CCFE Contributions to Geant4/V

Andrew Davis, Michael Fleming

High Performance Computing Group & Nuclear Data Section Culham Centre for Fusion Energy

Contents

- 1. Introduction
- 2. Geant4
 - a. Neutron Physics
 - i. Optimisation, Nuclear Data
 - b. Geometry Support for CAD analysis
 - c. User support
- 3. GeantV
 - a. Alternative architectures
 - i. GPU, FPGA, ARM
 - b. HPC based workflows
- 4. Questions

Geant4 Working Groups

- We would like to join two working groups
 - Geometry Our interest in regular and CAD geometry I think will be beneficial to a wider audience
 - Hadronic Neutron Physics (data driven < 20 MeV) will perform significant amounts of validation

Who are we? (i)

- CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority (UKAEA)
- One of the major research deliverables of our neutronics analysts is to perform neutron (+photon transport) in support of the design of ITER, Detector design in support of experiments -MAST and JET

Who are we? (ii)

- Most radiation transport code users are MCNP5/MCNP6 users
- Take CAD model convert to MCNP run transport

 Responses (like DPA, Nuclear Heating) are of primary concern - coupling to other upstream analyses transmutation etc

Testing/Benchmarking < 20 MeV

- Validation: the < 20 MeV community uses a suite of 2000+ benchmarks from ICSBEP, SINBAD and others
 - A suite of these for Geant4 is required to convince members of that community
- New nuclear data forms: the nuclear data community is actively developing new techniques
 - Working Party on International Nuclear Data Evaluation Co-operation (WPEC) subgroups 38 and 43 for new formats (XML, HDF5...)
- New processing codes: NJOY21
 - NJOY-12/16 (F77) -> NJOY21 (C++)
 - Fully open-source
 - Collaborate to develop Geant-specific forms/formats and/or utilise another format
 - Leverage considerable amount of effort from others

Neutron physics < 20 MeV

- Nuclear data (ENDF) is an area of strength of CCFE
 - Processing from ENDF-6 format to NDL through open-source, documented package
 - Utilise nuclear data processing codes, which are fully open source NJOY/PREPRO
 - We have expertise in nuclear data processing, but less with NDL - availability of translation (processed ENDF -> NDL) scripts would be useful
 - Ability to add various derived quantities from NJOY and unresolved resonance treatment (PTs)
 - Addition of cutting-edge nuclear data libraries (TENDL-2017, ENDF/B-8, JEFF-3.3...)
 - Covariances, Total/Bayesian-Monte Carlo and more
 - Uncertainty Propagation (Univ. Liverpool)

CAD Geometry Support (i)

- DAGMC Geometry Support
 - DagSolid (as part of DAGMC)
 has existed since 2013 and
 has been used in a few
 projects
 - NASA RAD Detector
 - SNS Proof of concept
 - ITER Physics Comparions
- Baseline implementation has been shown to be inefficient
 - Follows a very Geant4 like implementation
 - DagSolid is-a G4TesselatedSolid
 - The hierarchical geometry performance suffers when tree is wide with high valence volumes

Fig: RAD Detctor Fly Through

Fig: Triangle mesh human phantom

CAD Geometry Support (ii)

- Work on the concept of a DAGMC Navigator
 - Honour the calls as needed by G4Navigator
- Ensure thread safety test DAGMC thread manager concept wrt to G4MT
- Investigate vectorisation of DAGMC Queries
 - Already some work underway with vectorisation of OBB Tree
- In collaboration with Univ. Bristol
 - Investigate Geant4/V on ARM platforms (T2 ARM Cluster Isambard)
 - ARM SVE would be of interest

GeantV

- We have good access to HPC
 - GPU
 - Cloud
- We are heavily involved in
 - EOSC Pilot HPCaaS
 - EOSC Hub Lead Partner
 - SAGE2 Data Storage for Exascale applications
- We are looking to scale and develop new workflows for future systems

CCFE Contributions to Geant4/V Summary

Nuclear data < 20 MeV

- Verify Geant4 neutron transport using simple broomstick and spheres against other MC codes
- Validate Geant4 against Sinbad and ICSBEP
- Produce open tool to process ENDF files into the G4NDL format with documentation
 - Offer all libraries and facilitate uncertainty quantification

Geometry

- Investigate DagNavigator concept
- Investigate DagSolid MT compatability
- Investigate DagMC Opti/X Compatibility

GeantV

Contribute to HPC Development/Deployment

Questions

Thankyou

