

Principles of Data Visualization II

Eamonn Maguire CERN School of Computing, Israel October 2018

We have to be careful when mapping data to the visual world

Some visual channels are more effective for some data types over others.

Some data has a **natural mapping** that our brains expect given certain types of data

There are many visual tricks that can be observed due to how the visual system works

We don't see in 3D, and we have difficulties interpreting information on the Z-axis.

Colour

Scales

Be aware of traps in visualizing data, when creating or reading. Especially with scales.

Be aware of traps in visualizing data, when creating or reading. Especially with scales.

But even this is not good in theory.

By truncating the y axis, we are still magnifying the effect.

But even this is not good in theory.

By truncating the y axis, we are still magnifying the effect.

But having zero for the y axis makes it difficult to see change too.

So, maybe we should think about other ways of showing change.

If our **task** is about **finding where there are intra-month changes**, then simply plotting the differences can be more informative.

In the right chart we can now see that the employment rate under Obama went down more than it went up, and that in November the drop was greatest...

Before stepping in to more complex multidimensional visualisations, let's look at an example...

Video Game Data Set From Kaggle

https://www.kaggle.com/gregorut/videogamesales/version/2#

What are you visualising?

e.g. 16,000 rows of video game sales data (from Kaggle) STATIC DATA | 2D Table | 11 features

	Rank	Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
0	1	Wii Sports	Wii	2006.0	Sports	Nintendo	41.49	29.02	3.77	8.46	82.74
1	2	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24
2	3	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.85	12.88	3.79	3.31	35.82
3	4	Wii Sports Resort	Wii	2009.0	Sports	Nintendo	15.75	11.01	3.28	2.96	33.00
4	5	Pokemon Red/Pokemon Blue	GB	1996.0	Role-Playing	Nintendo	11.27	8.89	10.22	1.00	31.37
5	6	Tetris	GB	1989.0	Puzzle	Nintendo	23.20	2.26	4.22	0.58	30.26
6	7	New Super Mario Bros.	DS	2006.0	Platform	Nintendo	11.38	9.23	6.50	2.90	30.01
7	8	Wii Play	Wii	2006.0	Misc	Nintendo	14.03	9.20	2.93	2.85	29.02
8	9	New Super Mario Bros. Wii	Wii	2009.0	Platform	Nintendo	14.59	7.06	4.70	2.26	28.62
9	10	Duck Hunt	NES	1984.0	Shooter	Nintendo	26.93	0.63	0.28	0.47	28.31
10	11	Nintendogs	DS	2005.0	Simulation	Nintendo	9.07	11.00	1.93	2.75	24.76
11	12	Mario Kart DS	DS	2005.0	Racing	Nintendo	9.81	7.57	4.13	1.92	23.42
12	12	Pakaman Gald/Dakaman Silver	CR	1000 0	Pole-Plaving	Nintendo	a nn	6 1 Q	7 20	0.71	22 10
	T	Ť	T	↑	T I	T	1	1	1	1	1
Ordinal Ordina Nominal Ordina Categor				al itial rical		•	Qua	antita	itive		
Categorical						Categorical					
				Ca	ategori	cal					

Why are we visualising?

	Rank	Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
0	1	Wii Sports	Wii	2006.0	Sports	Nintendo	41.49	29.02	3.77	8.46	82.74
1	2	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24
2	3	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.85	12.88	3.79	3.31	35.82
•••											

Task

I want to compare the general trends in Global Sales per Genre over time

We can break this task down in to

We're presenting data, to enable comparisons of trends.

	Rank	Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
0	1	Wii Sports	Wii	2006.0	Sports	Nintendo	41.49	29.02	3.77	8.46	82.74
1	2	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24
2	3	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.85	12.88	3.79	3.31	35.82

...

This is super hard to decode! So NOT a good visual encoding.

- 1. Too many colours (not all distinguishable).
- 2. Too many crossing lines (making it hard to see continuity)
- 3. Although less cognitively demanding than reading the whole spreadsheet, it's still pretty demanding to match the line to the series.

	Rank	Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
0	1	Wii Sports	Wii	2006.0	Sports	Nintendo	41.49	29.02	3.77	8.46	82.74
1	2	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24
2	3	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.85	12.88	3.79	3.31	35.82

...

Much better.

Separating the series in to **small multiples** is generally good practice if you have many series to compare.

But can you see problems here?

	Rank	Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
0	1	Wii Sports	Wii	2006.0	Sports	Nintendo	41.49	29.02	3.77	8.46	82.74
1	2	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24
2	3	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.85	12.88	3.79	3.31	35.82

...

Much better.

Separating the series in to **small multiples** is generally good practice if you have many series to compare.

But can you see problems here?

Axes are different per plot. Colour offers us nothing here.

	Rank	Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
0	1	Wii Sports	Wii	2006.0	Sports	Nintendo	41.49	29.02	3.77	8.46	82.74
1	2	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24
2	3	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.85	12.88	3.79	3.31	35.82

...

Easy to compare now between all plots.

But can we do better?

	Rank	Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
0	1	Wii Sports	Wii	2006.0	Sports	Nintendo	41.49	29.02	3.77	8.46	82.74
1	2	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24
2	3	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.85	12.88	3.79	3.31	35.82
	•••										

Comparing the trends is easier here since we can see all the data in one compact plot.

Here I've also clustered the genres to see which are most similar in terms of trend.

Although, it will be harder to map from the colour to an exact value. Here, we've given up some decoding power, i.e. the ability to go back to the original value.

Why are we visualising?

	Rank	Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
0	1	Wii Sports	Wii	2006.0	Sports	Nintendo	41.49	29.02	3.77	8.46	82.74
1	2	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24
2	3	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.85	12.88	3.79	3.31	35.82
•••											

Task

I want to compare the number of releases by genre per year

We can break this task down in to

We're presenting data, to enable comparisons of distributions.

Naively, we would start by plotting the time distribution for each Genre, and overlay them on top of one another.

Naively, we would start by plotting the time distribution for each Genre, and overlay them on top of one another.

Too many overlapping areas. It's a mess.

Box Plots

Box Plots

Violin Plots

Box Plots

Violin Plots

Boxenplots

Facet Plots Small multiples

While aesthetically nice, and this does provide a good detailed view of the data, it's hard to compare all the distributions.

So far, we've only seen how to represent a low number of dimensions

What happens when we have a high number of dimensions?

ls (Early Logi	Day Logins	Evening L	Login Cha	Login D
	0.385	0.4	0.0769	0.947	66.2
	0.717	2	0.138	1.705	41
	0.78	1.6	0.0012	2.2	52.9
	0.002	0	0	0.005	0
	0.714	0	0	0.024	0.06
	0.827	0	0	0.026	0.06

Temperature - Colour
Wind direction - Orientation ↑↑ →
Wind Speed - Proximity
Location - Position

Scatter Plot Matrices Linked Plots

Parallel Coordinates

Scatter Plot Matrices

Name	Height	Weight	Chol
John	1.76	63	4.5
Mike	1.79	70	4.15
Jim	1.61	60	6.7
Francois	1.84	90	5.03

Scatter Plot Matrices

Name	Height	Weight	Chol
John	1.76	63	4.5
Mike	1.79	70	4.15
Jim	1.61	60	6.7
Francois	1.84	90	5.03

Scatter Plot Matrices

Name	Height	Weight	Chol
John	1.76	63	4.5
Mike	1.79	70	4.15
Jim	1.61	60	6.7
Francois	1.84	90	5.03

Scatter Plot Matrices

Name	Height	Weight	Chol
John	1.76	63	4.5
Mike	1.79	70	4.15
Jim	1.61	60	6.7
Francois	1.84	90	5.03

Scatter Plot Matrices

Name	Height	Weight	Chol
John	1.76	63	4.5
Mike	1.79	70	4.15
Jim	1.61	60	6.7

Multidimensional Visualization Linked Plots

Visual Exploration of Large Structured Datasets. Wills. Proc. New Techniques and Trends in Statistics (NTTS), pp. 237–246. IOS Press, 1995.

+ Emails		@×	
	FROM THE LAST 3 DAYS FILTER		
Email	Count	History	
j.marks@bbc.com	144		
z.jiao@atb.cn	100		
emma.k@yahoo.com	76	mut	
emk@gmail.com	75	h	
john.joe@gmail.com	56	mm	

dois by allocato

A	NDS - Australian National Data Service		
BL	- The British Library		
C	DL - California Digital Library		
C	ERN - CERN - European Organization fo	r Nuclear Research	
CI	STI - National Research Council Canada		
C	RUI - CRUI2011		
D	ELFT - TU Delft Library		
D	K - Technical Information Center of Den	mark	
ES	TDOI - Tartu University		
ET	HZ - ETH Zurich		
G	ESIS - GESIS - Leibniz Institute for the S	ocial Sciences	
IN	IST - Institute for Scientific and Technic	al Information	
м	TAKIK - MTA Könyvtára		
N	RCT - National Research Council of Tha	land	
0	STI - Office of Scientific and Technical Ir	nformation (OSTI)%2	C US Department of I
PL	JRDUE - Purdue University Library		
SN	ND - Swedish National Data Service		
SL	JBGOE - Niedersächsische Staats- und I	Jniversitätsbibliothel	k Göttingen
TI	B - German National Library of Science	and Technology	
Z	BMED - German National Library of Me	dicine	
ZE	3W - Deutsche Zentralbibliothek für Wi	rtschaftswissenschaf	ten – Leibniz-Informa
0		1M	

erg

I View Detailed List

dois with orcid ids

1k

500

Ó

1.5k

2k

2.5k

3k

3.5k

4k

4.5k

Cite Summary Download as CSV Paper Overview Citation Overview 2,017 out of 2414 Papers 794 with no citations not shown **Reset All Filters** 114,029 out of 114,029 Citations **Reset All Filters** 2k 1.8k 1.6k 1.4k 1.4k 1.4k 1.4k 1.4k 00 -00 110k Cumulative Citations 90k Citations 80k Citations 70k -60k -50k -30k -20k -10k -0 # Citatio Pap +add 2000 2002 2004 2006 2008 2010 2012 2014 2016 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Publication Year Citation Year Paper Type Paper Subject Area **Citation Types** Citation Subject Area Published Book Accelerators Conference Paper Conference Astrophysics v-HEP Thesis Computing hysics None entatio Experiment-HEP Experiment-Nucl Note Note Experiment-Nucl Lattice Review General Relativity Theory-Nucl Proceedings General Relativity Instrumentatio **Book Chapte** Accelerators Lattice Published Proceedings Math and Math Physics Other Book Report Other Math and Math Physics Report Quantum Physics Phenon enology-HEP Review Data Analysis and Statistics lectures Theory-HEP General Physics Thesis introductor Theory-Nucl Beyond the Standard Mode 5 500 1.5k 1k 400 50k 200 600 800 30k 10k зÖk ò 10k 20k 40k 20k 40k Paper Citation Counts Self Citations **Collaboration Papers** 160 | 140 | 140 | 140 | 120 | 120 | 100 | Not Self - 79.7% Other - 86.0% **Collaboration Pap** Self - 20.3% Collaboration Paper - 14.0% 20 -0 -

5.5k

6k

5k

24

1k

500

Ó

1.5k

2k

2.5k

3k

3.5k

4k

4.5k

Cite Summary Download as CSV Paper Overview Citation Overview 2,017 out of 2414 Papers 794 with no citations not shown **Reset All Filters** 114,029 out of 114,029 Citations **Reset All Filters** 2k 1.8k 1.6k 1.4k 1.4k 1.4k 1.4k 1.4k 00 -00 110k Cumulative Citations 90k Citations 80k Citations 70k -60k -50k -30k -20k -10k -0 # Citatio Pap +add 2000 2002 2004 2006 2008 2010 2012 2014 2016 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Publication Year Citation Year Paper Type Paper Subject Area **Citation Types** Citation Subject Area Published Book Accelerators Conference Paper Conference Astrophysics v-HEP Thesis Computing hysics None entatio Experiment-HEP Experiment-Nucl Note Note Experiment-Nucl Lattice Review General Relativity Theory-Nucl Proceedings General Relativity Instrumentatio **Book Chapte** Accelerators Lattice Published Proceedings Math and Math Physics Other Book Report Other Math and Math Physics Report Quantum Physics Phenon enology-HEP Review Data Analysis and Statistics lectures Theory-HEP General Physics Thesis introductor Theory-Nucl Beyond the Standard Mode 5 500 1.5k 1k 400 50k 200 600 800 30k 10k зÖk ò 10k 20k 40k 20k 40k Paper Citation Counts Self Citations **Collaboration Papers** 160 | 140 | 140 | 140 | 120 | 120 | 100 | Not Self - 79.7% Other - 86.0% **Collaboration Pap** Self - 20.3% Collaboration Paper - 14.0% 20 -0 -

5.5k

6k

5k

24

OPY (Modified)

Submission Status

Version
Multidimensional Visualization Dashboard Visualizations

OPY (Modified)

Submission Status

Version

My Tutorial on Creating Dashboard Visualizations https://thor-project.github.io/dashboard-tutorial/

Lets take an example where we have many variables to display... Each user is represented by a circle

4 Dimensions Color indicates users department Transparency indicates consistency in logins user a • user a • uploads uploads user z · user z downloads downloads

As we get to higher levels of dimensions, we'll have problems. Our choice of visual encoding will affect the visual availability of each dimension to the user.

5 Dimensions

Parallel coordinates are a visualization technique employed when a large number of dimensions need to be displayed (often without a temporal element) and where each of those dimensions can be equally important in the decision making process.

In the scatter plots here, it's easy to see **correlation** between downloads and uploads, but with the other dimensions that's difficult.

We can keep adding more parallel lines, and comfortably have around 20 dimensions for many users displayed at once.

Parallel Coordinate Plots

Parallel coordinates provide an efficient way to visualize many variables, along with their associated **clusters**, **anomalies**, value **distributions** and **correlations**.

Glyphs

- static item aggregation
- task: find distribution
- data: table
- derived data
 - 4 quantitative attributes
 - median: central line
 - lower and upper quartile: boxes
 - lower upper fences: whiskers
 - outliers beyond fence cutoffs explicitly shown

Glyphs

Simple Glyph

Temperature - Colour ■ Wind direction - Orientation ↑↑ → Wind Speed - Proximity Location - Position

Complex Glyph

Glyphs | Example

When evaluating the impact of a publication, we generally look at the citation count.

This can be useful, but it doesn't tell us how impactful that publication was within its area.

Can we provide a way to summarise the impact of a publication in an intuitive way?

Glyphs | Example

We wished to create a design that could be repurposed for a number of scenarios:

- 1) in a detailed view;
- 2) as a glyph; and
- 3) in a summary graph for an author or research field.

Glyphs | Example

E. Maguire, J. Martin Montull, and G. Louppe, Visualization of Publication Impact, In Proceedings of EuroVis 2016, Short Paper (2016)

http://inspirehep.github.io/impact-graphs/

A Simple Example | Student Test Results

Table

Math	Physics	English	Religion
85	95	71	65
90	80	60	50
65	50	90	90
50	40	95	80
40	60	80	90

Scatter Plot Matrix

A Simple Example | Student Test Results

Table

Math	Physics	English	Religion
85	95	71	65
90	80	60	50
65	50	90	90
50	40	95	80
40	60	80	90

Parallel Coordinates

A Simple Example | Student Test Results

Table

Math	Physics	English	Religion
85	95	71	65
90	80	60	50
65	50	90	90
50	40	95	80
40	60	80	90

Arrange Spatially

)n

it Test Results

What about topological data?

Representing trees and graphs...

In this case, it's a semantic mapping to the underlying biological pathways.

In this case, it's a semantic mapping to the underlying biological pathways.

Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE TVCG (Proc. InfoVis) 14(6):1253-1260, 2008.]

Force Directed Graphs

The most used of all graphical layouts on the web.

But beware. As we saw earlier, Gestalt laws tell us that items that are close together are seen as more similar than those that are not.

Unfortunately, completely unrelated nodes can be perceived as being more similar due to the layout algorithm in force directed graphs.

Hive Plots

Graphs/Networks

Hive Plots

http://jsfiddle.net/eamonnmag/vso70qnr/

Graphs/Networks

Matrix Representations

https://bost.ocks.org/mike/miserables/

More??

Visualization Analysis and Design. Munzner. A K Peters Visualization Series, CRC Press, Visualization Series, 2014.

Further Links

Tutorials

D3 http://antarctic-design.co.uk/biovis-workshop15/

Dashboards https://thor-project.github.io/dashboard-tutorial/

Visualization Sites

Set Visualization - <u>http://www.cvast.tuwien.ac.at/SetViz</u>

Time Series Visualization - http://survey.timeviz.net/

http://flowingdata.com/

Data Vis Catalogue

Python Data Vis Tools

<u>Pandas Data Vis</u>

Matplotlib

Seaborne

Altair

Questions

@antarcticdesign
eamonnmag@gmail.com