Extra Dimensions Are Dark

Talk Outline:

- 1) Quick review of the 4-D 'dark photon' model & kinetic mixing
- 2) Kinetic mixing in 5-D & implications
- 3) The Complex Scalar (vev = 0) DM Model
- 4) Short look at other scenarios
- 5) Summary & Conclusions

The Dark Side of The Force → The Force of the Dark Side

To Begin: A Lightening 'Dark Photon' Model Review

A new U(1)_D, not coupled to the SM, kinetically mixes with hypercharge field

$$\mathcal{L} \subset -\frac{1}{4} \, \hat{B}_{\mu\nu} \, \hat{B}^{\mu\nu} - \frac{1}{4} \, \hat{Z}_{D\mu\nu} \, \hat{Z}_D^{\mu\nu} + \frac{1}{2} \, \frac{\epsilon}{\cos \theta} \, \hat{Z}_{D\mu\nu} \, \hat{B}^{\mu\nu} + \frac{1}{2} \, m_{D,0}^2 \, \hat{Z}_D^{\mu} \, \hat{Z}_{D\mu}$$

w/ the symmetry broken by the vev of a Dark (SM singlet) Higgs boson S:

$$V_0(H,S) = -\mu^2 |H|^2 + \lambda |H|^4 - \mu_S^2 |S|^2 + \lambda_S |S|^4 + \kappa |S|^2 |H|^2$$

..to which we add a DM field via a L_{DM} (as yet unspecified).

- 1: Make linear transformation to bring L to canonical form
- 2: Diagonalize H-induced mass-mixing between Z & V (aka Z_D)
 - 3: 'Light' (~100 MeV) V couples to ~eεQ, hence, a Dark Photon

DM Properties: anything goes **BUT** s-wave annihilation

..otherwise $\sigma v_{FO} \approx \sigma v_{CMB}$!

- → DM is <u>NOT</u> Dirac
- \rightarrow m_{DM} < m_V
- → No ID signal today!

Schuster & Toro

FIG. 1. The 95% excluded cross section based on Planck's upper limit given by Eq. (8) for (left) $\chi\chi \to e^+e^-$ and (right) $\chi\chi \to \gamma\gamma s$ -wave annihilation.

					Ochusie			
Model	Mass terms	J_D^μ	scattering $\mathcal{M} \propto$	scattering $\sigma \propto$	Annilhilation $\sigma v \propto$	CMB-viable?	Mode	
Fermion DM – Direct Annihilation								
Majorana	$\mathcal{U}(1)_D$	$\bar{\Psi}\gamma^{\mu}\gamma_{5}\Psi$	$\vec{\sigma}\cdot\vec{v}$	v^2	p -wave $\propto v^2$	Y	3	
Dirac	$U(1)_D$ -inv.	$\bar{\Psi}\gamma^{\mu}\Psi$	1	1	s -wave $\propto v^0$	N	X	
Pseudo-Dirac	$U(1)_D$ -inv. & $/U(1)_D$	$\bar{\Psi}_L \gamma^\mu \Psi_H$	1 (inelastic)	kin. forbidden ^a	kin. forbidden	Y	3	
Scalar DM – Direct Annihilation								
Complex	$U(1)_D$ -inv.	$\phi^*\partial^\mu\phi-\phi\partial^\mu\phi^*$	1	1	p -wave $\propto v^2$	Y	1	
Pseudo-complex	$U(1)_D$ -inv. & $/U(1)_D$	$\phi_L \partial^\mu \phi_H - \phi_H \partial^\mu \phi_L$	v^2 (inelastic)	kin. forbidden	kin. forbidden ^b	Y	2	
							All I	

· If $m_v > 2m_{DM}$ then $V \to DM$.. otherwise $V \to e^+e^-$ etc.

Queue the plots...

Lots of work by many people..

 $\rightarrow \epsilon \leq 10^{-3} \& m_{DM} \sim m_{V} \text{ needed}$

m_{DM} & m_V are not necessarily related by the model..

Some possible(??) issues...

- 1: Why is $m_{DM} \sim m_{V}$? These are generally uncorrelated...
- 2: How do we prevent the Higgs portal (via κ) from acting or even dominating? No symmetry can forbid a coupling of S to the SM Higgs
- 3: Can we provide a more complete framework for the DM model?
- 4: etc. etc. ...
- How do we generalize the model to address (some of) these ??

Let's have some fun by extending this model to EDs!

Setup:

 One, flat ED as an interval, bounded at either end by a brane. This is not an orbifold! R⁻¹~10-10³ MeV similar to the ADD model w/ n=6,7

- SM fields are localized on one of the 4-D branes while the DM & the mediator 'Dark Fields' can freely roam the 5-D bulk
- Ignore gravity as in UED

Relevant part of 5-D gauge action

$$S = \int d^4x \int_{y_1}^{y_2} dy \left[-\frac{1}{4} \hat{V}_{AB} \hat{V}^{AB} \left(-\frac{1}{4} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} + \frac{\epsilon_5}{2c_w} \hat{V}_{\mu\nu} \hat{B}^{\mu\nu} + L_{SM} \right) \delta(y - y_{SM}) \right]$$

Note: KM takes place on the SM brane between brane-localized hypercharge field B and dark bulk field V

 KM now involves an infinite tower of KK modes of the Dark gauge field, V, determined by their wavefunctions evaluated on the SM brane → 1st problem = 'control' KK expansion:

$$\int_{y_1}^{y_2} \, dy \,\, \frac{\epsilon_5}{2c_w} \hat{V}_{\mu\nu} \hat{B}^{\mu\nu} \delta(y-y_{SM}) \quad \begin{array}{c} \text{insert KK} \\ \text{expansion} \end{array}$$

$$\hat{V}^A(x,y) = \sum f_n(y)\hat{V}_n^A(x)$$

$$ightharpoonup \epsilon_n = \epsilon_5 f_n(y_{SM})$$
 thus $ightharpoonup \sum_n \frac{\epsilon_n}{2c_w} \hat{V}_n^{\mu\nu} \hat{B}_{\mu\nu}$ Infinite sum!

$$\sum_{n} \frac{\epsilon_n}{2c_w} \hat{V}_n^{\mu\nu} \hat{B}_{\mu\nu}$$

Linear transformation to bring 4-D Lagrangian into canonical form

$$ightarrow$$
 $\hat{B}=B+\sum_{n}lpha_{n}V_{n}$, etc.

Introduce for convenience $s_n = \sin \theta_n = -\epsilon_n/c_w$

$$s_n = \sin \theta_n = -\epsilon_n/c_w$$

 \rightarrow Goal: find the α_n etc. in terms of the set of s_i/ϵ_i

Define the sums:
$$\Sigma_i = (1 - \sum_{a=1}^i s_a^2)^{1/2}$$
; then

$$\rightarrow$$
 $\alpha_1 = -s_1/(\Sigma_1\Sigma_0)$, $\alpha_2 = -s_2/(\Sigma_2\Sigma_1)$... $\alpha_n = -s_n/(\Sigma_n\Sigma_{n-1})$

These sums must converge or a canonical basis won't exist!

$$\Sigma_n^2 = 1 - rac{\epsilon_1^2}{c_w^2} \sum_{a=1}^n rac{\epsilon_a^2}{\epsilon_1^2}$$
 (n $ightarrow \infty$)

→ The ε's must shrink with increasing n ..they can't be n-independent!

This imposes a non-trivial constraint on the eigenfunctions $f_n(y)$ independent of the nature of the DM -- as does the by-parts integration requirement on applied BCs w/o orbifiolding

$$f_m \partial_y f_n |_{y_1}^{y_2} = 0$$

Next: all the V_i couple to hypercharge & so will mix with the Z
 & each other via the Higgs vev producing an ∞ x ∞ matrix

$$\mathcal{M}^2 = \begin{pmatrix} M_Z^2 & -t_w \epsilon_1 M_Z^2 & -t_w \epsilon_2 M_Z^2 & \dots \\ -t_w \epsilon_1 M_Z^2 & M_1^2 + t_w^2 \epsilon_1^2 M_Z^2 & t_w^2 \epsilon_1 \epsilon_2 M_Z^2 & \dots \\ -t_w \epsilon_2 M_Z^2 & t_w^2 \epsilon_1 \epsilon_2 M_Z^2 & M_2^2 + t_w^2 \epsilon_2^2 M_Z^2 & \dots \\ \dots & \dots & \dots & \dots \end{pmatrix} \qquad \begin{array}{c} \textbf{M_i determined by KK} \\ \textbf{(model dependent !)} \\ \textbf{eigenvalue equation} \\ \end{array}$$

Small ε's → we can diagonalize employing a PT expansion...

$$V_i \rightarrow V_i + t_w \frac{\epsilon_i M_Z^2}{M_i^2 - M_Z^2} Z$$

$$Z \rightarrow Z - t_w \sum_i \frac{\epsilon_i M_i^2}{M_i^2 - M_Z^2} V_i,$$

The mass eigenvalues

The physical V_i then couple to

$$\frac{g}{c_w} t_w \epsilon_i \left[T_{3L} \frac{M_i^2}{M_Z^2 - M_i^2} + Q \frac{c_w^2 M_Z^2 - M_i^2}{M_Z^2 - M_i^2} \right],$$

For $M_i \rightarrow 0$ this is $e \epsilon_i Q$... For $M_i \rightarrow \infty$ this is $g' \epsilon_i Y$

There is also a shift in the SM Z couplings:

$$\frac{e}{s_w c_w} \Big[(1+F)T_{3L} - (s_w^2 + F)Q \Big], \quad \text{where} \quad F = \sum_i \frac{(t_w \epsilon_i)^2 M_Z^2}{M_Z^2 - M_i^2}$$

Which results in non-zero oblique parameters:
$$T = \frac{2F}{\alpha_w}$$
 $\leq \sim 0.05$
$$S = \frac{4c_w^2 F}{\alpha_w}$$

$$U = 0 \, ,$$

... & other couplings are induced & to LO are given by

$$K_{HZV_i} = \frac{2M_Z^2}{v_H} \left[\frac{t_w \epsilon_i M_i^2}{M_Z^2 - M_i^2} \right] \qquad K_{HV_i V_j} \simeq \frac{2M_Z^2}{v_H} \left[\frac{t_w \epsilon_i M_i^2}{M_Z^2 - M_i^2} \right] \left[i \to j \right]$$

All this happens before any introduction of the specific DM model!

DM Models:

You saw these already in the Table above but here they take on some somewhat different aspects...

- Complex scalar w/ no vev: DM is lightest state in complex scalar KK tower. No bulk Higgs field needed! 'Simplest' possibility.
- · Complex scalar w/ vev..breaks up into real CP even scalar KK tower (the lightest being DM) + a CP odd field which mixes w/ V₅ to generate the Goldstone's + a CP-odd KK tower. Very different but more complex
- Majorana/Psuedo Dirac: Most complex w/lots of moving parts... different still & w/ very interesting phenomenology!

Unfortunately time permits only an examination of the simplest case

Model 1

$$S_{5D} = \int d^4x \int_{y_1}^{y_2} dy \left[-\frac{1}{4} V_{AB} V^{AB} + (D_A S)^{\dagger} (D^A S) - V(S^{\dagger} S) \right]$$

$$D_A = \partial_A + i g_{5D} Q_D V_A,$$

- S <u>MUST</u> be complex to carry a charge ($Q_D=1$); for simplicity we ignore a possible bulk mass for S. Assume no kinetic or potential terms on either brane for V,S (for now)
- · $f_n(y)$ satisfy: $\partial^2_y f_n = -m_n^2 f_n$ so $f_n = A_n \cos m_n y + B_n \sin m_n y$

BUT we must also have: $f_m \partial_y f_n|_{y_1}^{y_2} = 0$ with y_1 =0 & y_2 = πR

Now imagine taking \rightarrow $\partial_y v_n(\pi R) = v_n(0) = 0$ while $\partial_y s_n(0) = s_n(\pi R) = 0$. which satisfy requirement

• Then: $m^{V,S}_n = (n+1/2)/R$ V,S form degenerate KK towers₁₃

So
$$v_n \sim \sin x_n y/R$$
 & $s_n \sim \cos x_n y/R$ with $x_n = n + 1/2$.

- → More interestingly, there are no massless modes! V₅'s are the eaten Goldstones. No Dark Higgs w/ vev is needed!
- Next, this term is ZERO $S_{HS} = \int d^4x \int_{y_1}^{y_2} dy \; \lambda_{HS} H^\dagger H S^\dagger S \; \delta(y-y_{SM})$ as the s_n vanish on the SM brane. NO symmetry can do this but we can w/ ED BCs!
- → Trivially, the DM & the Dark Photon (the n=0 modes) have comparable (i.e., the same) masses w/o tuning

There remain, however some phenomenological problems:

- \rightarrow As is, all the $|\epsilon_n|$ have the same value X
- → We actually need $m(S_1) < m(V_1)$ but now they're equal X

 Both problems can be simultaneously solved by adding a common element for both the V & S fields: a Brane Localized Kinetic Term(BLKT) on the brane where the field doesn't already vanish, e.g., for V:

$$\int dy \ \delta(y-y_{SM}) \cdot \delta_A R \cdot \frac{-1}{4} V_{\alpha\beta} V^{\alpha\beta} \qquad \delta_A \text{ is an dimensionless positive}$$
semi-definite O(1) parameter

Not too different from the kinetic mixing term.. Similarly a $\delta_{\rm S}$ for S.

The BLKT induces a discontinuity in $\partial_{v}f$ at the relevant brane:

$$\partial_y f(y_{br}^-) - \partial_y f(y_{br}^-) = -\delta_A R m_n^2 f(y_{br})$$
 modifying the BCs.

This alters: masses, wavefunctions & normalization factors, ie, ε_n 's

$$\rightarrow$$
 $\cot \pi x_n^V = \frac{\delta_A}{2} x_n^V$

$$\boldsymbol{\varepsilon_n} \stackrel{2}{\sim} \left[1 + \left(\frac{\delta_A x_n^V}{2} \right)^2 + \frac{\delta_A}{2\pi} \right]^{-1}$$

Increasing δ_A reduces x_n 's $\rightarrow m_n$'s & also makes ϵ_n 's decrease!

$\delta_{A,S} \neq 0$ will make BOTH KK's lighter but we need a fixed ordering

The ε_n 's fall off rapidly with increasing n as well as increasing δ_A 's

Remember
$$\Sigma_n^2 = 1 - \frac{\epsilon_1^2}{c_w^2} \sum_{a=1}^n \frac{\epsilon_a^2}{\epsilon_1^2}$$
 ?

We can now evaluate the sum..

Well controlled.. this problem is solved by the BLKT!

Now we need m(S₁) < m(V₁) so this means the values of δ_S & δ_A are correlated..

 $\lambda = m(S_1)/m(V_1)$..for a given δ_A and desired λ , we can determine δ_S

Values of λ below ~0.5 are 'disfavored' by largish δ_S requirements.. But this is a special region as here all KK's will decay down to DM!

- Gauge KK's are produced via their SM couplings & undergo 2-body decays to pairs of scalars which then decay further producing a cascade (more later)
- Eventually we are left with S_1, S_1^{\dagger} (= DM) & V_1 only... if V_1 decays just to DM, then the whole cascade is totally DARK!
- · Since $g_D >> e \epsilon_1$ this will happen when $\lambda < 0.5$ (the 'disfavored' region) & the signatures will no longer be (directly**) λ -dependent, e.g., just missing energy in a DP production experiment
- · DD experiments are qualitatively insensitive to λ (as we'll see) but the relic density calculation MAY sometimes have sensitivity due to the potential proximity of the V_1 resonance when λ is below but ~0.5.

^{**} Couplings & detailed kinematics, etc., will remain λ-dependent 19

- If the KKs just result in ME can this scenario be distinguished from the usual 4-D DP model where something similar can happen?
- LDMX1: an example e-recoil experiment. 4 GeV beam on a tungsten target.. E_erecoil & p_Te are the only observables!
- · Straightforward to include multiple KKs contributing here..

Kinematics of New-Particle Production in Electron Beams Low-energy nucleus typically not measurable $E(A') \approx E_{beam}$ E

Most of beam energy carried away by invisible particles

Recoil electron kinematics opposite of typical bremsstrahlunge

T. Nelson

LDMX Phase I Detector Con

Torget Tracker

LDMX Phase I Detector Con

Torget Tracker

Tracker

Torget Torge

- Start at 4 GeV towards the end of 2021 -- sensitivity to 10⁻¹⁴
- BES plans accelerator upgrade (LCLS-II HE / 8 GeV) -- sensitivity to 10⁻¹⁶

- · Small $\delta_A \to \epsilon_n$'s at low n's remain largish. Small $R^{\text{-}1} \to \text{many KKs}$ contribute, hence, the greatest sensitivity.
- · Meson decays/colliders may do better looking for multiple γ peaks with ME recoiling with shrinking rates due to falling ϵ_n

→ Interesting possibility: via Z-V_i mixing, we have Z→S_iS_j[†] +h.c. w/ the S_i decaying down to DM. In one of our BMs below this is ~763k decay modes!!! Violation of the $\Gamma(Z \rightarrow inv)$ <~1 MeV bound?

Amazingly, no! Including 2k gauge KKs to determine the mixings & taking R⁻¹ =100 MeV w/ $g_D \varepsilon_1$ =10⁻⁴ we get $\Gamma(Z \rightarrow inv) \sim 0.02$ MeV

This is the result of the couplings falling off quickly as we go up the KK towers & gives us a little room for other parameter choices

To go any further we need to determine the $S_n S_m^{\dagger} V_i$ couplings (these would *vanish* for orbifolds!)

$$c_{mn}^i = \int_0^{\pi R} s_n(y) s_m(y) v_i(y) \ dy \rightarrow \tilde{c}_{nm}^i = c_{nm}^i / c_{11}^1 \text{ as c1}_{11} \text{ is used to}$$

$$\text{define the 4-D coupling g}_D$$

Then we can, e.g., determine the e-DM elastic scattering cross section:

$$\sigma_e = \frac{4\alpha\mu^2 g_D^2 \epsilon_1^2}{(m_1^V)^4} \left[\sum_n (-1)^{n+1} \frac{\epsilon_n}{\epsilon_1} \ \tilde{c}_{11}^n \ \frac{(m_1^V)^2}{(m_n^V)^2} \right]^2 \quad \Longrightarrow \quad \sigma_e \simeq 2.97 \cdot 10^{-40} \text{cm}^2 \ \left(\frac{100 \text{MeV}}{\text{m}_1^V} \right)^4 \ \left(\frac{\text{g}_D \epsilon_1}{10^{-4}} \right)^2 \left(\frac{\text{g}_D \epsilon_1}{10^{-4}} \right)^2$$

To get real numbers out we need some benchmarks: take $\delta_A = 0.5$

BM1: $\lambda = 0.8$, $\delta_S = 2.38$ BM2: $\lambda = 0.6$, $\delta_S = 6.03$

The Sum converges rapidly after a few KKs & yields ~ 0.85 for both BMs

We can now calculate the annihilation cross section for $S_1S_1^{\dagger} \rightarrow e^+e^{-..}$

$$\sigma v_{rel} = \tilde{b} v_{rel}^2 \qquad \tilde{b} = \frac{g_D^2 \epsilon_1^2}{192\pi m_{DM}^2} \frac{\gamma^4}{\gamma^2 - 1} \sum_{n,m} (-1)^{n+m} \left[\frac{(\epsilon_n \epsilon_m / \epsilon_1^2) \ \tilde{c}_{11}^n \tilde{c}_{11}^m}{(\gamma^2 - r_n)(\gamma^2 - r_m)} \right]$$

Where
$$\gamma^2 = s/4m_{DM}^2$$
 and $r_n = (m_n^V)^2/4m_{DM}^2$

Rescale
$$\tilde{b} = b \left[\frac{g_D^2 \epsilon_1^2}{m_{DM}^2 ({\rm GeV^2})} \right] 10^{-20} {\rm cm^3 s^{-1}}$$
. & determine b for BM1,2

These again converge rapidly but they differ by a factor of ~2

What are the decays of these KK states? Depends on couplings & PS available. S₁ is DM so is stable, $V_1 \rightarrow SM$ only & $S_2 \rightarrow S_1V_1$ only. For the others:

KK masses in R⁻¹ units

KK level	V	S(BM1)	S(BM2)
1	0.463	0.371	0.278
2	1.393	1.198	1.094
3	2.332	2.123	2.051
4	3.281	3.087	3.035

$$S_n(m) \to S_m(m')V_l(m_V)$$

$$\Gamma_S = \frac{g_D^2 (\tilde{c}_{nm}^l)^2 m^5}{16\pi m_V^4} \left[1 - 2\frac{m_V^2 + m'2}{m^2} + \frac{(m_V^2 - m'^2)^2}{m^4} \right]^{3/2}$$

$$V_i(m_V) \to S_j^{\dagger}(m_j) S_k(m_k) + \text{h.c.},$$

$$V_i(m_V) \to S_j^{\dagger}(m_j) S_k(m_k) + \text{h.c.}, \qquad \Gamma_V = \frac{g_D^2(\tilde{c}_{jk}^i)^2 m_V}{24(1+\delta_{jk})\pi} \left[1 - 2\frac{m_j^2 + m_k^2}{m_V^2} + \frac{(m_j^2 - m_k^2)^2}{m_V^4} \right]^{3/2}$$

BFs in % for Heavier KKs

Process	BF(BM1)	BF(BM2)
$S_3 \rightarrow V_2 S_1$	1.20	0.62
$S_3 \to V_1 S_1$	5.10	1.78
$S_3 \to V_1 S_2$	93.7	97.6
$V_3 \rightarrow S_1^{\dagger} S_1$	74.9	97.3
$V_3 \rightarrow S_1^{\dagger} S_2 + \text{h.c.}$	25.1	2.71
_		
$V_4 \rightarrow S_1^{\dagger} S_1$	45.9	39.5
$V_4 \rightarrow S_1^{\dagger} S_2 + \text{h.c.}$	51.5	18.9
$V_4 \rightarrow S_2^{\dagger} S_2$	1.67	38.8
$V_4 \rightarrow S_3^{\dagger} S_1 + \text{h.c.}$	0.95	2.81

Some similarities but many significant differences for the two BMs due to coupling & PS variations.

The production of the heavier KKs can initiate long cascades with model-dependent contents

Interesting signatures!!

Maybe a few comments about other scenarios if time permits..

Model 2: Complex Scalar w/ vev, $S \sim v_s + h + i\chi$

- · Non-orbifold BCs are again employed and χ + V₅ mix to form the CP-odd field a + unphysical Goldstones level by level. V still has BLKT but none for S. $g_D v_s R$ naturally is ~ O(1).
- · h_1 or a_1 is DM.. BUT m_{DM} must be $< m_{v1}$ However one finds

$$(m_n^h)^2 = \left(\frac{n+1/2}{R}\right)^2 + 2\lambda_S v_s^2 \qquad (m_n^V)^2 = \left(\frac{x_n^V}{R}\right)^2 + g_D^2 v_s^2 \qquad (m_n^a)^2 = \left(\frac{n+1/2}{R}\right)^2 + g_D^2 v_s^2$$

so that $m_{v1} < m_{a1}$ & thus h_1 is the DM with $2\lambda_s < g_D^2$

- · $h_1 a_1$ fractional mass splitting, δ , must be small as they can only co-annihilate via V_n to get relic density \rightarrow the entire spectrum at a given level is compressed! Resonance enhancement can occur.
- · Tree-level DD is absent due to δ , loop-level ~<10⁻⁵¹ cm² tiny!
- · a₁ →h₁e⁺e⁻ unboosted lifetimes ~10-1000 cm due to small δ

Model 3: Majorana/Pseudo-Dirac Fermion

Many moving parts here... but again NOT an orbifold

- Gauge pieces as above w/ BLKT
- Bulk SM singlet fermion w/ bulk mass m_D
- Complex bulk SM Higgs S getting vev for fermion Majorana mass but contributes to gauge masses as in model 2 → h,a
- Fermions form two relatively close mass Majorana towers → another pair of close-mass objects, one long-lived like a_{1.}
 F_{1,2}F_{1,2}V & F₁F₂V+h.c. interactions both exist due to..
- Fermion BCs induce g_L≠g_R → DP has PV interactions with Dark Sector... an additional complexity
- · Interesting new interactions between h,a & F_{1,2}.

• ...

Summary & Conclusions

- Generalizing the 4-D DP model to 5-D can lead to many different
 & interesting scenarios some of which address 4-D issues
- 5-D model building of DP extensions is not trivial or straightforward..
 given the generality of 5-D the restrictions are quite strong
- The 5-D models can lead to complex & interesting phenomenology
 & unique signals in searches
- This is a new area of work & much needs doing for us to understand it
- Hopefully DM of some kind (maybe not the liquid variety !)
 will soon be convincingly discovered

Backup

Steigman 1502.01884 ↑

← update 2017

Can the 'monojet' searches probe these models? No..even the constant $\varepsilon_n = 10^{-4}$ case survives!

~10⁴ gauge KKs contributing

