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Cosmological Weak Lensing

Ideal probe for large-scale matter distribution of the universe.

Constrain cosmological parameters, test modified gravity, ...

Upcoming observations: DES, LSST, Euclid, WFIRST.

Source

Observer

We need a precise theoretical framework to correctly
interpret results!
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Standard Weak Lensing Formalism

A source that we observe at an angle θi has been distorted by an
angle αi = θi − βi , determined by the lensing potential,

αi = ∂iΦ , Φ =

∫ r̄s

0
dr̄

(
r̄s − r̄

r̄s r̄

)
2ψ ,

ψ . . . gravitational potential along the light path.

Amplification (distortion) matrix:

Dij =
∂βi
∂θj

= δij − ∂j∂iΦ =

(
1 0
0 1

)
−
(
κ+ γ1 ω + γ2

−ω + γ2 κ− γ1

)
,

κ . . . convergence, (γ1, γ2) . . . shear components, ω . . . rotation.
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Gauge Freedom

Perturbed flat FLRW metric:

ds2 = gµνdx
µdxν =− a2(τ)(1 + 2A)dτ2 − a2(τ)Bαdτdxα

+ a2(τ) (δαβ + 2Cαβ) dxαdxβ .

Scalar, vector and tensor components:

A = α, Bα = β,α + Bα, Cαβ = ϕ δαβ + γ,αβ + C(α,β) + Cαβ .

10 degrees of freedom, but only 6 of them are physical!
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Newtonian Gauge

Newtonian gauge:

ds2 = −a2(τ)(1 + 2ψ)dτ 2 + a2(τ)(1 + 2φ)δαβdx
αdxβ .

One specific gauge choice, only scalar modes are
considered.

Observable quantities should not depend on the gauge
choice.

Do we get the same results in any other
gauge?
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Gauge Issues of the Standard Formalism

Result: The Standard Formalism does not yield
gauge-invariant expressions for the convergence, the

shear components and the rotation!

The expressions for κ, γ1, γ2 and ω obtain gauge-dependent
terms evaluated at the source position.

The standard formalism does not correctly capture all physical
effects.

For high precision cosmology, we need an alternative
formalism!
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Jacobi Mapping Approach

O

ξ̇µo

ξµ(Λ1)

ξµ(Λ2)

ξµs

xµs

x̃µs

Geodesic deviation equation:

D2ξµ(Λ)

dΛ2
= Rµ

νστk
νkσξτ .

Jacobi Map J ν
µ (Λ):

ξν(Λ) ≡ J ν
µ (Λ)ξ̇µo , ξ̇µ(Λo) ≡ d

dΛ
ξµ(Λ)

∣∣∣∣
Λo

.

Propagation equation of Jacobi Map:

D2J ν
µ (Λ)

dΛ2
= (Rν

στκk
σkτ )J κ

µ (Λ) .
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The Separation Vector in the Local Lorentz Frame

The vectors ξ̇µo and ξµs live in the global spacetime manifold.

Gravitational lensing affects the size and shape of an object.

⇒ We need to transform ξ̇µo (or ξµs ) to the local Lorentz frame of
an observer moving with velocity uµo (or uµs ).

eµy

eµz

eµx

uµs

Local orthonormal tetrads:

eµt = uµ , ηab = eµa e
ν
bgµν .

Separation vector in local coordinates:

ξts = (ξµuµ)s = 0 , ξis =
(
ξµe iµ

)
s
.

2-dimensional separation vector: ξ1
s =

(
ξiθi
)
s

and ξ2
s =

(
ξiφi

)
s
.
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The 2× 2-dimensional Jacobi Map

Define 2 tetrads: [e1]µo =
(
eµi θ

i
)
o

and [e2]µo =
(
eµi φ

i
)
o

.

Parallel transport:

D[eI ]
µ(Λ)

DΛ
= 0 , I = 1, 2.

The 2×2-dimensional Jacobi map DI
J is defined by:

ξI ≡ ξµ[e I ]µ , ξI ≡ DI
J(Λ)ξ̇Jo , ξ̇Io ≡

d

dΛ
ξI
∣∣∣∣
Λo

.

Propagation equation:

d2

dΛ2
DI

J = −RI
KD

K
J , where RI

J ≡ (Rµνστk
νkτ ) [e I ]µ[eJ ]σ .

Simplification: Use conformally transformed metric, a2ĝab = gab.

Jacobi Mapping Approach for a precise Cosmological Weak Lensing Formalism



Result to Linear Order

Jacobi Map to first order:

D̂I
J(λs) = λsδ

I
J + λsD̂

I (1)
J = λsδ

I
J − λs

∫ λs

0
dλ

(
λs − λ
λsλ

)
λ2R̂I

J(λ) .

Amplification (distortion) matrix:

ξIs = D̃I
J ξ̄

J
s , D̃I

J =
1

λz
(1 + δz) D̂I

J .

Decomposition:

D̃I
J =

(
1 0
0 1

)
−
(
κ̃+ γ̃1 γ̃2 + ω̃
γ̃2 − ω̃ κ̃− γ̃1

)
,

κ̃ . . . convergence, (γ̃1, γ̃2) . . . shear components, ω̃ . . . rotation.
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Shear and Convergence

Convergence:

κ̃ = κ+
nαGα

r̄z
− ∇̂αG

α

2r̄z
− δzχ −

δrχ
r̄z
− ϕχ + nαnβCαβ .

This quantity is gauge-invariant and describes the distortion in the
luminosity distance: κ̃ = −δDL.

Shear components:

γ̃1 =γ1+
1

2
(φαφ

β − θαθβ)Gα,β +
1

2
(φαφβ − θαθβ)Cαβ ,

γ̃2 =γ2−
1

2
(θαφβ + θβφα)Gα,β − θαφβCαβ .

Comparison to standard formalism: Gauge-invariant and additional
tensor contribution at source position.

Jacobi Mapping Approach for a precise Cosmological Weak Lensing Formalism



The Vanishing Rotation

In the Jacobi mapping formalism, we have ω̃ = 0. But:

ω = Ωn
o +

1

2
(θαφβ − φαθβ)

[∫ r̄z

0
dr̄

∂

∂xβ

(
Ψα + 2Cαγ n

γ
)

+ Gα,β
]
.

What we measure depends on the
orientation of our observer basis!

Tetrads [e1]µ, [e2]µ: One rotational
degree of freedom, both at the
observer and the source.

The correspondence between the
source and observer bases is fixed
by parallel transport!

Conclusion: The rotation is indeed vanishing (to linear order)!
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Source Velocity vs. Parallel-Transported Velocity

Source velocity uas 6= parallel-transported velocity uao(Λs)

eµy

eµz

eµx

uµs Lorentz boost
ẽµy

ẽµz

eµx

uµo (Λs)

Observed photon directions nis and ñis differ in these frames.

Lewis & Challinor (2006), Mitsou & Yoo (in preparation):
Effect of Lorentz boost fully absorbed in transformation of nis .

Quantities orthogonal to nis are unaffected:

ξ1
s =

(
ξiθ

i
⊥
)
s

=
(
ξ̃i θ̃

i
⊥

)
s

= ξ̃1
s
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Conclusion

Jacobi mapping approach yields gauge-invariant results for
weak lensing effects.

Standard formalism: Only accurate for scalar perturbations to
linear order.

Different results for vector and tensor perturbations.

The rotation vanishes to linear order!

Two upcoming papers:

“Gauge-Invariant Formalism of Cosmological Weak Lensing”
(J. Yoo et al., in preparation)

“Jacobi Mapping Approach for a precise Weak Cosmological
Lensing Formalism” (N. Grimm and J. Yoo, in preparation)
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