INTEGRATED APPROACH TO COSMOLOGY

Andrina Nicola (ETH Zürich) with Alexandre Refregier and Adam Amara SCD @ CERN February 6th, 2018

COSMOLOGICAL PROBES

Tighter constraints due to complementary information Robust tests of cosmological model by comparing consistency of different tracers

Cross-correlations: systematics identification

7)

 $\Delta T_{\rm CMB}$

FRAMEWORK

MAPS & BACKGROUND PROBES

SPHERICAL HARMONIC POWER SPECTRA

CMB TEMPERATURE ANISOTROPIES FROM PLANCK 2015

GALAXY CLUSTERING FROM SDSS DR8

DES SV COSMIC SHEAR

ISW FROM GALAXY OVERDENSITY

CROSS-CORRELATION GALAXY OVERDENSITY CMB LENSING

DATA

COVARIANCE MATRIX

MODEL PARAMETERS

Parameter

COSMOLOGICAL PARAMETER CONSTRAINTS

Concordance with Planck 2015 quantified in *Nicola et al., 2017b*: no sign for tensions

PROBE CALIBRATIONS

SUMMARY & CONCLUSIONS

Developed an integrated framework for cosmological probe combination

Break parameter degeneracies

Robust test of cosmological model

Identification, understanding and calibration of systematics

Implementation with CMB temperature, CMB lensing, galaxy clustering, weak lensing from SDSS and DES SV and background probes leads to 12 power spectra

Derived constraints consistent with ACDM and no sign of tensions between probes

Quantification of possible tensions with relative entropy

Current: galaxy clusters with collaborators at USM

Future: tests of ACDM, application to current surveys

-				 	_	
		ΛΙ		V		
	п	AI	N	T	U	U:
_						

Васкир

COSMOLOGICAL PROBES

Galaxy clustering

Images: 6dF, Science News

COSMOLOGICAL PROBES

Weak gravitational lensing

Supernovae

COSMIC MICROWAVE BACKGROUND

Data set: Planck 2015, Planck Collaboration, 2015

GALAXY DENSITY

Data set: SDSS DR8 CMASS1-4, Aihara et al., 2011, Ho et al., 2012

WEAK LENSING

Data sets:

SDSS Stripe 82 co-add, *Annis et al., 2014, Lin et al., 2012* DES SV, *Jarvis et al., 2016, Becker et al., 2016*

BACKGROUND PROBES

Data sets:

Joint Lightcurve Analysis (JLA), *Betoule et al., 2014* H0, *Riess et al., 2011, Efstathiou, 2014*

RELATIVE ENTROPY

Measure for distance between $\pi(\theta)$: prior $p(\theta)$: posterior

$$D(p||\pi) = \int d\theta \ p(\theta) \log \frac{p(\theta)}{\pi(\theta)}$$

Kullback & Leibler, 1951

SURPRISE - CONSISTENCY MEASURE

Measure for distance between $\pi(\theta)$: prior $p(\theta)$: posterior

$$(D(p||\pi) = \int d\theta \ p(\theta) \log \frac{p(\theta)}{\pi(\theta)}$$

observed

$$(S) = D(p||\pi) - (\langle D \rangle)$$

Surprise = observed expected

> *Kullback & Leibler, 1951 Seehars et al., 2014, 2016 Grandis et al., 2016a, 2016b*

QUANTIFICATION OF CONCORDANCE

Data combi	nation		Updating scheme	D	$\langle D \rangle$	S	$\sigma(D)$	<i>p</i> -value
CMB set	\rightarrow	P15	replace	9.1 (17.5) (8.3)	11.5 (12.4) (11.6)	-2.3 (5.1) (-3.3)	5.5 (4.5) (5.5)	0.4 (0.1) (0.3)
CMB set*	\rightarrow	P15	replace	$-\frac{(0.0)}{13.7}$ - (13.1) (12.6)	(11.0) 12.6 (13.4) (12.1)	$-\frac{(-0.5)}{1.1}$ (-0.4) (0.5)	$(\frac{6.5}{6.5})$ (7.1) (6.1)	$-\frac{(0.6)}{0.3}$ (0.6) (0.4)
$CMB set^*$	\rightarrow	P15*	replace	$-\frac{(12.0)}{9.6}$	$-\frac{(12.1)}{9.7}$	$-\frac{(0.0)}{-0.1}$	$(\frac{0.1}{4.7})$	$-\frac{(0.1)}{0.6}$
IA	→	IA+P15 ^{**} hi- ℓ , massless ν	add	8.3 (8.3)	8.2 (8.1)	$\begin{array}{c} 0.1 \\ (0.2) \end{array}$	1.7 (1.7) ($\begin{array}{c} 0.4 \\ (0.4) \\ \end{array}$
IA*	\rightarrow	$\frac{1A^{*} + 1^{*} 5^{**} \text{ m} - \ell}{\text{massless } \nu}$	add	(10.6)	(9.5)	(1.2)	(1.9)	(0.2)
IA	\rightarrow	$IA+P15^{**}$ hi- ℓ , massive ν	add	8.9 (-)	(-)	0.7 (-)	- <u>1</u> .7 (-)	(-)

OVERVIEW OF DATA SETS

CMB temperature		Survey: Planck 2015 Fiducial foreground-reduced map: Commander Sky coverage: $f_{sky} = 0.776$		
Galaxy density		$\begin{array}{l} \mbox{Survey: SDSS DR8} \\ \mbox{Sky coverage: } f_{\rm sky} = 0.27 \\ \mbox{Galaxy sample: CMASS1-4} \\ \mbox{Number of galaxies: } N_{\rm gal} = 854063 \\ \mbox{Photometric redshift range } 0.45 \leq z_{\rm phot} < 0.65 \end{array}$		
Weak lensing	SDSS Stripe 82	Survey: SDSS Stripe 82 co-add Sky coverage: $f_{\rm sky} = 0.0069$ Number of galaxies: $N_{\rm gal} = 3322915$ Photometric redshift range: $0.1 \lesssim z_{\rm phot} \lesssim 1.1$ r.m.s. ellipticity per component: $\sigma_e \sim 0.43$		
	DES	$\begin{array}{l} {\rm Survey: \ DES \ SV} \\ {\rm Sky \ coverage: \ } f_{\rm sky} = 0.0039 \\ {\rm Number \ of \ galaxies: \ } N_{\rm gal} = 3279967 \\ {\rm Photometric \ redshift \ range: \ } 0.3 < z_{\rm phot} < 1.3 \\ {\rm r.m.s. \ weighted \ ellipticity \ per \ component: \ } \\ \sigma_e \sim 0.24 \end{array}$		
CMB lensing		Survey: Planck 2015 Sky coverage: $f_{\rm sky} = 0.67$		
SNe Ty	pe Ia	Compilation: JLA Number of SNe: $N_{\rm SNe} = 740$ Redshift range: $0.01 < z < 1.3$		
Hubble parameter		Distance anchor: NGC 4258 Number of Cepheids: $N_{\text{Ceph.}} = 600$ Number of SNe: $N_{\text{SNe}} = 8$ Analysis: Efstathiou, 2014		

SYSTEMATICS CORRECTION FOR GALAXY CLUSTERING

BARYONIC CORRECTIONS TO THE MATTER POWER SPECTRUM

TREATMENT OF INTRINSIC ALIGNMENTS

COMPARISON EXTENDED TO ORIGINAL IA

Sensitivity of cosmological constraints

/ reion

COMPARISON TO PLANCK 2015

COSMOLOGICAL PARAMETER CONSTRAINTS

Parameter	Prior	Posterior mean
h	flat $\in [0.2, 1.2]$	0.700 ± 0.014
$\Omega_{ m m}$	flat $\in [0.1, 0.7]$	0.279 ± 0.015
$\Omega_{ m b}$	flat $\in [0.01, 0.09]$	0.0458 ± 0.0015
$n_{ m s}$	flat $\in [0.1, 1.8]$	$0.974_{-0.017}^{+0.018}$
σ_8	flat $\in [0.4, 1.5]$	0.819 ± 0.029
$ au_{ m reion}$	Gaussian with $\mu = 0.089, \sigma = 0.02$	$0.0787\substack{+0.0200 \\ -0.0199}$
b	flat $\in [1., 3.]$	2.09 ± 0.06
$m_*^{ m SDSS}$	Gaussian with $\mu = 0.0, \sigma = 0.22$	-0.229 ± 0.113
$m_*^{ m DES}$	Gaussian with $\mu = 0.0, \sigma = 0.22$	$-0.0708\substack{+0.0953\\-0.0946}$
$m_{\kappa_{ m CMB}}$	flat $\in [-0.5, 0.5]$	$-0.0598\substack{+0.0941\\-0.0946}$
lpha	flat $\in [0.1, 0.2]$	0.142 ± 0.007
eta	flat $\in [2., 4.]$	3.11 ± 0.08
$M_{ m B}^1$	flat $\in [-25., -10.]$	-19.06 ± 0.02
$\Delta ilde M$	flat $\in [-0.13, -0.01]$	$-0.0711\substack{+0.0230\\-0.0227}$