

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Fast Generation of Covariance Matrices for Weak Lensing

Sgier, Réfrégier, Amara, Nicola 2018 (1801.05745)

Raphaël Sgier

Institute for Particle Physics and Astrophysics

Swiss Cosmology Days 2018

Motivation

• Interpretation of LSS data.

$$\mathcal{L}(D|\theta) \propto e^{-\frac{1}{2}(X^{\mathrm{D}} - X^{\mathrm{M}})^{\mathrm{T}} \mathrm{cov}^{-1}(X^{\mathrm{D}} - X^{\mathrm{M}})}$$

 large ensemble of N-Body simulations needed for a wellconverged covariance matrix.

Motivation

• Interpretation of LSS data.

$$\mathcal{L}(D|\theta) \propto e^{-\frac{1}{2}(X^{\mathrm{D}} - X^{\mathrm{M}})^{\mathrm{T}} \mathrm{cov}^{-1}(X^{\mathrm{D}} - X^{\mathrm{M}})}$$

 large ensemble of N-Body simulations needed for a wellconverged covariance matrix

Computational Power

Resolution

N-Body Simulations

Mass resolution:

$$m = \frac{V}{N} \cdot \rho_{\rm crit} \cdot \Omega_{\rm m}$$

$$N = 2160^3$$
 $V = 500 \,\mathrm{Mpc}/h$

Millennium Simulation (MPA Garching)

N-Body Simulations

Mass resolution:

$$m = \frac{V}{N} \cdot \rho_{\rm crit} \cdot \Omega_{\rm m}$$

 \rightarrow we use large V to avoid replications and avoid dealing with SSC.

$$N = 2160^3$$
 $V = 500 \,\mathrm{Mpc}/h$

Millennium Simulation (MPA Garching)

L-PICOLA

N-Body code

Lagrangian Perturbation Theory

- recovers non-linear regime
- computationally expensive

exact results on large scales
 PT breaks down at k_{NL}

L-PICOLA

Howlett et al. 2015 (1506.03737)

Can we use L-PICOLA to efficiently and accurately generate covariance matrices for weak lensing?

			-PICOLA ADGET 2			
L_{Box}	N_{Part}	N_{Mesh}	mass resolution $(h^{-1}M_{-1})$	z-range	$z_{ m init}$	
$\frac{(n \text{ Mpc})}{4200}$	1024	2048	$\frac{(n \ M_{\odot})}{5.2 \times 10^{12}}$	0.1 - 0.8	9	
6300	1024	2048	1.8×10^{13}	0.8 - 1.5	9	

h = 0.7, $\Omega_{\rm m} = 0.276$, $\Omega_{\rm b} = 0.045$, $n_s = 0.961$, $\sigma_8 = 0.811$

- 1 GADGET-2 and L-PICOLA sims in snapshot mode
- 150 L-PICOLA sims in lightcone mode

$L_{ m Box}$	N_{Part}	N_{Mesh}	mass resolution	z-range	$z_{ m init}$
$(h^{-1}{ m Mpc})$			$(h^{-1}\mathrm{M}_{\odot})$		
4200	1024	2048	5.2×10^{12}	0.1 - 0.8	9
6300	1024	2048	1.8×10^{13}	0.8 - 1.5	9

• Use Born-Approximation for the convergence map:

$$\kappa(\theta_{\rm pix}) \approx \frac{3}{2} \Omega_m \sum_b W_b \frac{H_0}{c} \left[\frac{N_{\rm pix}}{4\pi} \frac{V_{\rm sim}}{N_{\rm part}^{\rm sim}} \left(\frac{H_0}{c}\right)^2 \frac{n_p(\theta_{\rm pix}, \Delta\chi_b)}{\mathcal{D}^2(z_b)} - \left(\frac{c}{H_0} \Delta \mathcal{D}_b\right) \right]$$

Sgier, Réfrégier, Amara, Nicola 2018 (1801.05745)

- Walltime: ~2h for simulation + ~1h for lightcone
- both parts parallelized on Cluster

Power Spectrum

Power Spectrum

Covariance Matrix

Covariance matrix for scales $10^2 < \ell < 10^3$ using 150 UFalcon maps: $\operatorname{cov}(\ell, \ell') = \langle C_{\ell}^q - \langle C_{\ell}^q \rangle \rangle \langle C_{\ell'}^q - \langle C_{\ell'}^q \rangle \rangle$

Covariance Matrix

Covariance matrix for scales $10^2 < \ell < 10^3$ using 150 UFalcon maps: $\operatorname{cov}(\ell, \ell') = \langle C_{\ell}^q - \langle C_{\ell}^q \rangle \rangle \langle C_{\ell'}^q - \langle C_{\ell'}^q \rangle \rangle$

1-Point Distribution

1-Point Distribution

Variance of sample variance as a measure of non-Gaussianity.

Parameter Constraints

- Sample Ω_m and σ_8 with a Monte Carlo Markov Chain (MCMC) on scales $10^2 < \ell < 10^3$.
- Flat priors: $0.05 < \Omega_m < 0.9$, $0.2 < \sigma_8 < 1.6$

Parameter Constraints

- Sample Ω_m and σ_8 with a Monte Carlo Markov Chain (MCMC) on scales $10^2 < \ell < 10^3$.
- Flat priors: $0.05 < \Omega_m < 0.9$, $0.2 < \sigma_8 < 1.6$

Conclusion

Summary:

- UFalcon applied to L-PICOLA: Fast way to generate full-sky weak lensing maps up to $z_s = 1.5$ (**2-3h walltime**).
- 5% agreement between L-PICOLA and GADGET-2 power spectra.
- 2% agreement between $s^2/\sigma_{s^2}^2$ based on L-PICOLA and GADGET-2 maps.
- Obtained constraints in the $\Omega_m \sigma_8$ plane are robust to changes on percent level for optimistic survey configuration.
- Survey specific masks applicable.

Outlook:

- UFalcon: include further probes.
- Application of pipeline to models beyond $\Lambda \rm CDM.$

Thank you!

Backup Slides

N-Body code

Lagrangian Perturbation Theory

- recovers non-linear regime
- computationally expensive

exact results on large scales

PT breaks down at $k_{\rm NL}$

calculate large scales exactly with 2LPT

N-Body code (PM) solves small scales

several orders of magnitude faster than GADGET-2

$$\partial_t^2 \mathbf{x}_{res} = -\nabla \Phi - \partial_t^2 \mathbf{x}_{LPT} \quad \text{with} \quad \mathbf{x}_{res} = \mathbf{x} - \mathbf{x}_{LPT}$$

discretize in PM-code use exact 2LPT expression

Checks Performed

1) Compare maps using L-PICOLA to GADGET-2:

- spherical harmonic power spectrum $C_{\ell}^{\kappa\kappa}$
- probability distribution function (PDF)
- higher order moments
- 2) Compute covariance matrix using 150 L-PICOLA maps.
- 3) Infer cosmological parameter constraints in the $\Omega_{\rm m} \sigma_8$ plane.

Mass Maps

$$\delta(\theta_{\rm pix}) \approx \sum_{b} \left[\frac{N_{\rm pix}}{4\pi} \frac{V_{\rm sim}}{N_{\rm part}^{\rm sim}} \left(\frac{H_0}{c} \right)^2 \frac{n_p(\theta_{\rm pix}, \Delta\chi_b)}{\mathcal{D}^2(z_b)} - \left(\frac{c}{H_0} \Delta \mathcal{D}_b \right) \right] / \sum_{b} \left(\frac{c}{H_0} \Delta \mathcal{D}_b \right)$$
$$\kappa(\theta_{\rm pix}) \approx \frac{3}{2} \Omega_m \sum_{b} W_b \frac{H_0}{c} \left[\frac{N_{\rm pix}}{4\pi} \frac{V_{\rm sim}}{N_{\rm part}^{\rm sim}} \left(\frac{H_0}{c} \right)^2 \frac{n_p(\theta_{\rm pix}, \Delta\chi_b)}{\mathcal{D}^2(z_b)} - \left(\frac{c}{H_0} \Delta \mathcal{D}_b \right) \right]$$

h = 0.7, $\Omega_{\rm m} = 0.276$, $\Omega_{\rm b} = 0.045$, $n_s = 0.961$, $\sigma_8 = 0.811$

- 1 GADGET-2 and L-PICOLA sims in snapshot mode
- 150 L-PICOLA sims in lightcone mode