_{3π} > 0.5GeV/c² plus CEDAR
 - Diffractive K⁻ dissociation: CEDAR and RICH (Also e.g. e⁻)
 - K^+K^- pair production:

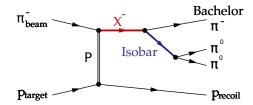
- Pion-hypothesis:
 "Every charged track is a pion"
- Three types of contaminations:
 - Free K⁻ decay near the target: Kinematically suppressed m_{3π} > 0.5GeV/c² plus CEDAR
 - ► Diffractive K⁻ dissociation: CEDAR and RICH (Also e.g. e⁻)
 - ► K⁺K⁻ pair production: RICH: K⁺



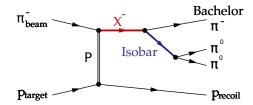
- Pion-hypothesis:
 "Every charged track is a pion"
- Three types of contaminations:
 - Free K⁻ decay near the target: Kinematically suppressed m_{3π} > 0.5GeV/c² plus CEDAR
 - ► Diffractive K⁻ dissociation: CEDAR and RICH (Also e.g. e⁻)
 - ► K⁺K⁻ pair production: RICH: K⁺
- PID not very important in this channel



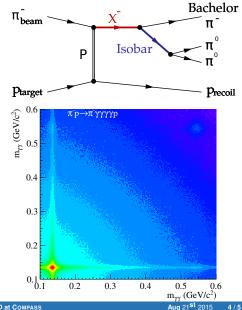
• Not two neutral particles π^0



- Not two neutral particles π^0
- Decay to $\pi^0 \to \gamma \gamma$

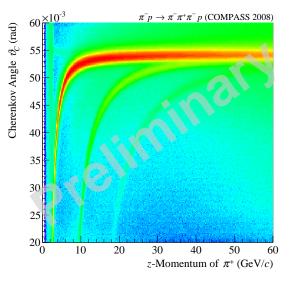


- Not two neutral particles π^0
- $\bullet~{\rm Decay}~{\rm to}~\pi^0\to\gamma\gamma$
- Actually measure: $\pi^- p \rightarrow \pi^- \gamma \gamma \gamma \gamma p$



- Not two neutral particles π^0
- $\bullet~{\rm Decay}~{\rm to}~\pi^{\rm 0}\to\gamma\gamma$
- Actually measure: $\pi^- p \rightarrow \pi^- \gamma \gamma \gamma \gamma p$
- γ as energy in the electromagnetic calorimeter

$\underset{\pi^-\rho \rightarrow \pi^-\pi^0\pi^0\rho}{\text{Similar process}}$



- Not two neutral particles π⁰
- $\bullet~{\rm Decay}~{\rm to}~\pi^{\rm 0}\to\gamma\gamma$
- Actually measure: $\pi^- p \rightarrow \pi^- \gamma \gamma \gamma \gamma p$
- γ as energy in the electromagnetic calorimeter
- Require $m_{\gamma\gamma} \sim m_{\pi^0}$ for both pairs

Processes with Kaons

Particle ID via RICH important

