ROOT MATH DRAFT WORK PLAN FOR 2018

- Machine Learning (TMVA)
- Math Libraries
- Histograms, Fitting

MACHINE LEARNING WHY IS IMPORTANT TO HAVE OUR OWN TOOLS

- Machine Learning is becoming more and more important in the HEP analysis ecosystems
 - tools can be applied to a large variety of problems
- Relying completely in software tools which are externals can be risky
 - need to understand and customise tools according to our requirements
 - need to control software development cycles
 - external tools might evolve too fast (change quickly API, becoming obsolete, etc...)
- No need to re-invent the wheel, but develop from experience gained in the Data Science community
- A lots of the effort can be provided by excellent students at a very low man-power cost
- ML tools + efficient I/O can be a very good reason for using ROOT outside HEP (knowledge transfer)
- Important to have a rich set of modern ML tools in ROOT (e.g. DL) and at the same time provide interfaces to popular external libraries (e.g. Keras, Tensorflow)

MACHINE LEARNING

Improvement in data input

- re-design the input TMVA Event data class
- provide support for Images and Tensors (2-d and multi-dim arrays)
- automatic conversions to NumPy arrays for using external ML Python tools
- replace TTreeFormula's with DataFrame

Deep Learning Framework

- continue development initiated with GSOC students
- CNN integration is almost done
- integrate now RNN (and extend to LSTM) and DAE
- improve performances by optimise code for multi-core CPU and GPU
- integrate usage of external tools (e.g.)
- A rich set of tools for DL in HEP

MACHINE LEARNING

(PART 2)

- Interfaces to external tools
 - Improve Scikit-learn and Keras interfaces
 - Add a low-level Tensorflow interface
 - All interfaces should provide:
 - train and evaluate in TMVA
 - train externally and evaluate only in TMVA (useful for not having external dependency in evaluation)
- Performance optimisations and parallelisation
 - optimization of BDT using internal parallelism (MT)
 - optimization of DL for both CPU and GPU
 - fully support parallelization (using multi-process and in clusters) at higher level (e.g. cross validation and hyper-parameter tuning)
 - optimize both training but also model evaluation

MACHINE LEARNING

(PART 3)

R&D

- Experiment with new algorithms
 - Improve optimisers for DL. Now using just SGD.
 - Multi-target regression which could be used for fast simulation
 - Add tools for unsupervised learning in TMVA (e.g. DAE)

Documentation

- Improve and update Users Guide for new DL tools
- Declare obsolete Sourceforge web site
- Make new online doc available in Doxygen

MATH LIBRARIES

Parallelisation of Math Libraries

- Fully deploy MT parallelisation in ROOT fitting
- Math Vectorisation
 - make some important Math functions (e.g. TMath::Gaus) template to support scalar and vector types with VecCore
 - implement basic Math functions in VecCore
 - Vectorisation of numerical integration and differentiation
 - Investigate deploying different Math libraries for the different architectures

Random Number Generators

- Develop a new common Random number library to be used by both ROOT and Geant
 - with functionality for parallelism (independent streams and fast seeding)
 - with vectorised engines
 - with state of the art generators
 - aim is to have MIXMAX as one of the major generator

HISTOGRAM/FITTING PLAN

- · Provide support to users and add new functionality when needed
- Parallelisation of most CPU consuming functions in histograms
 - e.g. Histogram operations like additions (merging)
- Maintain ROOT 7 histogram as a prototype and try to get feedback for its evolution
- R&D
 - Extend capabilities of ROOT fitting (support multi-histogram fits)
 - Study parallelisations in these more un-balanced models
 - Prototype interface to perform fitting in ROOT from simple workspace models
 - Prototype new back-end solution for RooFit
 - e.g. a Tensorflow based implementation?
 - Investigate GooFit for GPU fitting
 - Autodifferentiation