
ROOT’s Runtime C++ 
Modules

Vassil Vassilev, Raphael Isemann



V. Vassilev, R. Isemann, ROOT PoW, 22.11.2017

Status Quo
• 2016, 1 FTE (Vassil): ROOT compiles and passes roottest 

when compiled with -Dcxxmodules=On


• Significant amount of work put into infrastructure, 
outreach, setting up the right discussion forums to 
advance the C++ modules feature in clang


• 2017, 1.5 FTE (1.0 Raphael, 0.5 Vassil): ROOT compiles 
and almost passes (50 failing out of 1650 tests) with -
Druntime_cxxmodules=On. Big thanks for the great work 
done by Raphael!

2



V. Vassilev, R. Isemann, ROOT PoW, 22.11.2017

Future Directions

• Polish the existing support for runtime C++ modules;


• Optimize the redundant deserializations in both ROOT 
and LLVM


• Rethink rootmap-related code in terms of cxxmodules


• Make clean non-cling-dependent modules (see 
RE-0003).

3

https://github.com/Teemperor/root-evolution/blob/15f415a71466716f864cbf50da80bc5f85f6ee8b/proposals/0003-rootcling-refactor.md


V. Vassilev, R. Isemann, ROOT PoW, 22.11.2017

Future Directions
• Keep various modules-related nightly builds ensuring correctness and 

tracking regressions in ROOT but also LLVM;


• Continuous performance monitoring (mainly memory and execution speed);


• Define a path forward for experiments to adopt that feature (preliminary 
talks with 2 experiments, potentially allocating resources in spring and 
summer 2018);


• Find potential use-cases of the feature outside the scope of dictionaries, 
such as package management based on modules infrastructure (see slide 
“Going Beyond Dictionaries”);


• Provide experiments migration support;


• Work on a long-term community support plan.

4



V. Vassilev, R. Isemann, ROOT PoW, 22.11.2017

Going Beyond Dictionaries 

• C++ Modules can be used to give stronger component 
encapsulation;


• C++ Modules (and their modulemaps) can give enough 
information for a lean implementation of a distributed 
package manager (Oksana, Brian and I are working on a 
proposal)

5



V. Vassilev, R. Isemann, ROOT PoW, 22.11.2017

FAQ
1. Why it is needed? 

It is expected to reduce the memory footprint and increase the performance of code using ROOT. We can improve 
correctness of library autoloading and simplify the plenitude of callback invocations.

2. Who is expected to use it?  
Runtime C++ Modules a core feature and the target user group is all users of ROOT, including experiment software 
stacks. 

3. Why in 2018; can it wait? 
This is a long waited and long advertised feature. Technically, people can wait one more year (they have been 
waiting for it for maybe 5 years now). The risk is that waiting more might stamp the project as not being technically 
feasible to implement and revoke funding.

4. Timing  
In 2016 the deliverable was a complete build of ROOT -fmodules flags and successfully passing test suite. It 
included approx. 100% of Vassil's work time (including a lot of scaffolding being set on the ROOT side but also on 
the LLVM side). We created a forum where regressions could be tracked and fixed in a timely manner (by 
cxxmodules engineers). In 2017 we are converging towards enabling modules-aware dictionaries in ROOT and we 
are working on the last ~50 (out of ~1650) failing tests. Many thanks to Raphael who made excellent progress since 
Feb 2017. The estimate work is approx 1.5FTE (Vassil's work plan shifted a little because of changed employers). 
You can read more on the technical part work being conducted by Oct 2016 here. In 2018 the expectancy is 1.5FTE.

5. Communicating results  
Using the standard forums root-planning meeting combined with informal chats with the parties involved. Perhaps 
writing a publication for a HEP conference.

6

https://www.researchgate.net/publication/319717664_Optimizing_ROOT%27s_Performance_Using_C_Modules

